blob: 495d64652f9cc5823889ee7de59a91ddffe5be44 [file] [log] [blame]
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package fillstruct defines an Analyzer that automatically
// fills in a struct declaration with zero value elements for each field.
package fillstruct
import (
"bytes"
"fmt"
"go/ast"
"go/format"
"go/token"
"go/types"
"log"
"unicode"
"golang.org/x/tools/go/analysis"
"golang.org/x/tools/go/analysis/passes/inspect"
"golang.org/x/tools/go/ast/astutil"
"golang.org/x/tools/go/ast/inspector"
"golang.org/x/tools/internal/analysisinternal"
"golang.org/x/tools/internal/span"
)
const Doc = `note incomplete struct initializations
This analyzer provides diagnostics for any struct literals that do not have
any fields initialized. Because the suggested fix for this analysis is
expensive to compute, callers should compute it separately, using the
SuggestedFix function below.
`
var Analyzer = &analysis.Analyzer{
Name: "fillstruct",
Doc: Doc,
Requires: []*analysis.Analyzer{inspect.Analyzer},
Run: run,
RunDespiteErrors: true,
}
func run(pass *analysis.Pass) (interface{}, error) {
inspect := pass.ResultOf[inspect.Analyzer].(*inspector.Inspector)
nodeFilter := []ast.Node{(*ast.CompositeLit)(nil)}
inspect.Preorder(nodeFilter, func(n ast.Node) {
info := pass.TypesInfo
if info == nil {
return
}
expr := n.(*ast.CompositeLit)
// TODO: Handle partially-filled structs as well.
if len(expr.Elts) != 0 {
return
}
var file *ast.File
for _, f := range pass.Files {
if f.Pos() <= expr.Pos() && expr.Pos() <= f.End() {
file = f
break
}
}
if file == nil {
return
}
typ := info.TypeOf(expr)
if typ == nil {
return
}
// Find reference to the type declaration of the struct being initialized.
for {
p, ok := typ.Underlying().(*types.Pointer)
if !ok {
break
}
typ = p.Elem()
}
typ = typ.Underlying()
obj, ok := typ.(*types.Struct)
if !ok {
return
}
fieldCount := obj.NumFields()
// Skip any struct that is already populated or that has no fields.
if fieldCount == 0 || fieldCount == len(expr.Elts) {
return
}
var fillable bool
for i := 0; i < fieldCount; i++ {
field := obj.Field(i)
// Ignore fields that are not accessible in the current package.
if field.Pkg() != nil && field.Pkg() != pass.Pkg && !field.Exported() {
continue
}
fillable = true
}
if !fillable {
return
}
var name string
switch typ := expr.Type.(type) {
case *ast.Ident:
name = typ.Name
case *ast.SelectorExpr:
name = fmt.Sprintf("%s.%s", typ.X, typ.Sel.Name)
default:
name = "anonymous struct"
}
pass.Report(analysis.Diagnostic{
Message: fmt.Sprintf("Fill %s", name),
Pos: expr.Pos(),
End: expr.End(),
})
})
return nil, nil
}
func SuggestedFix(fset *token.FileSet, rng span.Range, content []byte, file *ast.File, pkg *types.Package, info *types.Info) (*analysis.SuggestedFix, error) {
pos := rng.Start // don't use the end
// TODO(rstambler): Using ast.Inspect would probably be more efficient than
// calling PathEnclosingInterval. Switch this approach.
path, _ := astutil.PathEnclosingInterval(file, pos, pos)
if len(path) == 0 {
return nil, fmt.Errorf("no enclosing ast.Node")
}
var expr *ast.CompositeLit
for _, n := range path {
if node, ok := n.(*ast.CompositeLit); ok {
expr = node
break
}
}
if info == nil {
return nil, fmt.Errorf("nil types.Info")
}
typ := info.TypeOf(expr)
if typ == nil {
return nil, fmt.Errorf("no composite literal")
}
// Find reference to the type declaration of the struct being initialized.
