| // Copyright 2014 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Stringer is a tool to automate the creation of methods that satisfy the fmt.Stringer |
| // interface. Given the name of a (signed or unsigned) integer type T that has constants |
| // defined, stringer will create a new self-contained Go source file implementing |
| // |
| // func (t T) String() string |
| // |
| // The file is created in the same package and directory as the package that defines T. |
| // It has helpful defaults designed for use with go generate. |
| // |
| // Stringer works best with constants that are consecutive values such as created using iota, |
| // but creates good code regardless. In the future it might also provide custom support for |
| // constant sets that are bit patterns. |
| // |
| // For example, given this snippet, |
| // |
| // package painkiller |
| // |
| // type Pill int |
| // |
| // const ( |
| // Placebo Pill = iota |
| // Aspirin |
| // Ibuprofen |
| // Paracetamol |
| // Acetaminophen = Paracetamol |
| // ) |
| // |
| // running this command |
| // |
| // stringer -type=Pill |
| // |
| // in the same directory will create the file pill_string.go, in package painkiller, |
| // containing a definition of |
| // |
| // func (Pill) String() string |
| // |
| // That method will translate the value of a Pill constant to the string representation |
| // of the respective constant name, so that the call fmt.Print(painkiller.Aspirin) will |
| // print the string "Aspirin". |
| // |
| // Typically this process would be run using go generate, like this: |
| // |
| // //go:generate stringer -type=Pill |
| // |
| // If multiple constants have the same value, the lexically first matching name will |
| // be used (in the example, Acetaminophen will print as "Paracetamol"). |
| // |
| // With no arguments, it processes the package in the current directory. |
| // Otherwise, the arguments must name a single directory holding a Go package |
| // or a set of Go source files that represent a single Go package. |
| // |
| // The -type flag accepts a comma-separated list of types so a single run can |
| // generate methods for multiple types. The default output file is t_string.go, |
| // where t is the lower-cased name of the first type listed. It can be overridden |
| // with the -output flag. |
| // |
| // The -linecomment flag tells stringer to generate the text of any line comment, trimmed |
| // of leading spaces, instead of the constant name. For instance, if the constants above had a |
| // Pill prefix, one could write |
| // |
| // PillAspirin // Aspirin |
| // |
| // to suppress it in the output. |
| package main // import "golang.org/x/tools/cmd/stringer" |
| |
| import ( |
| "bytes" |
| "flag" |
| "fmt" |
| "go/ast" |
| "go/constant" |
| "go/format" |
| "go/token" |
| "go/types" |
| "log" |
| "os" |
| "path/filepath" |
| "sort" |
| "strings" |
| |
| "golang.org/x/tools/go/packages" |
| ) |
| |
| var ( |
| typeNames = flag.String("type", "", "comma-separated list of type names; must be set") |
| output = flag.String("output", "", "output file name; default srcdir/<type>_string.go") |
| trimprefix = flag.String("trimprefix", "", "trim the `prefix` from the generated constant names") |
| linecomment = flag.Bool("linecomment", false, "use line comment text as printed text when present") |
| buildTags = flag.String("tags", "", "comma-separated list of build tags to apply") |
| ) |
| |
| // Usage is a replacement usage function for the flags package. |
| func Usage() { |
| fmt.Fprintf(os.Stderr, "Usage of stringer:\n") |
| fmt.Fprintf(os.Stderr, "\tstringer [flags] -type T [directory]\n") |
| fmt.Fprintf(os.Stderr, "\tstringer [flags] -type T files... # Must be a single package\n") |
