| // Copyright 2013 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package ssa |
| |
| // This file implements the Function type. |
| |
| import ( |
| "bytes" |
| "fmt" |
| "go/ast" |
| "go/token" |
| "go/types" |
| "io" |
| "os" |
| "strings" |
| |
| "golang.org/x/tools/internal/typeparams" |
| ) |
| |
| // Like ObjectOf, but panics instead of returning nil. |
| // Only valid during f's create and build phases. |
| func (f *Function) objectOf(id *ast.Ident) types.Object { |
| if o := f.info.ObjectOf(id); o != nil { |
| return o |
| } |
| panic(fmt.Sprintf("no types.Object for ast.Ident %s @ %s", |
| id.Name, f.Prog.Fset.Position(id.Pos()))) |
| } |
| |
| // Like TypeOf, but panics instead of returning nil. |
| // Only valid during f's create and build phases. |
| func (f *Function) typeOf(e ast.Expr) types.Type { |
| if T := f.info.TypeOf(e); T != nil { |
| return f.typ(T) |
| } |
| panic(fmt.Sprintf("no type for %T @ %s", e, f.Prog.Fset.Position(e.Pos()))) |
| } |
| |
| // typ is the locally instantiated type of T. T==typ(T) if f is not an instantiation. |
| func (f *Function) typ(T types.Type) types.Type { |
| return f.subst.typ(T) |
| } |
| |
| // If id is an Instance, returns info.Instances[id].Type. |
| // Otherwise returns f.typeOf(id). |
| func (f *Function) instanceType(id *ast.Ident) types.Type { |
| if t, ok := typeparams.GetInstances(f.info)[id]; ok { |
| return t.Type |
| } |
| return f.typeOf(id) |
| } |
| |
| // Destinations associated with unlabelled for/switch/select stmts. |
| // We push/pop one of these as we enter/leave each construct and for |
| // each BranchStmt we scan for the innermost target of the right type. |
| type targets struct { |
| tail *targets // rest of stack |
| _break *BasicBlock |
| _continue *BasicBlock |
| _fallthrough *BasicBlock |
| } |
| |
| // Destinations associated with a labelled block. |
| // We populate these as labels are encountered in forward gotos or |
| // labelled statements. |
| type lblock struct { |
| _goto *BasicBlock |
| _break *BasicBlock |
| _continue *BasicBlock |
| } |
| |
| // labelledBlock returns the branch target associated with the |
| // specified label, creating it if needed. |
| func (f *Function) labelledBlock(label *ast.Ident) *lblock { |
| obj := f.objectOf(label) |
| lb := f.lblocks[obj] |
| if lb == nil { |
| lb = &lblock{_goto: f.newBasicBlock(label.Name)} |
| if f.lblocks == nil { |
| f.lblocks = make(map[types.Object]*lblock) |
| } |
| f.lblocks[obj] = lb |
| } |
| return lb |
| } |
| |
| // addParam adds a (non-escaping) parameter to f.Params of the |
| // specified name, type and source position. |
| func (f *Function) addParam(name string, typ types.Type, pos token.Pos) *Parameter { |
| v := &Parameter{ |
| name: name, |
| typ: typ, |
| pos: pos, |
| parent: f, |
| } |
| f.Params = append(f.Params, v) |
| return v |
| } |
| |
| func (f *Function) addParamObj(obj types.Object) *Parameter { |
| name := obj.Name() |
| if name == "" { |
| name = fmt.Sprintf("arg%d", len(f.Params)) |
| } |
| param := f.addParam(name, f.typ(obj.Type()), obj.Pos()) |
| param.object = obj |
| return param |
| } |
| |
| // addSpilledParam declares a parameter that is pre-spilled to the |
| // stack; the function body will load/store the spilled location. |
| // Subsequent lifting will eliminate spills where possible. |
| func (f *Function) addSpilledParam(obj types.Object) { |