for {
p, ok := typ.Underlying().(*types.Pointer)
if !ok {
break
}
typ = p.Elem()
}
typ = typ.Underlying()
obj, ok := typ.(*types.Struct)
if !ok {
return nil, fmt.Errorf("unexpected type %v (%T), expected *types.Struct", typ, typ)
}
fieldCount := obj.NumFields()
// Use a new fileset to build up a token.File for the new composite
// literal. We need one line for foo{, one line for }, and one line for
// each field we're going to set. format.Node only cares about line
// numbers, so we don't need to set columns, and each line can be
// 1 byte long.
fakeFset := token.NewFileSet()
tok := fakeFset.AddFile("", -1, fieldCount+2)
line := 2 // account for 1-based lines and the left brace
var elts []ast.Expr
var fieldTyps []types.Type
for i := 0; i < fieldCount; i++ {
field := obj.Field(i)
// Ignore fields that are not accessible in the current package.
if field.Pkg() != nil && field.Pkg() != pkg && !field.Exported() {
fieldTyps = append(fieldTyps, nil)
continue
}
fieldTyps = append(fieldTyps, field.Type())
}
matches := analysisinternal.FindMatchingIdents(fieldTyps, file, rng.Start, info, pkg)
for i, fieldTyp := range fieldTyps {
if fieldTyp == nil {
continue
}
idents, ok := matches[fieldTyp]
if !ok {
return nil, fmt.Errorf("invalid struct field type: %v", fieldTyp)
}
// Find the identifer whose name is most similar to the name of the field's key.
// If we do not find any identifer that matches the pattern, generate a new value.
// NOTE: We currently match on the name of the field key rather than the field type.
value := analysisinternal.FindBestMatch(obj.Field(i).Name(), idents)
if value == nil {
value = populateValue(fset, file, pkg, fieldTyp)
}
if value == nil {
return nil, nil
}
tok.AddLine(line - 1) // add 1 byte per line
if line > tok.LineCount() {
panic(fmt.Sprintf("invalid line number %v (of %v) for fillstruct", line, tok.LineCount()))
}
pos := tok.LineStart(line)
kv := &ast.KeyValueExpr{
Key: &ast.Ident{
NamePos: pos,
Name: obj.Field(i).Name(),
},
Colon: pos,
Value: value,
}
elts = append(elts, kv)
line++
}
// If all of the struct's fields are unexported, we have nothing to do.
if len(elts) == 0 {
return nil, fmt.Errorf("no elements to fill")
}
// Add the final line for the right brace. Offset is the number of
// bytes already added plus 1.
tok.AddLine(len(elts) + 1)
line = len(elts) + 2
if line > tok.LineCount() {
panic(fmt.Sprintf("invalid line number %v (of %v) for fillstruct", line, tok.LineCount()))
}
cl := &ast.CompositeLit{
Type: expr.Type,
Lbrace: tok.LineStart(1),
Elts: elts,
Rbrace: tok.LineStart(line),
}
// Find the line on which the composite literal is declared.
split := bytes.Split(content, []byte("\n"))
lineNumber := fset.Position(expr.Lbrace).Line
firstLine := split[lineNumber-1] // lines are 1-indexed
// Trim the whitespace from the left of the line, and use the index
// to get the amount of whitespace on the left.
trimmed := bytes.TrimLeftFunc(firstLine, unicode.IsSpace)
index := bytes.Index(firstLine, trimmed)
whitespace := firstLine[:index]
var newExpr bytes.Buffer
if err := format.Node(&newExpr, fakeFset, cl); err != nil {
log.Printf("failed to format %s: %v", cl.Type, err)
return nil, err
}
split = bytes.Split(newExpr.Bytes(), []byte("\n"))
newText := bytes.NewBuffer(nil)
for i, s := range split {
// Don't add the extra indentation to the first line.
if i != 0 {
newText.Write(whitespace)
}
newText.Write(s)
if i < len(split)-1 {
newText.WriteByte('\n')
}
}
return &analysis.SuggestedFix{
TextEdits: []analysis.TextEdit{
{
Pos: expr.Pos(),
End: expr.End(),
NewText: newText.Bytes(),
},
},
}, nil
}
// populateValue constructs an expression to fill the value of a struct field.