| fmt.Fprintf(os.Stderr, "For more information, see:\n") |
| fmt.Fprintf(os.Stderr, "\thttps://pkg.go.dev/golang.org/x/tools/cmd/stringer\n") |
| fmt.Fprintf(os.Stderr, "Flags:\n") |
| flag.PrintDefaults() |
| } |
| |
| func main() { |
| log.SetFlags(0) |
| log.SetPrefix("stringer: ") |
| flag.Usage = Usage |
| flag.Parse() |
| if len(*typeNames) == 0 { |
| flag.Usage() |
| os.Exit(2) |
| } |
| types := strings.Split(*typeNames, ",") |
| var tags []string |
| if len(*buildTags) > 0 { |
| tags = strings.Split(*buildTags, ",") |
| } |
| |
| // We accept either one directory or a list of files. Which do we have? |
| args := flag.Args() |
| if len(args) == 0 { |
| // Default: process whole package in current directory. |
| args = []string{"."} |
| } |
| |
| // Parse the package once. |
| var dir string |
| g := Generator{ |
| trimPrefix: *trimprefix, |
| lineComment: *linecomment, |
| } |
| // TODO(suzmue): accept other patterns for packages (directories, list of files, import paths, etc). |
| if len(args) == 1 && isDirectory(args[0]) { |
| dir = args[0] |
| } else { |
| if len(tags) != 0 { |
| log.Fatal("-tags option applies only to directories, not when files are specified") |
| } |
| dir = filepath.Dir(args[0]) |
| } |
| |
| g.parsePackage(args, tags) |
| |
| // Print the header and package clause. |
| g.Printf("// Code generated by \"stringer %s\"; DO NOT EDIT.\n", strings.Join(os.Args[1:], " ")) |
| g.Printf("\n") |
| g.Printf("package %s", g.pkg.name) |
| g.Printf("\n") |
| g.Printf("import \"strconv\"\n") // Used by all methods. |
| |
| // Run generate for each type. |
| for _, typeName := range types { |
| g.generate(typeName) |
| } |
| |
| // Format the output. |
| src := g.format() |
| |
| // Write to file. |
| outputName := *output |
| if outputName == "" { |
| baseName := fmt.Sprintf("%s_string.go", types[0]) |
| outputName = filepath.Join(dir, strings.ToLower(baseName)) |
| } |
| err := os.WriteFile(outputName, src, 0644) |
| if err != nil { |
| log.Fatalf("writing output: %s", err) |
| } |
| } |
| |
| // isDirectory reports whether the named file is a directory. |
| func isDirectory(name string) bool { |
| info, err := os.Stat(name) |
| if err != nil { |
| log.Fatal(err) |
| } |
| return info.IsDir() |
| } |
| |
| // Generator holds the state of the analysis. Primarily used to buffer |
| // the output for format.Source. |
| type Generator struct { |
| buf bytes.Buffer // Accumulated output. |
| pkg *Package // Package we are scanning. |
| |
| trimPrefix string |
| lineComment bool |
| |
| logf func(format string, args ...interface{}) // test logging hook; nil when not testing |
| } |
| |
| func (g *Generator) Printf(format string, args ...interface{}) { |
| fmt.Fprintf(&g.buf, format, args...) |
| } |
| |
| // File holds a single parsed file and associated data. |
| type File struct { |
| pkg *Package // Package to which this file belongs. |
| file *ast.File // Parsed AST. |
| // These fields are reset for each type being generated. |
| typeName string // Name of the constant type. |
| values []Value // Accumulator for constant values of that type. |
| |
| trimPrefix string |
| lineComment bool |
| } |
| |
| type Package struct { |
| name string |
| defs map[*ast.Ident]types.Object |
| files []*File |
| } |
| |
| // parsePackage analyzes the single package constructed from the patterns and tags. |
| // parsePackage exits if there is an error. |
| func (g *Generator) parsePackage(patterns []string, tags []string) { |
| cfg := &packages.Config{ |
| Mode: packages.NeedName | packages.NeedTypes | packages.NeedTypesInfo | packages.NeedSyntax, |
| // TODO: Need to think about constants in test files. Maybe write type_string_test.go |
| // in a separate pass? For later. |
| Tests: false, |
| BuildFlags: []string{fmt.Sprintf("-tags=%s", strings.Join(tags, " "))}, |