| param := f.addParamObj(obj) |
| spill := &Alloc{Comment: obj.Name()} |
| spill.setType(types.NewPointer(param.Type())) |
| spill.setPos(obj.Pos()) |
| f.objects[obj] = spill |
| f.Locals = append(f.Locals, spill) |
| f.emit(spill) |
| f.emit(&Store{Addr: spill, Val: param}) |
| } |
| |
| // startBody initializes the function prior to generating SSA code for its body. |
| // Precondition: f.Type() already set. |
| func (f *Function) startBody() { |
| f.currentBlock = f.newBasicBlock("entry") |
| f.objects = make(map[types.Object]Value) // needed for some synthetics, e.g. init |
| } |
| |
| // createSyntacticParams populates f.Params and generates code (spills |
| // and named result locals) for all the parameters declared in the |
| // syntax. In addition it populates the f.objects mapping. |
| // |
| // Preconditions: |
| // f.startBody() was called. f.info != nil. |
| // Postcondition: |
| // len(f.Params) == len(f.Signature.Params) + (f.Signature.Recv() ? 1 : 0) |
| func (f *Function) createSyntacticParams(recv *ast.FieldList, functype *ast.FuncType) { |
| // Receiver (at most one inner iteration). |
| if recv != nil { |
| for _, field := range recv.List { |
| for _, n := range field.Names { |
| f.addSpilledParam(f.info.Defs[n]) |
| } |
| // Anonymous receiver? No need to spill. |
| if field.Names == nil { |
| f.addParamObj(f.Signature.Recv()) |
| } |
| } |
| } |
| |
| // Parameters. |
| if functype.Params != nil { |
| n := len(f.Params) // 1 if has recv, 0 otherwise |
| for _, field := range functype.Params.List { |
| for _, n := range field.Names { |
| f.addSpilledParam(f.info.Defs[n]) |
| } |
| // Anonymous parameter? No need to spill. |
| if field.Names == nil { |
| f.addParamObj(f.Signature.Params().At(len(f.Params) - n)) |
| } |
| } |
| } |
| |
| // Named results. |
| if functype.Results != nil { |
| for _, field := range functype.Results.List { |
| // Implicit "var" decl of locals for named results. |
| for _, n := range field.Names { |
| f.namedResults = append(f.namedResults, f.addLocalForIdent(n)) |
| } |
| } |
| } |
| } |
| |
| type setNumable interface { |
| setNum(int) |
| } |
| |
| // numberRegisters assigns numbers to all SSA registers |
| // (value-defining Instructions) in f, to aid debugging. |
| // (Non-Instruction Values are named at construction.) |
| func numberRegisters(f *Function) { |
| v := 0 |
| for _, b := range f.Blocks { |
| for _, instr := range b.Instrs { |
| switch instr.(type) { |
| case Value: |
| instr.(setNumable).setNum(v) |
| v++ |
| } |
| } |
| } |
| } |
| |
| // buildReferrers populates the def/use information in all non-nil |
| // Value.Referrers slice. |
| // Precondition: all such slices are initially empty. |
| func buildReferrers(f *Function) { |
| var rands []*Value |
| for _, b := range f.Blocks { |
| for _, instr := range b.Instrs { |
| rands = instr.Operands(rands[:0]) // recycle storage |
| for _, rand := range rands { |
| if r := *rand; r != nil { |
| if ref := r.Referrers(); ref != nil { |
| *ref = append(*ref, instr) |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // mayNeedRuntimeTypes returns all of the types in the body of fn that might need runtime types. |
| func mayNeedRuntimeTypes(fn *Function) []types.Type { |
| var ts []types.Type |
| for _, bb := range fn.Blocks { |
| for _, instr := range bb.Instrs { |
| if mi, ok := instr.(*MakeInterface); ok { |
| ts = append(ts, mi.X.Type()) |
| } |
| } |
| } |
