|  | // Copyright 2013 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package ssa | 
|  |  | 
|  | // This file defines algorithms related to dominance. | 
|  |  | 
|  | // Dominator tree construction ---------------------------------------- | 
|  | // | 
|  | // We use the algorithm described in Lengauer & Tarjan. 1979.  A fast | 
|  | // algorithm for finding dominators in a flowgraph. | 
|  | // http://doi.acm.org/10.1145/357062.357071 | 
|  | // | 
|  | // We also apply the optimizations to SLT described in Georgiadis et | 
|  | // al, Finding Dominators in Practice, JGAA 2006, | 
|  | // http://jgaa.info/accepted/2006/GeorgiadisTarjanWerneck2006.10.1.pdf | 
|  | // to avoid the need for buckets of size > 1. | 
|  |  | 
|  | import ( | 
|  | "bytes" | 
|  | "fmt" | 
|  | "math/big" | 
|  | "os" | 
|  | "sort" | 
|  | ) | 
|  |  | 
|  | // Idom returns the block that immediately dominates b: | 
|  | // its parent in the dominator tree, if any. | 
|  | // Neither the entry node (b.Index==0) nor recover node | 
|  | // (b==b.Parent().Recover()) have a parent. | 
|  | func (b *BasicBlock) Idom() *BasicBlock { return b.dom.idom } | 
|  |  | 
|  | // Dominees returns the list of blocks that b immediately dominates: | 
|  | // its children in the dominator tree. | 
|  | func (b *BasicBlock) Dominees() []*BasicBlock { return b.dom.children } | 
|  |  | 
|  | // Dominates reports whether b dominates c. | 
|  | func (b *BasicBlock) Dominates(c *BasicBlock) bool { | 
|  | return b.dom.pre <= c.dom.pre && c.dom.post <= b.dom.post | 
|  | } | 
|  |  | 
|  | // DomPreorder returns a new slice containing the blocks of f | 
|  | // in a preorder traversal of the dominator tree. | 
|  | func (f *Function) DomPreorder() []*BasicBlock { | 
|  | slice := append([]*BasicBlock(nil), f.Blocks...) | 
|  | sort.Slice(slice, func(i, j int) bool { | 
|  | return slice[i].dom.pre < slice[j].dom.pre | 
|  | }) | 
|  | return slice | 
|  | } | 
|  |  | 
|  | // DomPostorder returns a new slice containing the blocks of f | 
|  | // in a postorder traversal of the dominator tree. | 
|  | // (This is not the same as a postdominance order.) | 
|  | func (f *Function) DomPostorder() []*BasicBlock { | 
|  | slice := append([]*BasicBlock(nil), f.Blocks...) | 
|  | sort.Slice(slice, func(i, j int) bool { | 
|  | return slice[i].dom.post < slice[j].dom.post | 
|  | }) | 
|  | return slice | 
|  | } | 
|  |  | 
|  | // domInfo contains a BasicBlock's dominance information. | 
|  | type domInfo struct { | 
|  | idom      *BasicBlock   // immediate dominator (parent in domtree) | 
|  | children  []*BasicBlock // nodes immediately dominated by this one | 
|  | pre, post int32         // pre- and post-order numbering within domtree | 
|  | } | 
|  |  | 
|  | // ltState holds the working state for Lengauer-Tarjan algorithm | 
|  | // (during which domInfo.pre is repurposed for CFG DFS preorder number). | 
|  | type ltState struct { | 
|  | // Each slice is indexed by b.Index. | 
|  | sdom     []*BasicBlock // b's semidominator | 
|  | parent   []*BasicBlock // b's parent in DFS traversal of CFG | 
|  | ancestor []*BasicBlock // b's ancestor with least sdom | 
|  | } | 
|  |  | 
|  | // dfs implements the depth-first search part of the LT algorithm. | 
|  | func (lt *ltState) dfs(v *BasicBlock, i int32, preorder []*BasicBlock) int32 { | 
|  | preorder[i] = v | 
|  | v.dom.pre = i // For now: DFS preorder of spanning tree of CFG | 
|  | i++ | 
|  | lt.sdom[v.Index] = v | 
|  | lt.link(nil, v) | 
|  | for _, w := range v.Succs { | 
|  | if lt.sdom[w.Index] == nil { | 
|  | lt.parent[w.Index] = v | 
|  | i = lt.dfs(w, i, preorder) | 
|  | } | 
|  | } | 
|  | return i | 
|  | } | 
|  |  | 
|  | // eval implements the EVAL part of the LT algorithm. | 
|  | func (lt *ltState) eval(v *BasicBlock) *BasicBlock { | 
|  | // TODO(adonovan): opt: do path compression per simple LT. | 
|  | u := v | 
|  | for ; lt.ancestor[v.Index] != nil; v = lt.ancestor[v.Index] { | 
