| // Copyright 2021 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package vta |
| |
| import ( |
| "go/types" |
| |
| "golang.org/x/tools/go/callgraph/vta/internal/trie" |
| "golang.org/x/tools/go/ssa" |
| |
| "golang.org/x/tools/go/types/typeutil" |
| ) |
| |
| // scc computes strongly connected components (SCCs) of `g` using the |
| // classical Tarjan's algorithm for SCCs. The result is a pair <m, id> |
| // where m is a map from nodes to unique id of their SCC in the range |
| // [0, id). The SCCs are sorted in reverse topological order: for SCCs |
| // with ids X and Y s.t. X < Y, Y comes before X in the topological order. |
| func scc(g vtaGraph) (map[node]int, int) { |
| // standard data structures used by Tarjan's algorithm. |
| var index uint64 |
| var stack []node |
| indexMap := make(map[node]uint64) |
| lowLink := make(map[node]uint64) |
| onStack := make(map[node]bool) |
| |
| nodeToSccID := make(map[node]int) |
| sccID := 0 |
| |
| var doSCC func(node) |
| doSCC = func(n node) { |
| indexMap[n] = index |
| lowLink[n] = index |
| index = index + 1 |
| onStack[n] = true |
| stack = append(stack, n) |
| |
| for s := range g[n] { |
| if _, ok := indexMap[s]; !ok { |
| // Analyze successor s that has not been visited yet. |
| doSCC(s) |
| lowLink[n] = min(lowLink[n], lowLink[s]) |
| } else if onStack[s] { |
| // The successor is on the stack, meaning it has to be |
| // in the current SCC. |
| lowLink[n] = min(lowLink[n], indexMap[s]) |
| } |
| } |
| |
| // if n is a root node, pop the stack and generate a new SCC. |
| if lowLink[n] == indexMap[n] { |
| for { |
| w := stack[len(stack)-1] |
| stack = stack[:len(stack)-1] |
| onStack[w] = false |
| nodeToSccID[w] = sccID |
| if w == n { |
| break |
| } |
| } |
| sccID++ |
| } |
| } |
| |
| index = 0 |
| for n := range g { |
| if _, ok := indexMap[n]; !ok { |
| doSCC(n) |
| } |
| } |
| |
| return nodeToSccID, sccID |
| } |
| |
| func min(x, y uint64) uint64 { |
| if x < y { |
| return x |
| } |
| return y |
| } |
| |
| // propType represents type information being propagated |
| // over the vta graph. f != nil only for function nodes |
| // and nodes reachable from function nodes. There, we also |
| // remember the actual *ssa.Function in order to more |
| // precisely model higher-order flow. |
| type propType struct { |
| typ types.Type |
| f *ssa.Function |
| } |
| |
| // propTypeMap is an auxiliary structure that serves |
| // the role of a map from nodes to a set of propTypes. |
| type propTypeMap struct { |
| nodeToScc map[node]int |
| sccToTypes map[int]*trie.MutMap |
| } |
| |
| // propTypes returns a list of propTypes associated with |
| // node `n`. If `n` is not in the map `ptm`, nil is returned. |
| func (ptm propTypeMap) propTypes(n node) []propType { |
| id, ok := ptm.nodeToScc[n] |
| if !ok { |
| return nil |
| } |
| var pts []propType |
| for _, elem := range trie.Elems(ptm.sccToTypes[id].M) { |
| pts = append(pts, elem.(propType)) |
| } |
| return pts |
| } |
| |
| // propagate reduces the `graph` based on its SCCs and |
| // then propagates type information through the reduced |
| // graph. The result is a map from nodes to a set of types |
| // and functions, stemming from higher-order data flow, |
| // reaching the node. `canon` is used for type uniqueness. |
| func propagate(graph vtaGraph, canon *typeutil.Map) propTypeMap { |
| nodeToScc, sccID := scc(graph) |
| |
| // We also need the reverse map, from ids to SCCs. |
| sccs := make(map[int][]node, sccID) |
| for n, id := range nodeToScc { |
| sccs[id] = append(sccs[id], n) |
| } |
| |
| // propTypeIds are used to create unique ids for |
| // propType, to be used for trie-based type sets. |
| propTypeIds := make(map[propType]uint64) |
| // Id creation is based on == equality, which works |
| // as types are canonicalized (see getPropType). |
| propTypeId := func(p propType) uint64 { |
| if id, ok := propTypeIds[p]; ok { |
| return id |
| } |
| id := uint64(len(propTypeIds)) |
| propTypeIds[p] = id |
| return id |
| } |
| builder := trie.NewBuilder() |
| // Initialize sccToTypes to avoid repeated check |
| // for initialization later. |
| sccToTypes := make(map[int]*trie.MutMap, sccID) |
| for i := 0; i <= sccID; i++ { |
| sccToTypes[i] = nodeTypes(sccs[i], builder, propTypeId, canon) |
| } |
| |
| for i := len(sccs) - 1; i >= 0; i-- { |
| nextSccs := make(map[int]struct{}) |
| for _, node := range sccs[i] { |
| for succ := range graph[node] { |
| nextSccs[nodeToScc[succ]] = struct{}{} |
| } |
| } |
| // Propagate types to all successor SCCs. |
| for nextScc := range nextSccs { |
| sccToTypes[nextScc].Merge(sccToTypes[i].M) |
| } |
| } |
| return propTypeMap{nodeToScc: nodeToScc, sccToTypes: sccToTypes} |
| } |
| |
| // nodeTypes returns a set of propTypes for `nodes`. These are the |
| // propTypes stemming from the type of each node in `nodes` plus. |
| func nodeTypes(nodes []node, builder *trie.Builder, propTypeId func(p propType) uint64, canon *typeutil.Map) *trie.MutMap { |
| typeSet := builder.MutEmpty() |
| for _, n := range nodes { |
| if hasInitialTypes(n) { |
| pt := getPropType(n, canon) |
| typeSet.Update(propTypeId(pt), pt) |
| } |
| } |
| return &typeSet |
| } |
| |
| // hasInitialTypes check if a node can have initial types. |
| // Returns true iff `n` is not a panic, recover, nestedPtr* |
| // node, nor a node whose type is an interface. |
| func hasInitialTypes(n node) bool { |
| switch n.(type) { |
| case panicArg, recoverReturn, nestedPtrFunction, nestedPtrInterface: |
| return false |
| default: |
| return !types.IsInterface(n.Type()) |
| } |
| } |
| |
| // getPropType creates a propType for `node` based on its type. |
| // propType.typ is always node.Type(). If node is function, then |
| // propType.val is the underlying function; nil otherwise. |
| func getPropType(node node, canon *typeutil.Map) propType { |
| t := canonicalize(node.Type(), canon) |
| if fn, ok := node.(function); ok { |
| return propType{f: fn.f, typ: t} |
| } |
| return propType{f: nil, typ: t} |
| } |