| return ts |
| } |
| |
| // finishBody() finalizes the contents of the function after SSA code generation of its body. |
| // |
| // The function is not done being built until done() is called. |
| func (f *Function) finishBody() { |
| f.objects = nil |
| f.currentBlock = nil |
| f.lblocks = nil |
| |
| // Don't pin the AST in memory (except in debug mode). |
| if n := f.syntax; n != nil && !f.debugInfo() { |
| f.syntax = extentNode{n.Pos(), n.End()} |
| } |
| |
| // Remove from f.Locals any Allocs that escape to the heap. |
| j := 0 |
| for _, l := range f.Locals { |
| if !l.Heap { |
| f.Locals[j] = l |
| j++ |
| } |
| } |
| // Nil out f.Locals[j:] to aid GC. |
| for i := j; i < len(f.Locals); i++ { |
| f.Locals[i] = nil |
| } |
| f.Locals = f.Locals[:j] |
| |
| optimizeBlocks(f) |
| |
| buildReferrers(f) |
| |
| buildDomTree(f) |
| |
| if f.Prog.mode&NaiveForm == 0 { |
| // For debugging pre-state of lifting pass: |
| // numberRegisters(f) |
| // f.WriteTo(os.Stderr) |
| lift(f) |
| } |
| |
| // clear remaining stateful variables |
| f.namedResults = nil // (used by lifting) |
| f.info = nil |
| f.subst = nil |
| |
| numberRegisters(f) // uses f.namedRegisters |
| } |
| |
| // After this, function is done with BUILD phase. |
| func (f *Function) done() { |
| assert(f.parent == nil, "done called on an anonymous function") |
| |
| var visit func(*Function) |
| visit = func(f *Function) { |
| for _, anon := range f.AnonFuncs { |
| visit(anon) // anon is done building before f. |
| } |
| |
| f.built = true // function is done with BUILD phase |
| |
| if f.Prog.mode&PrintFunctions != 0 { |
| printMu.Lock() |
| f.WriteTo(os.Stdout) |
| printMu.Unlock() |
| } |
| |
| if f.Prog.mode&SanityCheckFunctions != 0 { |
| mustSanityCheck(f, nil) |
| } |
| } |
| visit(f) |
| } |
| |
| // removeNilBlocks eliminates nils from f.Blocks and updates each |
| // BasicBlock.Index. Use this after any pass that may delete blocks. |
| func (f *Function) removeNilBlocks() { |
| j := 0 |
| for _, b := range f.Blocks { |
| if b != nil { |
| b.Index = j |
| f.Blocks[j] = b |
| j++ |
| } |
| } |
| // Nil out f.Blocks[j:] to aid GC. |
| for i := j; i < len(f.Blocks); i++ { |
| f.Blocks[i] = nil |
| } |
| f.Blocks = f.Blocks[:j] |
| } |
| |
| // SetDebugMode sets the debug mode for package pkg. If true, all its |
| // functions will include full debug info. This greatly increases the |
| // size of the instruction stream, and causes Functions to depend upon |
| // the ASTs, potentially keeping them live in memory for longer. |
| func (pkg *Package) SetDebugMode(debug bool) { |
| // TODO(adonovan): do we want ast.File granularity? |
| pkg.debug = debug |
| } |
| |
| // debugInfo reports whether debug info is wanted for this function. |
| func (f *Function) debugInfo() bool { |
| return f.Pkg != nil && f.Pkg.debug |
| } |
| |
| // addNamedLocal creates a local variable, adds it to function f and |
| // returns it. Its name and type are taken from obj. Subsequent |
| // calls to f.lookup(obj) will return the same local. |
| func (f *Function) addNamedLocal(obj types.Object) *Alloc { |
| l := f.addLocal(obj.Type(), obj.Pos()) |
| l.Comment = obj.Name() |
| f.objects[obj] = l |
| return l |
| } |
| |
| func (f *Function) addLocalForIdent(id *ast.Ident) *Alloc { |
| return f.addNamedLocal(f.info.Defs[id]) |
| } |
| |
| // addLocal creates an anonymous local variable of type typ, adds it |
