blob: 7af11fc896ceec0d0b7237ff4deb605114165e5e [file] [log] [blame]
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package lcs
// TODO(adonovan): remove unclear references to "old" in this package.
import (
"fmt"
)
// A Diff is a replacement of a portion of A by a portion of B.
type Diff struct {
Start, End int // offsets of portion to delete in A
ReplStart, ReplEnd int // offset of replacement text in B
}
// DiffStrings returns the differences between two strings.
// It does not respect rune boundaries.
func DiffStrings(a, b string) []Diff { return diff(stringSeqs{a, b}) }
// DiffBytes returns the differences between two byte sequences.
// It does not respect rune boundaries.
func DiffBytes(a, b []byte) []Diff { return diff(bytesSeqs{a, b}) }
// DiffRunes returns the differences between two rune sequences.
func DiffRunes(a, b []rune) []Diff { return diff(runesSeqs{a, b}) }
func diff(seqs sequences) []Diff {
// A limit on how deeply the LCS algorithm should search. The value is just a guess.
const maxDiffs = 30
diff, _ := compute(seqs, twosided, maxDiffs/2)
return diff
}
// compute computes the list of differences between two sequences,
// along with the LCS. It is exercised directly by tests.
// The algorithm is one of {forward, backward, twosided}.
func compute(seqs sequences, algo func(*editGraph) lcs, limit int) ([]Diff, lcs) {
if limit <= 0 {
limit = 1 << 25 // effectively infinity
}
alen, blen := seqs.lengths()
g := &editGraph{
seqs: seqs,
vf: newtriang(limit),
vb: newtriang(limit),
limit: limit,
ux: alen,
uy: blen,
delta: alen - blen,
}
lcs := algo(g)
diffs := lcs.toDiffs(alen, blen)
return diffs, lcs
}
// editGraph carries the information for computing the lcs of two sequences.
type editGraph struct {
seqs sequences
vf, vb label // forward and backward labels
limit int // maximal value of D
// the bounding rectangle of the current edit graph
lx, ly, ux, uy int
delta int // common subexpression: (ux-lx)-(uy-ly)
}
// toDiffs converts an LCS to a list of edits.
func (lcs lcs) toDiffs(alen, blen int) []Diff {
var diffs []Diff
var pa, pb int // offsets in a, b
for _, l := range lcs {
if pa < l.X || pb < l.Y {
diffs = append(diffs, Diff{pa, l.X, pb, l.Y})
}
pa = l.X + l.Len
pb = l.Y + l.Len
}
if pa < alen || pb < blen {
diffs = append(diffs, Diff{pa, alen, pb, blen})
}
return diffs
}
// --- FORWARD ---
// fdone decides if the forwward path has reached the upper right
// corner of the rectangle. If so, it also returns the computed lcs.
func (e *editGraph) fdone(D, k int) (bool, lcs) {
// x, y, k are relative to the rectangle
x := e.vf.get(D, k)
y := x - k
if x == e.ux && y == e.uy {
return true, e.forwardlcs(D, k)
}
return false, nil
}
// run the forward algorithm, until success or up to the limit on D.