|  | if lt.sdom[v.Index].dom.pre < lt.sdom[u.Index].dom.pre { | 
|  | u = v | 
|  | } | 
|  | } | 
|  | return u | 
|  | } | 
|  |  | 
|  | // link implements the LINK part of the LT algorithm. | 
|  | func (lt *ltState) link(v, w *BasicBlock) { | 
|  | lt.ancestor[w.Index] = v | 
|  | } | 
|  |  | 
|  | // buildDomTree computes the dominator tree of f using the LT algorithm. | 
|  | // Precondition: all blocks are reachable (e.g. optimizeBlocks has been run). | 
|  | func buildDomTree(f *Function) { | 
|  | // The step numbers refer to the original LT paper; the | 
|  | // reordering is due to Georgiadis. | 
|  |  | 
|  | // Clear any previous domInfo. | 
|  | for _, b := range f.Blocks { | 
|  | b.dom = domInfo{} | 
|  | } | 
|  |  | 
|  | n := len(f.Blocks) | 
|  | // Allocate space for 5 contiguous [n]*BasicBlock arrays: | 
|  | // sdom, parent, ancestor, preorder, buckets. | 
|  | space := make([]*BasicBlock, 5*n) | 
|  | lt := ltState{ | 
|  | sdom:     space[0:n], | 
|  | parent:   space[n : 2*n], | 
|  | ancestor: space[2*n : 3*n], | 
|  | } | 
|  |  | 
|  | // Step 1.  Number vertices by depth-first preorder. | 
|  | preorder := space[3*n : 4*n] | 
|  | root := f.Blocks[0] | 
|  | prenum := lt.dfs(root, 0, preorder) | 
|  | recover := f.Recover | 
|  | if recover != nil { | 
|  | lt.dfs(recover, prenum, preorder) | 
|  | } | 
|  |  | 
|  | buckets := space[4*n : 5*n] | 
|  | copy(buckets, preorder) | 
|  |  | 
|  | // In reverse preorder... | 
|  | for i := int32(n) - 1; i > 0; i-- { | 
|  | w := preorder[i] | 
|  |  | 
|  | // Step 3. Implicitly define the immediate dominator of each node. | 
|  | for v := buckets[i]; v != w; v = buckets[v.dom.pre] { | 
|  | u := lt.eval(v) | 
|  | if lt.sdom[u.Index].dom.pre < i { | 
|  | v.dom.idom = u | 
|  | } else { | 
|  | v.dom.idom = w | 
|  | } | 
|  | } | 
|  |  | 
|  | // Step 2. Compute the semidominators of all nodes. | 
|  | lt.sdom[w.Index] = lt.parent[w.Index] | 
|  | for _, v := range w.Preds { | 
|  | u := lt.eval(v) | 
|  | if lt.sdom[u.Index].dom.pre < lt.sdom[w.Index].dom.pre { | 
|  | lt.sdom[w.Index] = lt.sdom[u.Index] | 
|  | } | 
|  | } | 
|  |  | 
|  | lt.link(lt.parent[w.Index], w) | 
|  |  | 
|  | if lt.parent[w.Index] == lt.sdom[w.Index] { | 
|  | w.dom.idom = lt.parent[w.Index] | 
|  | } else { | 
|  | buckets[i] = buckets[lt.sdom[w.Index].dom.pre] | 
|  | buckets[lt.sdom[w.Index].dom.pre] = w | 
|  | } | 
|  | } | 
|  |  | 
|  | // The final 'Step 3' is now outside the loop. | 
|  | for v := buckets[0]; v != root; v = buckets[v.dom.pre] { | 
|  | v.dom.idom = root | 
|  | } | 
|  |  | 
|  | // Step 4. Explicitly define the immediate dominator of each | 
|  | // node, in preorder. | 
|  | for _, w := range preorder[1:] { | 
|  | if w == root || w == recover { | 
|  | w.dom.idom = nil | 
|  | } else { | 
|  | if w.dom.idom != lt.sdom[w.Index] { | 
|  | w.dom.idom = w.dom.idom.dom.idom | 
|  | } | 
|  | // Calculate Children relation as inverse of Idom. | 
|  | w.dom.idom.dom.children = append(w.dom.idom.dom.children, w) | 
|  | } | 
|  | } | 
|  |  | 
|  | pre, post := numberDomTree(root, 0, 0) | 
|  | if recover != nil { | 
|  | numberDomTree(recover, pre, post) | 
|  | } | 
|  |  | 
|  | // printDomTreeDot(os.Stderr, f)        // debugging | 
|  | // printDomTreeText(os.Stderr, root, 0) // debugging | 
|  |  | 
|  | if f.Prog.mode&SanityCheckFunctions != 0 { | 
|  | sanityCheckDomTree(f) | 
|  | } | 
|  | } | 
|  |  | 
|  | // numberDomTree sets the pre- and post-order numbers of a depth-first | 
|  | // traversal of the dominator tree rooted at v.  These are used to | 
|  | // answer dominance queries in constant time. | 
|  | func numberDomTree(v *BasicBlock, pre, post int32) (int32, int32) { | 
|  | v.dom.pre = pre | 
|  | pre++ | 
|  | for _, child := range v.dom.children { | 
|  | pre, post = numberDomTree(child, pre, post) | 
|  | } | 
|  | v.dom.post = post | 
|  | post++ | 