| Logf: g.logf, |
| } |
| pkgs, err := packages.Load(cfg, patterns...) |
| if err != nil { |
| log.Fatal(err) |
| } |
| if len(pkgs) != 1 { |
| log.Fatalf("error: %d packages matching %v", len(pkgs), strings.Join(patterns, " ")) |
| } |
| g.addPackage(pkgs[0]) |
| } |
| |
| // addPackage adds a type checked Package and its syntax files to the generator. |
| func (g *Generator) addPackage(pkg *packages.Package) { |
| g.pkg = &Package{ |
| name: pkg.Name, |
| defs: pkg.TypesInfo.Defs, |
| files: make([]*File, len(pkg.Syntax)), |
| } |
| |
| for i, file := range pkg.Syntax { |
| g.pkg.files[i] = &File{ |
| file: file, |
| pkg: g.pkg, |
| trimPrefix: g.trimPrefix, |
| lineComment: g.lineComment, |
| } |
| } |
| } |
| |
| // generate produces the String method for the named type. |
| func (g *Generator) generate(typeName string) { |
| values := make([]Value, 0, 100) |
| for _, file := range g.pkg.files { |
| // Set the state for this run of the walker. |
| file.typeName = typeName |
| file.values = nil |
| if file.file != nil { |
| ast.Inspect(file.file, file.genDecl) |
| values = append(values, file.values...) |
| } |
| } |
| |
| if len(values) == 0 { |
| log.Fatalf("no values defined for type %s", typeName) |
| } |
| // Generate code that will fail if the constants change value. |
| g.Printf("func _() {\n") |
| g.Printf("\t// An \"invalid array index\" compiler error signifies that the constant values have changed.\n") |
| g.Printf("\t// Re-run the stringer command to generate them again.\n") |
| g.Printf("\tvar x [1]struct{}\n") |
| for _, v := range values { |
| g.Printf("\t_ = x[%s - %s]\n", v.originalName, v.str) |
| } |
| g.Printf("}\n") |
| runs := splitIntoRuns(values) |
| // The decision of which pattern to use depends on the number of |
| // runs in the numbers. If there's only one, it's easy. For more than |
| // one, there's a tradeoff between complexity and size of the data |
| // and code vs. the simplicity of a map. A map takes more space, |
| // but so does the code. The decision here (crossover at 10) is |
| // arbitrary, but considers that for large numbers of runs the cost |
| // of the linear scan in the switch might become important, and |
| // rather than use yet another algorithm such as binary search, |
| // we punt and use a map. In any case, the likelihood of a map |
| // being necessary for any realistic example other than bitmasks |
| // is very low. And bitmasks probably deserve their own analysis, |
| // to be done some other day. |
| switch { |
| case len(runs) == 1: |
| g.buildOneRun(runs, typeName) |
| case len(runs) <= 10: |
| g.buildMultipleRuns(runs, typeName) |
| default: |
| g.buildMap(runs, typeName) |
| } |
| } |
| |
| // splitIntoRuns breaks the values into runs of contiguous sequences. |
| // For example, given 1,2,3,5,6,7 it returns {1,2,3},{5,6,7}. |
| // The input slice is known to be non-empty. |
| func splitIntoRuns(values []Value) [][]Value { |
| // We use stable sort so the lexically first name is chosen for equal elements. |
| sort.Stable(byValue(values)) |
| // Remove duplicates. Stable sort has put the one we want to print first, |
| // so use that one. The String method won't care about which named constant |
| // was the argument, so the first name for the given value is the only one to keep. |
| // We need to do this because identical values would cause the switch or map |
| // to fail to compile. |
| j := 1 |
| for i := 1; i < len(values); i++ { |
| if values[i].value != values[i-1].value { |
| values[j] = values[i] |
| j++ |
| } |
| } |
| values = values[:j] |
| runs := make([][]Value, 0, 10) |
| for len(values) > 0 { |
| // One contiguous sequence per outer loop. |
| i := 1 |
| for i < len(values) && values[i].value == values[i-1].value+1 { |