func forward(e *editGraph) lcs {
e.setForward(0, 0, e.lx)
if ok, ans := e.fdone(0, 0); ok {
return ans
}
// from D to D+1
for D := 0; D < e.limit; D++ {
e.setForward(D+1, -(D + 1), e.getForward(D, -D))
if ok, ans := e.fdone(D+1, -(D + 1)); ok {
return ans
}
e.setForward(D+1, D+1, e.getForward(D, D)+1)
if ok, ans := e.fdone(D+1, D+1); ok {
return ans
}
for k := -D + 1; k <= D-1; k += 2 {
// these are tricky and easy to get backwards
lookv := e.lookForward(k, e.getForward(D, k-1)+1)
lookh := e.lookForward(k, e.getForward(D, k+1))
if lookv > lookh {
e.setForward(D+1, k, lookv)
} else {
e.setForward(D+1, k, lookh)
}
if ok, ans := e.fdone(D+1, k); ok {
return ans
}
}
}
// D is too large
// find the D path with maximal x+y inside the rectangle and
// use that to compute the found part of the lcs
kmax := -e.limit - 1
diagmax := -1
for k := -e.limit; k <= e.limit; k += 2 {
x := e.getForward(e.limit, k)
y := x - k
if x+y > diagmax && x <= e.ux && y <= e.uy {
diagmax, kmax = x+y, k
}
}
return e.forwardlcs(e.limit, kmax)
}
// recover the lcs by backtracking from the farthest point reached
func (e *editGraph) forwardlcs(D, k int) lcs {
var ans lcs
for x := e.getForward(D, k); x != 0 || x-k != 0; {
if ok(D-1, k-1) && x-1 == e.getForward(D-1, k-1) {
// if (x-1,y) is labelled D-1, x--,D--,k--,continue
D, k, x = D-1, k-1, x-1
continue
} else if ok(D-1, k+1) && x == e.getForward(D-1, k+1) {
// if (x,y-1) is labelled D-1, x, D--,k++, continue
D, k = D-1, k+1
continue
}
// if (x-1,y-1)--(x,y) is a diagonal, prepend,x--,y--, continue
y := x - k
ans = ans.prepend(x+e.lx-1, y+e.ly-1)
x--
}
return ans
}
// start at (x,y), go up the diagonal as far as possible,
// and label the result with d
func (e *editGraph) lookForward(k, relx int) int {
rely := relx - k
x, y := relx+e.lx, rely+e.ly
if x < e.ux && y < e.uy {
x += e.seqs.commonPrefixLen(x, e.ux, y, e.uy)
}
return x
}
func (e *editGraph) setForward(d, k, relx int) {
x := e.lookForward(k, relx)
e.vf.set(d, k, x-e.lx)
}
func (e *editGraph) getForward(d, k int) int {
x := e.vf.get(d, k)
return x
}
// --- BACKWARD ---
// bdone decides if the backward path has reached the lower left corner
func (e *editGraph) bdone(D, k int) (bool, lcs) {
// x, y, k are relative to the rectangle
x := e.vb.get(D, k)
y := x - (k + e.delta)
if x == 0 && y == 0 {
return true, e.backwardlcs(D, k)
}
return false, nil
}
// run the backward algorithm, until success or up to the limit on D.
func backward(e *editGraph) lcs {
e.setBackward(0, 0, e.ux)
if ok, ans := e.bdone(0, 0); ok {
return ans
}
// from D to D+1
for D := 0; D < e.limit; D++ {
e.setBackward(D+1, -(D + 1), e.getBackward(D, -D)-1)
if ok, ans := e.bdone(D+1, -(D + 1)); ok {
return ans
}
e.setBackward(D+1, D+1, e.getBackward(D, D))
if ok, ans := e.bdone(D+1, D+1); ok {
return ans
}
for k := -D + 1; k <= D-1; k += 2 {
// these are tricky and easy to get wrong
lookv := e.lookBackward(k, e.getBackward(D, k-1))
lookh := e.lookBackward(k, e.getBackward(D, k+1)-1)
if lookv < lookh {
e.setBackward(D+1, k, lookv)
} else {
e.setBackward(D+1, k, lookh)
}
if ok, ans := e.bdone(D+1, k); ok {
return ans
}
}
}
// D is too large
// find the D path with minimal x+y inside the rectangle and
// use that to compute the part of the lcs found
kmax := -e.limit - 1
diagmin := 1 << 25
for k := -e.limit; k <= e.limit; k += 2 {
x := e.getBackward(e.limit, k)
y := x - (k + e.delta)
