blob: f64695ea520af7b0b99bcf1205d78298ac63ddaa [file] [log] [blame]
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package facts
import (
"go/types"
"golang.org/x/tools/internal/typeparams"
)
// importMap computes the import map for a package by traversing the
// entire exported API each of its imports.
//
// This is a workaround for the fact that we cannot access the map used
// internally by the types.Importer returned by go/importer. The entries
// in this map are the packages and objects that may be relevant to the
// current analysis unit.
//
// Packages in the map that are only indirectly imported may be
// incomplete (!pkg.Complete()).
//
// This function scales very poorly with packages' transitive object
// references, which can be more than a million for each package near
// the top of a large project. (This was a significant contributor to
// #60621.)
// TODO(adonovan): opt: compute this information more efficiently
// by obtaining it from the internals of the gcexportdata decoder.
func importMap(imports []*types.Package) map[string]*types.Package {
objects := make(map[types.Object]bool)
typs := make(map[types.Type]bool) // Named and TypeParam
packages := make(map[string]*types.Package)
var addObj func(obj types.Object)
var addType func(T types.Type)
addObj = func(obj types.Object) {
if !objects[obj] {
objects[obj] = true
addType(obj.Type())
if pkg := obj.Pkg(); pkg != nil {
packages[pkg.Path()] = pkg
}
}
}
addType = func(T types.Type) {
switch T := T.(type) {
case *types.Basic:
// nop
case *types.Named:
// Remove infinite expansions of *types.Named by always looking at the origin.
// Some named types with type parameters [that will not type check] have
// infinite expansions:
// type N[T any] struct { F *N[N[T]] }
// importMap() is called on such types when Analyzer.RunDespiteErrors is true.
T = typeparams.NamedTypeOrigin(T)
if !typs[T] {
typs[T] = true
addObj(T.Obj())
addType(T.Underlying())
for i := 0; i < T.NumMethods(); i++ {
addObj(T.Method(i))
}
if tparams := typeparams.ForNamed(T); tparams != nil {
for i := 0; i < tparams.Len(); i++ {
addType(tparams.At(i))
}
}
if targs := typeparams.NamedTypeArgs(T); targs != nil {
for i := 0; i < targs.Len(); i++ {
addType(targs.At(i))
}
}
}
case *types.Pointer:
addType(T.Elem())
case *types.Slice:
addType(T.Elem())
case *types.Array:
addType(T.Elem())
case *types.Chan:
addType(T.Elem())
case *types.Map:
addType(T.Key())
addType(T.Elem())
case *types.Signature:
addType(T.Params())
addType(T.Results())
if tparams := typeparams.ForSignature(T); tparams != nil {
for i := 0; i < tparams.Len(); i++ {
addType(tparams.At(i))
}
}
case *types.Struct:
for i := 0; i < T.NumFields(); i++ {
addObj(T.Field(i))
}
case *types.Tuple:
for i := 0; i < T.Len(); i++ {
addObj(T.At(i))
}
case *types.Interface:
for i := 0; i < T.NumMethods(); i++ {
addObj(T.Method(i))
}
for i := 0; i < T.NumEmbeddeds(); i++ {
addType(T.EmbeddedType(i)) // walk Embedded for implicits
}
case *typeparams.Union:
for i := 0; i < T.Len(); i++ {
addType(T.Term(i).Type())
}
case *typeparams.TypeParam:
if !typs[T] {
typs[T] = true
addObj(T.Obj())
addType(T.Constraint())
}
}
}
for _, imp := range imports {
packages[imp.Path()] = imp
scope := imp.Scope()
for _, name := range scope.Names() {
addObj(scope.Lookup(name))
}
}
return packages
}