| package apidiff |
| |
| import ( |
| "go/types" |
| "sort" |
| ) |
| |
| // Two types are correspond if they are identical except for defined types, |
| // which must correspond. |
| // |
| // Two defined types correspond if they can be interchanged in the old and new APIs, |
| // possibly after a renaming. |
| // |
| // This is not a pure function. If we come across named types while traversing, |
| // we establish correspondence. |
| func (d *differ) correspond(old, new types.Type) bool { |
| return d.corr(old, new, nil) |
| } |
| |
| // corr determines whether old and new correspond. The argument p is a list of |
| // known interface identities, to avoid infinite recursion. |
| // |
| // corr calls itself recursively as much as possible, to establish more |
| // correspondences and so check more of the API. E.g. if the new function has more |
| // parameters than the old, compare all the old ones before returning false. |
| // |
| // Compare this to the implementation of go/types.Identical. |
| func (d *differ) corr(old, new types.Type, p *ifacePair) bool { |
| // Structure copied from types.Identical. |
| switch old := old.(type) { |
| case *types.Basic: |
| return types.Identical(old, new) |
| |
| case *types.Array: |
| if new, ok := new.(*types.Array); ok { |
| return d.corr(old.Elem(), new.Elem(), p) && old.Len() == new.Len() |
| } |
| |
| case *types.Slice: |
| if new, ok := new.(*types.Slice); ok { |
| return d.corr(old.Elem(), new.Elem(), p) |
| } |
| |
| case *types.Map: |
| if new, ok := new.(*types.Map); ok { |
| return d.corr(old.Key(), new.Key(), p) && d.corr(old.Elem(), new.Elem(), p) |
| } |
| |
| case *types.Chan: |
| if new, ok := new.(*types.Chan); ok { |
| return d.corr(old.Elem(), new.Elem(), p) && old.Dir() == new.Dir() |
| } |
| |
| case *types.Pointer: |
| if new, ok := new.(*types.Pointer); ok { |
| return d.corr(old.Elem(), new.Elem(), p) |
| } |
| |
| case *types.Signature: |
| if new, ok := new.(*types.Signature); ok { |
| pe := d.corr(old.Params(), new.Params(), p) |
| re := d.corr(old.Results(), new.Results(), p) |
| return old.Variadic() == new.Variadic() && pe && re |
| } |
| |
| case *types.Tuple: |
| if new, ok := new.(*types.Tuple); ok { |
| for i := 0; i < old.Len(); i++ { |
| if i >= new.Len() || !d.corr(old.At(i).Type(), new.At(i).Type(), p) { |
| return false |
| } |
| } |
| return old.Len() == new.Len() |
| } |
| |
| case *types.Struct: |
| if new, ok := new.(*types.Struct); ok { |
| for i := 0; i < old.NumFields(); i++ { |
| if i >= new.NumFields() { |
| return false |
| } |
| of := old.Field(i) |
| nf := new.Field(i) |
| if of.Anonymous() != nf.Anonymous() || |
| old.Tag(i) != new.Tag(i) || |
| !d.corr(of.Type(), nf.Type(), p) || |
| !d.corrFieldNames(of, nf) { |
| return false |
| } |
| } |
| return old.NumFields() == new.NumFields() |
| } |
| |
| case *types.Interface: |
| if new, ok := new.(*types.Interface); ok { |
| // Deal with circularity. See the comment in types.Identical. |
| q := &ifacePair{old, new, p} |
| for p != nil { |
| if p.identical(q) { |
| return true // same pair was compared before |
| } |
| p = p.prev |
| } |
| oldms := d.sortedMethods(old) |
| newms := d.sortedMethods(new) |
| for i, om := range oldms { |
| if i >= len(newms) { |
| return false |
| } |
| nm := newms[i] |
| if d.methodID(om) != d.methodID(nm) || !d.corr(om.Type(), nm.Type(), q) { |
| return false |
| } |
| } |
| return old.NumMethods() == new.NumMethods() |
| } |
| |
| case *types.Named: |
| if new, ok := new.(*types.Named); ok { |
| return d.establishCorrespondence(old, new) |
| } |
| if new, ok := new.(*types.Basic); ok { |
| // Basic types are defined types, too, so we have to support them. |