if x+y < diagmin && x >= 0 && y >= 0 {
diagmin, kmax = x+y, k
}
}
if kmax < -e.limit {
panic(fmt.Sprintf("no paths when limit=%d?", e.limit))
}
return e.backwardlcs(e.limit, kmax)
}
// recover the lcs by backtracking
func (e *editGraph) backwardlcs(D, k int) lcs {
var ans lcs
for x := e.getBackward(D, k); x != e.ux || x-(k+e.delta) != e.uy; {
if ok(D-1, k-1) && x == e.getBackward(D-1, k-1) {
// D--, k--, x unchanged
D, k = D-1, k-1
continue
} else if ok(D-1, k+1) && x+1 == e.getBackward(D-1, k+1) {
// D--, k++, x++
D, k, x = D-1, k+1, x+1
continue
}
y := x - (k + e.delta)
ans = ans.append(x+e.lx, y+e.ly)
x++
}
return ans
}
// start at (x,y), go down the diagonal as far as possible,
func (e *editGraph) lookBackward(k, relx int) int {
rely := relx - (k + e.delta) // forward k = k + e.delta
x, y := relx+e.lx, rely+e.ly
if x > 0 && y > 0 {
x -= e.seqs.commonSuffixLen(0, x, 0, y)
}
return x
}
// convert to rectangle, and label the result with d
func (e *editGraph) setBackward(d, k, relx int) {
x := e.lookBackward(k, relx)
e.vb.set(d, k, x-e.lx)
}
func (e *editGraph) getBackward(d, k int) int {
x := e.vb.get(d, k)
return x
}
// -- TWOSIDED ---
func twosided(e *editGraph) lcs {
// The termination condition could be improved, as either the forward
// or backward pass could succeed before Myers' Lemma applies.
// Aside from questions of efficiency (is the extra testing cost-effective)
// this is more likely to matter when e.limit is reached.
e.setForward(0, 0, e.lx)
e.setBackward(0, 0, e.ux)
// from D to D+1
for D := 0; D < e.limit; D++ {
// just finished a backwards pass, so check
if got, ok := e.twoDone(D, D); ok {
return e.twolcs(D, D, got)
}
// do a forwards pass (D to D+1)
e.setForward(D+1, -(D + 1), e.getForward(D, -D))
e.setForward(D+1, D+1, e.getForward(D, D)+1)
for k := -D + 1; k <= D-1; k += 2 {
// these are tricky and easy to get backwards
lookv := e.lookForward(k, e.getForward(D, k-1)+1)
lookh := e.lookForward(k, e.getForward(D, k+1))
if lookv > lookh {
e.setForward(D+1, k, lookv)
} else {
e.setForward(D+1, k, lookh)
}
}
// just did a forward pass, so check
if got, ok := e.twoDone(D+1, D); ok {
return e.twolcs(D+1, D, got)
}
// do a backward pass, D to D+1
e.setBackward(D+1, -(D + 1), e.getBackward(D, -D)-1)
e.setBackward(D+1, D+1, e.getBackward(D, D))
for k := -D + 1; k <= D-1; k += 2 {
// these are tricky and easy to get wrong
lookv := e.lookBackward(k, e.getBackward(D, k-1))
lookh := e.lookBackward(k, e.getBackward(D, k+1)-1)
if lookv < lookh {
e.setBackward(D+1, k, lookv)
} else {
e.setBackward(D+1, k, lookh)
}
}
}
// D too large. combine a forward and backward partial lcs
// first, a forward one
kmax := -e.limit - 1
diagmax := -1
for k := -e.limit; k <= e.limit; k += 2 {
x := e.getForward(e.limit, k)
y := x - k
if x+y > diagmax && x <= e.ux && y <= e.uy {
diagmax, kmax = x+y, k
}
}
if kmax < -e.limit {
panic(fmt.Sprintf("no forward paths when limit=%d?", e.limit))
}
lcs := e.forwardlcs(e.limit, kmax)
// now a backward one
// find the D path with minimal x+y inside the rectangle and
// use that to compute the lcs
diagmin := 1 << 25 // infinity
for k := -e.limit; k <= e.limit; k += 2 {
x := e.getBackward(e.limit, k)
y := x - (k + e.delta)
if x+y < diagmin && x >= 0 && y >= 0 {
diagmin, kmax = x+y, k
}
}
if kmax < -e.limit {
panic(fmt.Sprintf("no backward paths when limit=%d?", e.limit))
}
lcs = append(lcs, e.backwardlcs(e.limit, kmax)...)