| i++ |
| } |
| runs = append(runs, values[:i]) |
| values = values[i:] |
| } |
| return runs |
| } |
| |
| // format returns the gofmt-ed contents of the Generator's buffer. |
| func (g *Generator) format() []byte { |
| src, err := format.Source(g.buf.Bytes()) |
| if err != nil { |
| // Should never happen, but can arise when developing this code. |
| // The user can compile the output to see the error. |
| log.Printf("warning: internal error: invalid Go generated: %s", err) |
| log.Printf("warning: compile the package to analyze the error") |
| return g.buf.Bytes() |
| } |
| return src |
| } |
| |
| // Value represents a declared constant. |
| type Value struct { |
| originalName string // The name of the constant. |
| name string // The name with trimmed prefix. |
| // The value is stored as a bit pattern alone. The boolean tells us |
| // whether to interpret it as an int64 or a uint64; the only place |
| // this matters is when sorting. |
| // Much of the time the str field is all we need; it is printed |
| // by Value.String. |
| value uint64 // Will be converted to int64 when needed. |
| signed bool // Whether the constant is a signed type. |
| str string // The string representation given by the "go/constant" package. |
| } |
| |
| func (v *Value) String() string { |
| return v.str |
| } |
| |
| // byValue lets us sort the constants into increasing order. |
| // We take care in the Less method to sort in signed or unsigned order, |
| // as appropriate. |
| type byValue []Value |
| |
| func (b byValue) Len() int { return len(b) } |
| func (b byValue) Swap(i, j int) { b[i], b[j] = b[j], b[i] } |
| func (b byValue) Less(i, j int) bool { |
| if b[i].signed { |
| return int64(b[i].value) < int64(b[j].value) |
| } |
| return b[i].value < b[j].value |
| } |
| |
| // genDecl processes one declaration clause. |
| func (f *File) genDecl(node ast.Node) bool { |
| decl, ok := node.(*ast.GenDecl) |
| if !ok || decl.Tok != token.CONST { |
| // We only care about const declarations. |
| return true |
| } |
| // The name of the type of the constants we are declaring. |
| // Can change if this is a multi-element declaration. |
| typ := "" |
| // Loop over the elements of the declaration. Each element is a ValueSpec: |
| // a list of names possibly followed by a type, possibly followed by values. |
| // If the type and value are both missing, we carry down the type (and value, |
| // but the "go/types" package takes care of that). |
| for _, spec := range decl.Specs { |
| vspec := spec.(*ast.ValueSpec) // Guaranteed to succeed as this is CONST. |
| if vspec.Type == nil && len(vspec.Values) > 0 { |
| // "X = 1". With no type but a value. If the constant is untyped, |
| // skip this vspec and reset the remembered type. |
| typ = "" |
| |
| // If this is a simple type conversion, remember the type. |
| // We don't mind if this is actually a call; a qualified call won't |
| // be matched (that will be SelectorExpr, not Ident), and only unusual |
| // situations will result in a function call that appears to be |
| // a type conversion. |
| ce, ok := vspec.Values[0].(*ast.CallExpr) |
| if !ok { |
| continue |
| } |
| id, ok := ce.Fun.(*ast.Ident) |
| if !ok { |
| continue |
| } |
| typ = id.Name |
| } |
| if vspec.Type != nil { |
| // "X T". We have a type. Remember it. |
| ident, ok := vspec.Type.(*ast.Ident) |
| if !ok { |
| continue |
| } |
| typ = ident.Name |
| } |
| if typ != f.typeName { |
| // This is not the type we're looking for. |
| continue |
| } |
| // We now have a list of names (from one line of source code) all being |
| // declared with the desired type. |
| // Grab their names and actual values and store them in f.values. |
| for _, name := range vspec.Names { |
| if name.Name == "_" { |
| continue |
| } |