| // to function f and returns it. pos is the optional source location. |
| func (f *Function) addLocal(typ types.Type, pos token.Pos) *Alloc { |
| typ = f.typ(typ) |
| v := &Alloc{} |
| v.setType(types.NewPointer(typ)) |
| v.setPos(pos) |
| f.Locals = append(f.Locals, v) |
| f.emit(v) |
| return v |
| } |
| |
| // lookup returns the address of the named variable identified by obj |
| // that is local to function f or one of its enclosing functions. |
| // If escaping, the reference comes from a potentially escaping pointer |
| // expression and the referent must be heap-allocated. |
| func (f *Function) lookup(obj types.Object, escaping bool) Value { |
| if v, ok := f.objects[obj]; ok { |
| if alloc, ok := v.(*Alloc); ok && escaping { |
| alloc.Heap = true |
| } |
| return v // function-local var (address) |
| } |
| |
| // Definition must be in an enclosing function; |
| // plumb it through intervening closures. |
| if f.parent == nil { |
| panic("no ssa.Value for " + obj.String()) |
| } |
| outer := f.parent.lookup(obj, true) // escaping |
| v := &FreeVar{ |
| name: obj.Name(), |
| typ: outer.Type(), |
| pos: outer.Pos(), |
| outer: outer, |
| parent: f, |
| } |
| f.objects[obj] = v |
| f.FreeVars = append(f.FreeVars, v) |
| return v |
| } |
| |
| // emit emits the specified instruction to function f. |
| func (f *Function) emit(instr Instruction) Value { |
| return f.currentBlock.emit(instr) |
| } |
| |
| // RelString returns the full name of this function, qualified by |
| // package name, receiver type, etc. |
| // |
| // The specific formatting rules are not guaranteed and may change. |
| // |
| // Examples: |
| // |
| // "math.IsNaN" // a package-level function |
| // "(*bytes.Buffer).Bytes" // a declared method or a wrapper |
| // "(*bytes.Buffer).Bytes$thunk" // thunk (func wrapping method; receiver is param 0) |
| // "(*bytes.Buffer).Bytes$bound" // bound (func wrapping method; receiver supplied by closure) |
| // "main.main$1" // an anonymous function in main |
| // "main.init#1" // a declared init function |
| // "main.init" // the synthesized package initializer |
| // |
| // When these functions are referred to from within the same package |
| // (i.e. from == f.Pkg.Object), they are rendered without the package path. |
| // For example: "IsNaN", "(*Buffer).Bytes", etc. |
| // |
| // All non-synthetic functions have distinct package-qualified names. |
| // (But two methods may have the same name "(T).f" if one is a synthetic |
| // wrapper promoting a non-exported method "f" from another package; in |
| // that case, the strings are equal but the identifiers "f" are distinct.) |
| func (f *Function) RelString(from *types.Package) string { |
| // Anonymous? |
| if f.parent != nil { |
| // An anonymous function's Name() looks like "parentName$1", |
| // but its String() should include the type/package/etc. |
| parent := f.parent.RelString(from) |
| for i, anon := range f.parent.AnonFuncs { |
| if anon == f { |
| return fmt.Sprintf("%s$%d", parent, 1+i) |
| } |
| } |
| |
| return f.name // should never happen |
| } |
| |
| // Method (declared or wrapper)? |
| if recv := f.Signature.Recv(); recv != nil { |
| return f.relMethod(from, recv.Type()) |
| } |
| |
| // Thunk? |
| if f.method != nil { |
| return f.relMethod(from, f.method.Recv()) |
| } |
| |
| // Bound? |
| if len(f.FreeVars) == 1 && strings.HasSuffix(f.name, "$bound") { |