// These may overlap (e.forwardlcs and e.backwardlcs return sorted lcs)
ans := lcs.fix()
return ans
}
// Does Myers' Lemma apply?
func (e *editGraph) twoDone(df, db int) (int, bool) {
if (df+db+e.delta)%2 != 0 {
return 0, false // diagonals cannot overlap
}
kmin := -db + e.delta
if -df > kmin {
kmin = -df
}
kmax := db + e.delta
if df < kmax {
kmax = df
}
for k := kmin; k <= kmax; k += 2 {
x := e.vf.get(df, k)
u := e.vb.get(db, k-e.delta)
if u <= x {
// is it worth looking at all the other k?
for l := k; l <= kmax; l += 2 {
x := e.vf.get(df, l)
y := x - l
u := e.vb.get(db, l-e.delta)
v := u - l
if x == u || u == 0 || v == 0 || y == e.uy || x == e.ux {
return l, true
}
}
return k, true
}
}
return 0, false
}
func (e *editGraph) twolcs(df, db, kf int) lcs {
// db==df || db+1==df
x := e.vf.get(df, kf)
y := x - kf
kb := kf - e.delta
u := e.vb.get(db, kb)
v := u - kf
// Myers proved there is a df-path from (0,0) to (u,v)
// and a db-path from (x,y) to (N,M).
// In the first case the overall path is the forward path
// to (u,v) followed by the backward path to (N,M).
// In the second case the path is the backward path to (x,y)
// followed by the forward path to (x,y) from (0,0).
// Look for some special cases to avoid computing either of these paths.
if x == u {
// "babaab" "cccaba"
// already patched together
lcs := e.forwardlcs(df, kf)
lcs = append(lcs, e.backwardlcs(db, kb)...)
return lcs.sort()
}
// is (u-1,v) or (u,v-1) labelled df-1?
// if so, that forward df-1-path plus a horizontal or vertical edge
// is the df-path to (u,v), then plus the db-path to (N,M)
if u > 0 && ok(df-1, u-1-v) && e.vf.get(df-1, u-1-v) == u-1 {
// "aabbab" "cbcabc"
lcs := e.forwardlcs(df-1, u-1-v)
lcs = append(lcs, e.backwardlcs(db, kb)...)
return lcs.sort()
}
if v > 0 && ok(df-1, (u-(v-1))) && e.vf.get(df-1, u-(v-1)) == u {
// "abaabb" "bcacab"
lcs := e.forwardlcs(df-1, u-(v-1))
lcs = append(lcs, e.backwardlcs(db, kb)...)
return lcs.sort()
}
// The path can't possibly contribute to the lcs because it
// is all horizontal or vertical edges
if u == 0 || v == 0 || x == e.ux || y == e.uy {
// "abaabb" "abaaaa"
if u == 0 || v == 0 {
return e.backwardlcs(db, kb)
}
return e.forwardlcs(df, kf)
}
// is (x+1,y) or (x,y+1) labelled db-1?
if x+1 <= e.ux && ok(db-1, x+1-y-e.delta) && e.vb.get(db-1, x+1-y-e.delta) == x+1 {
// "bababb" "baaabb"
lcs := e.backwardlcs(db-1, kb+1)
lcs = append(lcs, e.forwardlcs(df, kf)...)
return lcs.sort()
}
if y+1 <= e.uy && ok(db-1, x-(y+1)-e.delta) && e.vb.get(db-1, x-(y+1)-e.delta) == x {
// "abbbaa" "cabacc"
lcs := e.backwardlcs(db-1, kb-1)
lcs = append(lcs, e.forwardlcs(df, kf)...)
return lcs.sort()
}
// need to compute another path
// "aabbaa" "aacaba"
lcs := e.backwardlcs(db, kb)
oldx, oldy := e.ux, e.uy
e.ux = u
e.uy = v
lcs = append(lcs, forward(e)...)
e.ux, e.uy = oldx, oldy
return lcs.sort()
}