blob: d60a54f9416f60d5696e2cd05a716e4a6b478fff [file] [log] [blame]
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package source
import (
"context"
"fmt"
"go/ast"
"go/token"
"go/types"
"sort"
"strings"
"golang.org/x/tools/internal/event"
"golang.org/x/tools/internal/lsp/fuzzy"
"golang.org/x/tools/internal/lsp/protocol"
)
// maxSymbols defines the maximum number of symbol results that should ever be
// sent in response to a client.
const maxSymbols = 100
// WorkspaceSymbols matches symbols across views using the given query,
// according to the SymbolMatcher matcher.
//
// The workspace symbol method is defined in the spec as follows:
//
// > The workspace symbol request is sent from the client to the server to
// > list project-wide symbols matching the query string.
//
// It is unclear what "project-wide" means here, but given the parameters of
// workspace/symbol do not include any workspace identifier, then it has to be
// assumed that "project-wide" means "across all workspaces". Hence why
// WorkspaceSymbols receives the views []View.
//
// However, it then becomes unclear what it would mean to call WorkspaceSymbols
// with a different configured SymbolMatcher per View. Therefore we assume that
// Session level configuration will define the SymbolMatcher to be used for the
// WorkspaceSymbols method.
func WorkspaceSymbols(ctx context.Context, matcherType SymbolMatcher, style SymbolStyle, views []View, query string) ([]protocol.SymbolInformation, error) {
ctx, done := event.Start(ctx, "source.WorkspaceSymbols")
defer done()
if query == "" {
return nil, nil
}
sc := newSymbolCollector(matcherType, style, query)
return sc.walk(ctx, views)
}
// A matcherFunc determines the matching score of a symbol.
//
// See the comment for symbolCollector for more information.
type matcherFunc func(name string) float64
// A symbolizer returns the best symbol match for name with pkg, according to
// some heuristic.
//
// See the comment for symbolCollector for more information.
type symbolizer func(name string, pkg Package, m matcherFunc) (string, float64)
func fullyQualifiedSymbolMatch(name string, pkg Package, matcher matcherFunc) (string, float64) {
fullyQualified := pkg.PkgPath() + "." + name
if matcher(fullyQualified) > 0 {
return fullyQualified, 1
}
return "", 0
}
func dynamicSymbolMatch(name string, pkg Package, matcher matcherFunc) (string, float64) {
// Prefer any package-qualified match.
pkgQualified := pkg.Name() + "." + name
if match, score := bestMatch(pkgQualified, matcher); match != "" {
return match, score
}
fullyQualified := pkg.PkgPath() + "." + name
if match, score := bestMatch(fullyQualified, matcher); match != "" {
return match, score
}
return "", 0
}
func packageSymbolMatch(name string, pkg Package, matcher matcherFunc) (string, float64) {
qualified := pkg.Name() + "." + name
if matcher(qualified) > 0 {
return qualified, 1
}
return "", 0
}
// bestMatch returns the highest scoring symbol suffix of fullPath, starting
// from the right and splitting on selectors and path components.
//
// e.g. given a symbol path of the form 'host.com/dir/pkg.type.field', we
// check the match quality of the following:
// - field
// - type.field
// - pkg.type.field
// - dir/pkg.type.field
// - host.com/dir/pkg.type.field
//
// and return the best match, along with its score.
//
// This is used to implement the 'dynamic' symbol style.
func bestMatch(fullPath string, matcher matcherFunc) (string, float64) {
pathParts := strings.Split(fullPath, "/")
dottedParts := strings.Split(pathParts[len(pathParts)-1], ".")
var best string
var score float64
for i := 0; i < len(dottedParts); i++ {
path := strings.Join(dottedParts[len(dottedParts)-1-i:], ".")
if match := matcher(path); match > score {
best = path
score = match
}
}
for i := 0; i < len(pathParts); i++ {
path := strings.Join(pathParts[len(pathParts)-1-i:], "/")
if match := matcher(path); match > score {
best = path
score = match
}
}
return best, score
}
// symbolCollector holds context as we walk Packages, gathering symbols that
// match a given query.
//
// How we match symbols is parameterized by two interfaces:
// * A matcherFunc determines how well a string symbol matches a query. It
// returns a non-negative score indicating the quality of the match. A score
// of zero indicates no match.