| return f.relMethod(from, f.FreeVars[0].Type()) |
| } |
| |
| // Package-level function? |
| // Prefix with package name for cross-package references only. |
| if p := f.relPkg(); p != nil && p != from { |
| return fmt.Sprintf("%s.%s", p.Path(), f.name) |
| } |
| |
| // Unknown. |
| return f.name |
| } |
| |
| func (f *Function) relMethod(from *types.Package, recv types.Type) string { |
| return fmt.Sprintf("(%s).%s", relType(recv, from), f.name) |
| } |
| |
| // writeSignature writes to buf the signature sig in declaration syntax. |
| func writeSignature(buf *bytes.Buffer, from *types.Package, name string, sig *types.Signature, params []*Parameter) { |
| buf.WriteString("func ") |
| if recv := sig.Recv(); recv != nil { |
| buf.WriteString("(") |
| if n := params[0].Name(); n != "" { |
| buf.WriteString(n) |
| buf.WriteString(" ") |
| } |
| types.WriteType(buf, params[0].Type(), types.RelativeTo(from)) |
| buf.WriteString(") ") |
| } |
| buf.WriteString(name) |
| types.WriteSignature(buf, sig, types.RelativeTo(from)) |
| } |
| |
| // declaredPackage returns the package fn is declared in or nil if the |
| // function is not declared in a package. |
| func (fn *Function) declaredPackage() *Package { |
| switch { |
| case fn.Pkg != nil: |
| return fn.Pkg // non-generic function |
| case fn._Origin != nil: |
| return fn._Origin.Pkg // instance of a named generic function |
| case fn.parent != nil: |
| return fn.parent.declaredPackage() // instance of an anonymous [generic] function |
| default: |
| return nil // function is not declared in a package, e.g. a wrapper. |
| } |
| } |
| |
| // relPkg returns types.Package fn is printed in relationship to. |
| func (fn *Function) relPkg() *types.Package { |
| if p := fn.declaredPackage(); p != nil { |
| return p.Pkg |
| } |
| return nil |
| } |
| |
| var _ io.WriterTo = (*Function)(nil) // *Function implements io.Writer |
| |
| func (f *Function) WriteTo(w io.Writer) (int64, error) { |
| var buf bytes.Buffer |
| WriteFunction(&buf, f) |
| n, err := w.Write(buf.Bytes()) |
| return int64(n), err |
| } |
| |
| // WriteFunction writes to buf a human-readable "disassembly" of f. |
| func WriteFunction(buf *bytes.Buffer, f *Function) { |
| fmt.Fprintf(buf, "# Name: %s\n", f.String()) |
| if f.Pkg != nil { |
| fmt.Fprintf(buf, "# Package: %s\n", f.Pkg.Pkg.Path()) |
| } |
| if syn := f.Synthetic; syn != "" { |
| fmt.Fprintln(buf, "# Synthetic:", syn) |
| } |
| if pos := f.Pos(); pos.IsValid() { |
| fmt.Fprintf(buf, "# Location: %s\n", f.Prog.Fset.Position(pos)) |
| } |
| |
| if f.parent != nil { |
| fmt.Fprintf(buf, "# Parent: %s\n", f.parent.Name()) |
| } |
| |
| if f.Recover != nil { |
| fmt.Fprintf(buf, "# Recover: %s\n", f.Recover) |
| } |
| |
| from := f.relPkg() |
| |
| if f.FreeVars != nil { |
| buf.WriteString("# Free variables:\n") |
| for i, fv := range f.FreeVars { |
| fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, fv.Name(), relType(fv.Type(), from)) |
| } |
| } |
| |
| if len(f.Locals) > 0 { |
| buf.WriteString("# Locals:\n") |
| for i, l := range f.Locals { |
| fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, l.Name(), relType(deref(l.Type()), from)) |
| } |
| } |
| writeSignature(buf, from, f.Name(), f.Signature, f.Params) |
| buf.WriteString(":\n") |
| |
| if f.Blocks == nil { |
| buf.WriteString("\t(external)\n") |
| } |
| |
| // NB. column calculations are confused by non-ASCII |
| // characters and assume 8-space tabs. |