| // This dance lets the type checker find the values for us. It's a |
| // bit tricky: look up the object declared by the name, find its |
| // types.Const, and extract its value. |
| obj, ok := f.pkg.defs[name] |
| if !ok { |
| log.Fatalf("no value for constant %s", name) |
| } |
| info := obj.Type().Underlying().(*types.Basic).Info() |
| if info&types.IsInteger == 0 { |
| log.Fatalf("can't handle non-integer constant type %s", typ) |
| } |
| value := obj.(*types.Const).Val() // Guaranteed to succeed as this is CONST. |
| if value.Kind() != constant.Int { |
| log.Fatalf("can't happen: constant is not an integer %s", name) |
| } |
| i64, isInt := constant.Int64Val(value) |
| u64, isUint := constant.Uint64Val(value) |
| if !isInt && !isUint { |
| log.Fatalf("internal error: value of %s is not an integer: %s", name, value.String()) |
| } |
| if !isInt { |
| u64 = uint64(i64) |
| } |
| v := Value{ |
| originalName: name.Name, |
| value: u64, |
| signed: info&types.IsUnsigned == 0, |
| str: value.String(), |
| } |
| if c := vspec.Comment; f.lineComment && c != nil && len(c.List) == 1 { |
| v.name = strings.TrimSpace(c.Text()) |
| } else { |
| v.name = strings.TrimPrefix(v.originalName, f.trimPrefix) |
| } |
| f.values = append(f.values, v) |
| } |
| } |
| return false |
| } |
| |
| // Helpers |
| |
| // usize returns the number of bits of the smallest unsigned integer |
| // type that will hold n. Used to create the smallest possible slice of |
| // integers to use as indexes into the concatenated strings. |
| func usize(n int) int { |
| switch { |
| case n < 1<<8: |
| return 8 |
| case n < 1<<16: |
| return 16 |
| default: |
| // 2^32 is enough constants for anyone. |
| return 32 |
| } |
| } |
| |
| // declareIndexAndNameVars declares the index slices and concatenated names |
| // strings representing the runs of values. |
| func (g *Generator) declareIndexAndNameVars(runs [][]Value, typeName string) { |
| var indexes, names []string |
| for i, run := range runs { |
| index, name := g.createIndexAndNameDecl(run, typeName, fmt.Sprintf("_%d", i)) |
| if len(run) != 1 { |
| indexes = append(indexes, index) |
| } |
| names = append(names, name) |
| } |
| g.Printf("const (\n") |
| for _, name := range names { |
| g.Printf("\t%s\n", name) |
| } |
| g.Printf(")\n\n") |
| |
| if len(indexes) > 0 { |
| g.Printf("var (") |
| for _, index := range indexes { |
| g.Printf("\t%s\n", index) |
| } |
| g.Printf(")\n\n") |
| } |
| } |
| |
| // declareIndexAndNameVar is the single-run version of declareIndexAndNameVars |
| func (g *Generator) declareIndexAndNameVar(run []Value, typeName string) { |
| index, name := g.createIndexAndNameDecl(run, typeName, "") |
| g.Printf("const %s\n", name) |
| g.Printf("var %s\n", index) |
| } |
| |
| // createIndexAndNameDecl returns the pair of declarations for the run. The caller will add "const" and "var". |
| func (g *Generator) createIndexAndNameDecl(run []Value, typeName string, suffix string) (string, string) { |
| b := new(bytes.Buffer) |
| indexes := make([]int, len(run)) |
| for i := range run { |
| b.WriteString(run[i].name) |
| indexes[i] = b.Len() |
| } |
| nameConst := fmt.Sprintf("_%s_name%s = %q", typeName, suffix, b.String()) |
| nameLen := b.Len() |
| b.Reset() |
| fmt.Fprintf(b, "_%s_index%s = [...]uint%d{0, ", typeName, suffix, usize(nameLen)) |
| for i, v := range indexes { |
| if i > 0 { |
| fmt.Fprintf(b, ", ") |
| } |
| fmt.Fprintf(b, "%d", v) |
| } |
| fmt.Fprintf(b, "}") |
| return b.String(), nameConst |
| } |
| |
| // declareNameVars declares the concatenated names string representing all the values in the runs. |
| func (g *Generator) declareNameVars(runs [][]Value, typeName string, suffix string) { |
| g.Printf("const _%s_name%s = \"", typeName, suffix) |