// * A symbolizer determines how we extract the symbol for an object. This
// enables the 'symbolStyle' configuration option.
type symbolCollector struct {
// query is the user-supplied query passed to the Symbol method.
query string
// These types parameterize the symbol-matching pass.
matcher matcherFunc
symbolizer symbolizer
// current holds metadata for the package we are currently walking.
current *pkgView
curFile *ParsedGoFile
res [maxSymbols]symbolInformation
}
func newSymbolCollector(matcher SymbolMatcher, style SymbolStyle, query string) *symbolCollector {
var m matcherFunc
switch matcher {
case SymbolFuzzy:
fm := fuzzy.NewMatcher(query)
m = func(s string) float64 {
return float64(fm.Score(s))
}
case SymbolCaseSensitive:
m = func(s string) float64 {
if strings.Contains(s, query) {
return 1
}
return 0
}
case SymbolCaseInsensitive:
q := strings.ToLower(query)
m = func(s string) float64 {
if strings.Contains(strings.ToLower(s), q) {
return 1
}
return 0
}
default:
panic(fmt.Errorf("unknown symbol matcher: %v", matcher))
}
var s symbolizer
switch style {
case DynamicSymbols:
s = dynamicSymbolMatch
case FullyQualifiedSymbols:
s = fullyQualifiedSymbolMatch
case PackageQualifiedSymbols:
s = packageSymbolMatch
default:
panic(fmt.Errorf("unknown symbol style: %v", style))
}
return &symbolCollector{
matcher: m,
symbolizer: s,
}
}
// walk walks views, gathers symbols, and returns the results.
func (sc *symbolCollector) walk(ctx context.Context, views []View) (_ []protocol.SymbolInformation, err error) {
toWalk, release, err := sc.collectPackages(ctx, views)
defer release()
if err != nil {
return nil, err
}
// Make sure we only walk files once (we might see them more than once due to
// build constraints).
seen := make(map[*ast.File]bool)
for _, pv := range toWalk {
sc.current = pv
for _, pgf := range pv.pkg.CompiledGoFiles() {
if seen[pgf.File] {
continue
}
sc.curFile = pgf
sc.walkFilesDecls(pgf.File.Decls)
}
}
return sc.results(), nil
}
func (sc *symbolCollector) results() []protocol.SymbolInformation {
var res []protocol.SymbolInformation
for _, si := range sc.res {
if si.score <= 0 {
return res
}
res = append(res, si.asProtocolSymbolInformation())
}
return res
}
// collectPackages gathers the packages we are going to inspect for symbols.
// This pre-step is required in order to filter out any "duplicate"
// *types.Package. The duplicates arise for packages that have test variants.
// For example, if package mod.com/p has test files, then we will visit two
// packages that have the PkgPath() mod.com/p: the first is the actual package
// mod.com/p, the second is a special version that includes the non-XTest
// _test.go files. If we were to walk both of of these packages, then we would
// get duplicate matching symbols and we would waste effort. Therefore where
// test variants exist we walk those (because they include any symbols defined
// in non-XTest _test.go files).
//
// One further complication is that even after this filtering, packages between
// views might not be "identical" because they can be built using different
// build constraints (via the "env" config option).
//
// Therefore on a per view basis we first build up a map of package path ->
// *types.Package preferring the test variants if they exist. Then we merge the
// results between views, de-duping by *types.Package.
func (sc *symbolCollector) collectPackages(ctx context.Context, views []View) ([]*pkgView, func(), error) {
gathered := make(map[string]map[*types.Package]*pkgView)
var releaseFuncs []func()
release := func() {
for _, releaseFunc := range releaseFuncs {
releaseFunc()
}
}
var toWalk []*pkgView
for _, v := range views {
seen := make(map[string]*pkgView)
snapshot, release := v.Snapshot(ctx)
releaseFuncs = append(releaseFuncs, release)
knownPkgs, err := snapshot.KnownPackages(ctx)
if err != nil {
return nil, release, err
}
workspacePackages, err := snapshot.WorkspacePackages(ctx)
if err != nil {
return nil, release, err
}
isWorkspacePkg := make(map[Package]bool)
for _, wp := range workspacePackages {
isWorkspacePkg[wp] = true
}
var forTests []*pkgView
for _, pkg := range knownPkgs {
toAdd := &pkgView{
pkg: pkg,
snapshot: snapshot,
isWorkspace: isWorkspacePkg[pkg],
}
// Defer test packages, so that they overwrite seen for this package
// path.