| |
| return d.establishCorrespondence(old, new) |
| } |
| |
| default: |
| panic("unknown type kind") |
| } |
| return false |
| } |
| |
| // Compare old and new field names. We are determining correspondence across packages, |
| // so just compare names, not packages. For an unexported, embedded field of named |
| // type (non-named embedded fields are possible with aliases), we check that the type |
| // names correspond. We check the types for correspondence before this is called, so |
| // we've established correspondence. |
| func (d *differ) corrFieldNames(of, nf *types.Var) bool { |
| if of.Anonymous() && nf.Anonymous() && !of.Exported() && !nf.Exported() { |
| if on, ok := of.Type().(*types.Named); ok { |
| nn := nf.Type().(*types.Named) |
| return d.establishCorrespondence(on, nn) |
| } |
| } |
| return of.Name() == nf.Name() |
| } |
| |
| // Establish that old corresponds with new if it does not already |
| // correspond to something else. |
| func (d *differ) establishCorrespondence(old *types.Named, new types.Type) bool { |
| oldname := old.Obj() |
| oldc := d.correspondMap[oldname] |
| if oldc == nil { |
| // For now, assume the types don't correspond unless they are from the old |
| // and new packages, respectively. |
| // |
| // This is too conservative. For instance, |
| // [old] type A = q.B; [new] type A q.C |
| // could be OK if in package q, B is an alias for C. |
| // Or, using p as the name of the current old/new packages: |
| // [old] type A = q.B; [new] type A int |
| // could be OK if in q, |
| // [old] type B int; [new] type B = p.A |
| // In this case, p.A and q.B name the same type in both old and new worlds. |
| // Note that this case doesn't imply circular package imports: it's possible |
| // that in the old world, p imports q, but in the new, q imports p. |
| // |
| // However, if we didn't do something here, then we'd incorrectly allow cases |
| // like the first one above in which q.B is not an alias for q.C |
| // |
| // What we should do is check that the old type, in the new world's package |
| // of the same path, doesn't correspond to something other than the new type. |
| // That is a bit hard, because there is no easy way to find a new package |
| // matching an old one. |
| if newn, ok := new.(*types.Named); ok { |
| if old.Obj().Pkg() != d.old || newn.Obj().Pkg() != d.new { |
| return old.Obj().Id() == newn.Obj().Id() |
| } |
| } |
| // If there is no correspondence, create one. |
| d.correspondMap[oldname] = new |
| // Check that the corresponding types are compatible. |
| d.checkCompatibleDefined(oldname, old, new) |
| return true |
| } |
| return types.Identical(oldc, new) |
| } |
| |
| func (d *differ) sortedMethods(iface *types.Interface) []*types.Func { |
| ms := make([]*types.Func, iface.NumMethods()) |
| for i := 0; i < iface.NumMethods(); i++ { |
| ms[i] = iface.Method(i) |
| } |
| sort.Slice(ms, func(i, j int) bool { return d.methodID(ms[i]) < d.methodID(ms[j]) }) |
| return ms |
| } |
| |
| func (d *differ) methodID(m *types.Func) string { |
| // If the method belongs to one of the two packages being compared, use |
| // just its name even if it's unexported. That lets us treat unexported names |
| // from the old and new packages as equal. |
| if m.Pkg() == d.old || m.Pkg() == d.new { |
| return m.Name() |
| } |
| return m.Id() |
| } |
| |
| // Copied from the go/types package: |
| |
| // An ifacePair is a node in a stack of interface type pairs compared for identity. |
| type ifacePair struct { |
| x, y *types.Interface |
| prev *ifacePair |
| } |
| |
| func (p *ifacePair) identical(q *ifacePair) bool { |
| return p.x == q.x && p.y == q.y || p.x == q.y && p.y == q.x |
| } |