| const punchcard = 80 // for old time's sake. |
| const tabwidth = 8 |
| for _, b := range f.Blocks { |
| if b == nil { |
| // Corrupt CFG. |
| fmt.Fprintf(buf, ".nil:\n") |
| continue |
| } |
| n, _ := fmt.Fprintf(buf, "%d:", b.Index) |
| bmsg := fmt.Sprintf("%s P:%d S:%d", b.Comment, len(b.Preds), len(b.Succs)) |
| fmt.Fprintf(buf, "%*s%s\n", punchcard-1-n-len(bmsg), "", bmsg) |
| |
| if false { // CFG debugging |
| fmt.Fprintf(buf, "\t# CFG: %s --> %s --> %s\n", b.Preds, b, b.Succs) |
| } |
| for _, instr := range b.Instrs { |
| buf.WriteString("\t") |
| switch v := instr.(type) { |
| case Value: |
| l := punchcard - tabwidth |
| // Left-align the instruction. |
| if name := v.Name(); name != "" { |
| n, _ := fmt.Fprintf(buf, "%s = ", name) |
| l -= n |
| } |
| n, _ := buf.WriteString(instr.String()) |
| l -= n |
| // Right-align the type if there's space. |
| if t := v.Type(); t != nil { |
| buf.WriteByte(' ') |
| ts := relType(t, from) |
| l -= len(ts) + len(" ") // (spaces before and after type) |
| if l > 0 { |
| fmt.Fprintf(buf, "%*s", l, "") |
| } |
| buf.WriteString(ts) |
| } |
| case nil: |
| // Be robust against bad transforms. |
| buf.WriteString("<deleted>") |
| default: |
| buf.WriteString(instr.String()) |
| } |
| buf.WriteString("\n") |
| } |
| } |
| fmt.Fprintf(buf, "\n") |
| } |
| |
| // newBasicBlock adds to f a new basic block and returns it. It does |
| // not automatically become the current block for subsequent calls to emit. |
| // comment is an optional string for more readable debugging output. |
| func (f *Function) newBasicBlock(comment string) *BasicBlock { |
| b := &BasicBlock{ |
| Index: len(f.Blocks), |
| Comment: comment, |
| parent: f, |
| } |
| b.Succs = b.succs2[:0] |
| f.Blocks = append(f.Blocks, b) |
| return b |
| } |
| |
| // NewFunction returns a new synthetic Function instance belonging to |
| // prog, with its name and signature fields set as specified. |
| // |
| // The caller is responsible for initializing the remaining fields of |
| // the function object, e.g. Pkg, Params, Blocks. |
| // |
| // It is practically impossible for clients to construct well-formed |
| // SSA functions/packages/programs directly, so we assume this is the |
| // job of the Builder alone. NewFunction exists to provide clients a |
| // little flexibility. For example, analysis tools may wish to |
| // construct fake Functions for the root of the callgraph, a fake |
| // "reflect" package, etc. |
| // |
| // TODO(adonovan): think harder about the API here. |
| func (prog *Program) NewFunction(name string, sig *types.Signature, provenance string) *Function { |
| return &Function{Prog: prog, name: name, Signature: sig, Synthetic: provenance} |
| } |
| |
| type extentNode [2]token.Pos |
| |
| func (n extentNode) Pos() token.Pos { return n[0] } |
| func (n extentNode) End() token.Pos { return n[1] } |
| |
| // Syntax returns an ast.Node whose Pos/End methods provide the |
| // lexical extent of the function if it was defined by Go source code |
| // (f.Synthetic==""), or nil otherwise. |
| // |
| // If f was built with debug information (see Package.SetDebugRef), |
| // the result is the *ast.FuncDecl or *ast.FuncLit that declared the |
| // function. Otherwise, it is an opaque Node providing only position |
| // information; this avoids pinning the AST in memory. |
| func (f *Function) Syntax() ast.Node { return f.syntax } |