|  | return pre, post | 
|  | } | 
|  |  | 
|  | // Testing utilities ---------------------------------------- | 
|  |  | 
|  | // sanityCheckDomTree checks the correctness of the dominator tree | 
|  | // computed by the LT algorithm by comparing against the dominance | 
|  | // relation computed by a naive Kildall-style forward dataflow | 
|  | // analysis (Algorithm 10.16 from the "Dragon" book). | 
|  | func sanityCheckDomTree(f *Function) { | 
|  | n := len(f.Blocks) | 
|  |  | 
|  | // D[i] is the set of blocks that dominate f.Blocks[i], | 
|  | // represented as a bit-set of block indices. | 
|  | D := make([]big.Int, n) | 
|  |  | 
|  | one := big.NewInt(1) | 
|  |  | 
|  | // all is the set of all blocks; constant. | 
|  | var all big.Int | 
|  | all.Set(one).Lsh(&all, uint(n)).Sub(&all, one) | 
|  |  | 
|  | // Initialization. | 
|  | for i, b := range f.Blocks { | 
|  | if i == 0 || b == f.Recover { | 
|  | // A root is dominated only by itself. | 
|  | D[i].SetBit(&D[0], 0, 1) | 
|  | } else { | 
|  | // All other blocks are (initially) dominated | 
|  | // by every block. | 
|  | D[i].Set(&all) | 
|  | } | 
|  | } | 
|  |  | 
|  | // Iteration until fixed point. | 
|  | for changed := true; changed; { | 
|  | changed = false | 
|  | for i, b := range f.Blocks { | 
|  | if i == 0 || b == f.Recover { | 
|  | continue | 
|  | } | 
|  | // Compute intersection across predecessors. | 
|  | var x big.Int | 
|  | x.Set(&all) | 
|  | for _, pred := range b.Preds { | 
|  | x.And(&x, &D[pred.Index]) | 
|  | } | 
|  | x.SetBit(&x, i, 1) // a block always dominates itself. | 
|  | if D[i].Cmp(&x) != 0 { | 
|  | D[i].Set(&x) | 
|  | changed = true | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check the entire relation.  O(n^2). | 
|  | // The Recover block (if any) must be treated specially so we skip it. | 
|  | ok := true | 
|  | for i := 0; i < n; i++ { | 
|  | for j := 0; j < n; j++ { | 
|  | b, c := f.Blocks[i], f.Blocks[j] | 
|  | if c == f.Recover { | 
|  | continue | 
|  | } | 
|  | actual := b.Dominates(c) | 
|  | expected := D[j].Bit(i) == 1 | 
|  | if actual != expected { | 
|  | fmt.Fprintf(os.Stderr, "dominates(%s, %s)==%t, want %t\n", b, c, actual, expected) | 
|  | ok = false | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | preorder := f.DomPreorder() | 
|  | for _, b := range f.Blocks { | 
|  | if got := preorder[b.dom.pre]; got != b { | 
|  | fmt.Fprintf(os.Stderr, "preorder[%d]==%s, want %s\n", b.dom.pre, got, b) | 
|  | ok = false | 
|  | } | 
|  | } | 
|  |  | 
|  | if !ok { | 
|  | panic("sanityCheckDomTree failed for " + f.String()) | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | // Printing functions ---------------------------------------- | 
|  |  | 
|  | // printDomTreeText prints the dominator tree as text, using indentation. | 
|  | func printDomTreeText(buf *bytes.Buffer, v *BasicBlock, indent int) { | 
|  | fmt.Fprintf(buf, "%*s%s\n", 4*indent, "", v) | 
|  | for _, child := range v.dom.children { | 
|  | printDomTreeText(buf, child, indent+1) | 
|  | } | 
|  | } | 
|  |  | 
|  | // printDomTreeDot prints the dominator tree of f in AT&T GraphViz | 
|  | // (.dot) format. | 
|  | func printDomTreeDot(buf *bytes.Buffer, f *Function) { | 
|  | fmt.Fprintln(buf, "//", f) | 
|  | fmt.Fprintln(buf, "digraph domtree {") | 
|  | for i, b := range f.Blocks { | 
|  | v := b.dom | 
|  | fmt.Fprintf(buf, "\tn%d [label=\"%s (%d, %d)\",shape=\"rectangle\"];\n", v.pre, b, v.pre, v.post) | 
|  | // TODO(adonovan): improve appearance of edges | 
|  | // belonging to both dominator tree and CFG. | 
|  |  | 
|  | // Dominator tree edge. | 
|  | if i != 0 { | 
|  | fmt.Fprintf(buf, "\tn%d -> n%d [style=\"solid\",weight=100];\n", v.idom.dom.pre, v.pre) | 
|  | } | 
|  | // CFG edges. | 
|  | for _, pred := range b.Preds { | 
|  | fmt.Fprintf(buf, "\tn%d -> n%d [style=\"dotted\",weight=0];\n", pred.dom.pre, v.pre) | 
|  | } | 
|  | } | 
|  | fmt.Fprintln(buf, "}") | 
|  | } |