//
// When the type of a struct field is a basic literal or interface, we return
// default values. For other types, such as maps, slices, and channels, we create
// expressions rather than using default values.
//
// The reasoning here is that users will call fillstruct with the intention of
// initializing the struct, in which case setting these fields to nil has no effect.
func populateValue(fset *token.FileSet, f *ast.File, pkg *types.Package, typ types.Type) ast.Expr {
under := typ
if n, ok := typ.(*types.Named); ok {
under = n.Underlying()
}
switch u := under.(type) {
case *types.Basic:
switch {
case u.Info()&types.IsNumeric != 0:
return &ast.BasicLit{Kind: token.INT, Value: "0"}
case u.Info()&types.IsBoolean != 0:
return &ast.Ident{Name: "false"}
case u.Info()&types.IsString != 0:
return &ast.BasicLit{Kind: token.STRING, Value: `""`}
default:
panic("unknown basic type")
}
case *types.Map:
k := analysisinternal.TypeExpr(fset, f, pkg, u.Key())
v := analysisinternal.TypeExpr(fset, f, pkg, u.Elem())
if k == nil || v == nil {
return nil
}
return &ast.CompositeLit{
Type: &ast.MapType{
Key: k,
Value: v,
},
}
case *types.Slice:
s := analysisinternal.TypeExpr(fset, f, pkg, u.Elem())
if s == nil {
return nil
}
return &ast.CompositeLit{
Type: &ast.ArrayType{
Elt: s,
},
}
case *types.Array:
a := analysisinternal.TypeExpr(fset, f, pkg, u.Elem())
if a == nil {
return nil
}
return &ast.CompositeLit{
Type: &ast.ArrayType{
Elt: a,
Len: &ast.BasicLit{
Kind: token.INT, Value: fmt.Sprintf("%v", u.Len()),
},
},
}
case *types.Chan:
v := analysisinternal.TypeExpr(fset, f, pkg, u.Elem())
if v == nil {
return nil
}
dir := ast.ChanDir(u.Dir())
if u.Dir() == types.SendRecv {
dir = ast.SEND | ast.RECV
}
return &ast.CallExpr{
Fun: ast.NewIdent("make"),
Args: []ast.Expr{
&ast.ChanType{
Dir: dir,
Value: v,
},
},
}
case *types.Struct:
s := analysisinternal.TypeExpr(fset, f, pkg, typ)
if s == nil {
return nil
}
return &ast.CompositeLit{
Type: s,
}
case *types.Signature:
var params []*ast.Field
for i := 0; i < u.Params().Len(); i++ {
p := analysisinternal.TypeExpr(fset, f, pkg, u.Params().At(i).Type())
if p == nil {
return nil
}
params = append(params, &ast.Field{
Type: p,
Names: []*ast.Ident{
{
Name: u.Params().At(i).Name(),
},
},
})
}
var returns []*ast.Field
for i := 0; i < u.Results().Len(); i++ {
r := analysisinternal.TypeExpr(fset, f, pkg, u.Results().At(i).Type())
if r == nil {
return nil
}
returns = append(returns, &ast.Field{
Type: r,
})
}
return &ast.FuncLit{
Type: &ast.FuncType{
Params: &ast.FieldList{
List: params,
},
Results: &ast.FieldList{
List: returns,
},
},
Body: &ast.BlockStmt{},
}
case *types.Pointer:
switch u.Elem().(type) {
case *types.Basic:
return &ast.CallExpr{
Fun: &ast.Ident{
Name: "new",
},
Args: []ast.Expr{
&ast.Ident{
Name: u.Elem().String(),
},
},
}
default:
return &ast.UnaryExpr{
Op: token.AND,
X: populateValue(fset, f, pkg, u.Elem()),
}
}
case *types.Interface:
return ast.NewIdent("nil")
}
return nil
}