| for _, run := range runs { |
| for i := range run { |
| g.Printf("%s", run[i].name) |
| } |
| } |
| g.Printf("\"\n") |
| } |
| |
| // buildOneRun generates the variables and String method for a single run of contiguous values. |
| func (g *Generator) buildOneRun(runs [][]Value, typeName string) { |
| values := runs[0] |
| g.Printf("\n") |
| g.declareIndexAndNameVar(values, typeName) |
| // The generated code is simple enough to write as a Printf format. |
| lessThanZero := "" |
| if values[0].signed { |
| lessThanZero = "i < 0 || " |
| } |
| if values[0].value == 0 { // Signed or unsigned, 0 is still 0. |
| g.Printf(stringOneRun, typeName, usize(len(values)), lessThanZero) |
| } else { |
| g.Printf(stringOneRunWithOffset, typeName, values[0].String(), usize(len(values)), lessThanZero) |
| } |
| } |
| |
| // Arguments to format are: |
| // |
| // [1]: type name |
| // [2]: size of index element (8 for uint8 etc.) |
| // [3]: less than zero check (for signed types) |
| const stringOneRun = `func (i %[1]s) String() string { |
| if %[3]si >= %[1]s(len(_%[1]s_index)-1) { |
| return "%[1]s(" + strconv.FormatInt(int64(i), 10) + ")" |
| } |
| return _%[1]s_name[_%[1]s_index[i]:_%[1]s_index[i+1]] |
| } |
| ` |
| |
| // Arguments to format are: |
| // [1]: type name |
| // [2]: lowest defined value for type, as a string |
| // [3]: size of index element (8 for uint8 etc.) |
| // [4]: less than zero check (for signed types) |
| /* |
| */ |
| const stringOneRunWithOffset = `func (i %[1]s) String() string { |
| i -= %[2]s |
| if %[4]si >= %[1]s(len(_%[1]s_index)-1) { |
| return "%[1]s(" + strconv.FormatInt(int64(i + %[2]s), 10) + ")" |
| } |
| return _%[1]s_name[_%[1]s_index[i] : _%[1]s_index[i+1]] |
| } |
| ` |
| |
| // buildMultipleRuns generates the variables and String method for multiple runs of contiguous values. |
| // For this pattern, a single Printf format won't do. |
| func (g *Generator) buildMultipleRuns(runs [][]Value, typeName string) { |
| g.Printf("\n") |
| g.declareIndexAndNameVars(runs, typeName) |
| g.Printf("func (i %s) String() string {\n", typeName) |
| g.Printf("\tswitch {\n") |
| for i, values := range runs { |
| if len(values) == 1 { |
| g.Printf("\tcase i == %s:\n", &values[0]) |
| g.Printf("\t\treturn _%s_name_%d\n", typeName, i) |
| continue |
| } |
| if values[0].value == 0 && !values[0].signed { |
| // For an unsigned lower bound of 0, "0 <= i" would be redundant. |
| g.Printf("\tcase i <= %s:\n", &values[len(values)-1]) |
| } else { |
| g.Printf("\tcase %s <= i && i <= %s:\n", &values[0], &values[len(values)-1]) |
| } |
| if values[0].value != 0 { |
| g.Printf("\t\ti -= %s\n", &values[0]) |
| } |
| g.Printf("\t\treturn _%s_name_%d[_%s_index_%d[i]:_%s_index_%d[i+1]]\n", |
| typeName, i, typeName, i, typeName, i) |
| } |
| g.Printf("\tdefault:\n") |
| g.Printf("\t\treturn \"%s(\" + strconv.FormatInt(int64(i), 10) + \")\"\n", typeName) |
| g.Printf("\t}\n") |
| g.Printf("}\n") |
| } |
| |
| // buildMap handles the case where the space is so sparse a map is a reasonable fallback. |
| // It's a rare situation but has simple code. |
| func (g *Generator) buildMap(runs [][]Value, typeName string) { |
| g.Printf("\n") |
| g.declareNameVars(runs, typeName, "") |
| g.Printf("\nvar _%s_map = map[%s]string{\n", typeName, typeName) |
| n := 0 |
| for _, values := range runs { |
| for _, value := range values { |
| g.Printf("\t%s: _%s_name[%d:%d],\n", &value, typeName, n, n+len(value.name)) |
| n += len(value.name) |
| } |
| } |
| g.Printf("}\n\n") |
| g.Printf(stringMap, typeName) |
| } |
| |
| // Argument to format is the type name. |
| const stringMap = `func (i %[1]s) String() string { |
| if str, ok := _%[1]s_map[i]; ok { |
| return str |
| } |
| return "%[1]s(" + strconv.FormatInt(int64(i), 10) + ")" |
| } |
| ` |