if pkg.ForTest() != "" {
forTests = append(forTests, toAdd)
} else {
seen[pkg.PkgPath()] = toAdd
}
}
for _, pkg := range forTests {
seen[pkg.pkg.PkgPath()] = pkg
}
for _, pkg := range seen {
pm, ok := gathered[pkg.pkg.PkgPath()]
if !ok {
pm = make(map[*types.Package]*pkgView)
gathered[pkg.pkg.PkgPath()] = pm
}
pm[pkg.pkg.GetTypes()] = pkg
}
}
for _, pm := range gathered {
for _, pkg := range pm {
toWalk = append(toWalk, pkg)
}
}
// Now sort for stability of results. We order by
// (pkgView.isWorkspace, pkgView.p.ID())
sort.Slice(toWalk, func(i, j int) bool {
lhs := toWalk[i]
rhs := toWalk[j]
switch {
case lhs.isWorkspace == rhs.isWorkspace:
return lhs.pkg.ID() < rhs.pkg.ID()
case lhs.isWorkspace:
return true
default:
return false
}
})
return toWalk, release, nil
}
func (sc *symbolCollector) walkFilesDecls(decls []ast.Decl) {
for _, decl := range decls {
switch decl := decl.(type) {
case *ast.FuncDecl:
fn := decl.Name.Name
kind := protocol.Function
if decl.Recv != nil {
kind = protocol.Method
switch typ := decl.Recv.List[0].Type.(type) {
case *ast.StarExpr:
fn = typ.X.(*ast.Ident).Name + "." + fn
case *ast.Ident:
fn = typ.Name + "." + fn
}
}
sc.match(fn, kind, decl.Name)
case *ast.GenDecl:
for _, spec := range decl.Specs {
switch spec := spec.(type) {
case *ast.TypeSpec:
target := spec.Name.Name
sc.match(target, typeToKind(sc.current.pkg.GetTypesInfo().TypeOf(spec.Type)), spec.Name)
switch st := spec.Type.(type) {
case *ast.StructType:
for _, field := range st.Fields.List {
sc.walkField(field, protocol.Field, target)
}
case *ast.InterfaceType:
for _, field := range st.Methods.List {
kind := protocol.Method
if len(field.Names) == 0 {
kind = protocol.Interface
}
sc.walkField(field, kind, target)
}
}
case *ast.ValueSpec:
for _, name := range spec.Names {
target := name.Name
kind := protocol.Variable
if decl.Tok == token.CONST {
kind = protocol.Constant
}
sc.match(target, kind, name)
}
}
}
}
}
}
func (sc *symbolCollector) walkField(field *ast.Field, kind protocol.SymbolKind, prefix string) {
if len(field.Names) == 0 {
name := types.ExprString(field.Type)
target := prefix + "." + name
sc.match(target, kind, field)
return
}
for _, name := range field.Names {
target := prefix + "." + name.Name
sc.match(target, kind, name)
}
}
func typeToKind(typ types.Type) protocol.SymbolKind {
switch typ := typ.Underlying().(type) {
case *types.Interface:
return protocol.Interface
case *types.Struct:
return protocol.Struct
case *types.Signature:
if typ.Recv() != nil {
return protocol.Method
}
return protocol.Function
case *types.Named:
return typeToKind(typ.Underlying())
case *types.Basic:
i := typ.Info()
switch {
case i&types.IsNumeric != 0:
return protocol.Number
case i&types.IsBoolean != 0:
return protocol.Boolean
case i&types.IsString != 0:
return protocol.String
}
}
return protocol.Variable
}
// match finds matches and gathers the symbol identified by name, kind and node
// via the symbolCollector's matcher after first de-duping against previously
// seen symbols.
func (sc *symbolCollector) match(name string, kind protocol.SymbolKind, node ast.Node) {
if !node.Pos().IsValid() || !node.End().IsValid() {
return
}
// Arbitrary factors to apply to the match score for the purpose of
// downranking results.
//
// There is no science behind this, other than the principle that symbols
// outside of a workspace should be downranked. Adjust as necessary.
const (
nonWorkspaceFactor = 0.5
)
factor := 1.0
if !sc.current.isWorkspace {
factor *= nonWorkspaceFactor
}
symbol, score := sc.symbolizer(name, sc.current.pkg, sc.matcher)
score *= factor
if score <= sc.res[len(sc.res)-1].score {
return
}
mrng := newMappedRange(sc.current.snapshot.FileSet(), sc.curFile.Mapper, node.Pos(), node.End())
rng, err := mrng.Range()
if err != nil {
return
}
si := symbolInformation{
score: score,
name: name,
symbol: symbol,
container: sc.current.pkg.PkgPath(),
kind: kind,
location: protocol.Location{
URI: protocol.URIFromSpanURI(mrng.URI()),
Range: rng,
},
}
insertAt := sort.Search(len(sc.res), func(i int) bool {
return sc.res[i].score < score
})
if insertAt < len(sc.res)-1 {
copy(sc.res[insertAt+1:], sc.res[insertAt:len(sc.res)-1])
}
sc.res[insertAt] = si
}
// pkgView holds information related to a package that we are going to walk.
type pkgView struct {
pkg Package
snapshot Snapshot
isWorkspace bool
}
// symbolInformation is a cut-down version of protocol.SymbolInformation that
// allows struct values of this type to be used as map keys.
type symbolInformation struct {
score float64
name string
symbol string
container string
kind protocol.SymbolKind
location protocol.Location
}
// asProtocolSymbolInformation converts s to a protocol.SymbolInformation value.
//
// TODO: work out how to handle tags if/when they are needed.
func (s symbolInformation) asProtocolSymbolInformation() protocol.SymbolInformation {
return protocol.SymbolInformation{
Name: s.symbol,
Kind: s.kind,
Location: s.location,
ContainerName: s.container,
}
}