blob: 1cb04e53e765c499fb66803027140093ced8df6f [file] [log] [blame]
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package pointer
// This file defines a naive Andersen-style solver for the inclusion
// constraint system.
import (
"fmt"
"code.google.com/p/go.tools/go/types"
)
func (a *analysis) solve() {
// Initialize points-to sets and complex constraint sets.
for _, c := range a.constraints {
c.init(a)
}
a.constraints = nil // aid GC
work := a.work
// Now we've initialized all constraints, we populate the
// worklist with nodes that point to something initially (due
// to addrConstraints) and have other constraints attached.
for id, n := range a.nodes {
if len(n.pts) > 0 && (n.copyTo != nil || n.complex != nil) {
if a.log != nil {
fmt.Fprintf(a.log, "Adding to worklist n%d\n", id)
}
a.addWork(nodeid(id))
}
}
work.swap()
// Solver main loop.
for round := 1; ; round++ {
if work.swap() {
if a.log != nil {
fmt.Fprintf(a.log, "Solving, round %d\n", round)
}
// Next iteration.
if work.empty() {
break // done
}
}
id := work.take()
n := a.nodes[id]
if a.log != nil {
fmt.Fprintf(a.log, "\tnode n%d\n", id)
}
// Difference propagation.
delta := n.pts.diff(n.prevPts)
if delta == nil {
continue
}
n.prevPts = n.pts.clone()
// Process complex constraints dependent on n.
for c := range n.complex {
if a.log != nil {
fmt.Fprintf(a.log, "\t\tconstraint %s\n", c)
}
c.solve(a, n, delta)
}
// Process copy constraints.
var copySeen nodeset
for mid := range n.copyTo {
if copySeen.add(mid) {
if a.nodes[mid].pts.addAll(delta) {
a.addWork(mid)
}
}
}
if a.log != nil {
fmt.Fprintf(a.log, "\t\tpts(n%d) = %s\n", id, n.pts)
}
}
if a.log != nil {
fmt.Fprintf(a.log, "Solver done\n")
}
}
func (a *analysis) addWork(id nodeid) {
a.work.add(id)
if a.log != nil {
fmt.Fprintf(a.log, "\t\twork: n%d\n", id)
}
}
func (c *addrConstraint) init(a *analysis) {
a.nodes[c.dst].pts.add(c.src)
}
func (c *copyConstraint) init(a *analysis) {
a.nodes[c.src].copyTo.add(c.dst)
}
// Complex constraints attach themselves to the relevant pointer node.
func (c *storeConstraint) init(a *analysis) {
a.nodes[c.dst].complex.add(c)
}
func (c *loadConstraint) init(a *analysis) {
a.nodes[c.src].complex.add(c)
}
func (c *offsetAddrConstraint) init(a *analysis) {
a.nodes[c.src].complex.add(c)
}
func (c *typeAssertConstraint) init(a *analysis) {
a.nodes[c.src].complex.add(c)
}
func (c *invokeConstraint) init(a *analysis) {
a.nodes[c.iface].complex.add(c)
}
// onlineCopy adds a copy edge. It is called online, i.e. during
// solving, so it adds edges and pts members directly rather than by
// instantiating a 'constraint'.
//
// The size of the copy is implicitly 1.
// It returns true if pts(dst) changed.
//
func (a *analysis) onlineCopy(dst, src nodeid) bool {
if dst != src {
if nsrc := a.nodes[src]; nsrc.copyTo.add(dst) {
if a.log != nil {
fmt.Fprintf(a.log, "\t\t\tdynamic copy n%d <- n%d\n", dst, src)
}
return a.nodes[dst].pts.addAll(nsrc.pts)
}
}
return false
}
// Returns sizeof.
// Implicitly adds nodes to worklist.
func (a *analysis) onlineCopyN(dst, src nodeid, sizeof uint32) uint32 {
for i := uint32(0); i < sizeof; i++ {
if a.onlineCopy(dst, src) {
a.addWork(dst)
}
src++
dst++
}
return sizeof
}
func (c *loadConstraint) solve(a *analysis, n *node, delta nodeset) {
var changed bool
for k := range delta {
koff := k + nodeid(c.offset)
if a.onlineCopy(c.dst, koff) {
changed = true
}
}
if changed {
a.addWork(c.dst)
}
}
func (c *storeConstraint) solve(a *analysis, n *node, delta nodeset) {
for k := range delta {
koff := k + nodeid(c.offset)
if a.onlineCopy(koff, c.src) {
a.addWork(koff)
}
}
}
func (c *offsetAddrConstraint) solve(a *analysis, n *node, delta nodeset) {
dst := a.nodes[c.dst]
for k := range delta {
if dst.pts.add(k + nodeid(c.offset)) {
a.addWork(c.dst)
}
}
}
func (c *typeAssertConstraint) solve(a *analysis, n *node, delta nodeset) {
tIface, _ := c.typ.Underlying().(*types.Interface)
for ifaceObj := range delta {
ifaceValue, tConc := a.interfaceValue(ifaceObj)
if tIface != nil {
if types.IsAssignableTo(tConc, tIface) {
if a.nodes[c.dst].pts.add(ifaceObj) {
a.addWork(c.dst)
}
}
} else {
if types.IsIdentical(tConc, c.typ) {
// Copy entire payload to dst.
//
// TODO(adonovan): opt: if tConc is
// nonpointerlike we can skip this
// entire constraint, perhaps. We
// only care about pointers among the
// fields.
a.onlineCopyN(c.dst, ifaceValue, a.sizeof(tConc))
}
}
}
}
func (c *invokeConstraint) solve(a *analysis, n *node, delta nodeset) {
for ifaceObj := range delta {
ifaceValue, tConc := a.interfaceValue(ifaceObj)
// Look up the concrete method.
meth := tConc.MethodSet().Lookup(c.method.Pkg(), c.method.Name())
if meth == nil {
panic(fmt.Sprintf("n%d: type %s has no method %s (iface=n%d)",
c.iface, tConc, c.method, ifaceObj))
}
fn := a.prog.Method(meth)
if fn == nil {
panic(fmt.Sprintf("n%d: no ssa.Function for %s", c.iface, meth))
}
sig := fn.Signature
fnObj := a.funcObj[fn]
// Make callsite's fn variable point to identity of
// concrete method. (There's no need to add it to
// worklist since it never has attached constraints.)
a.nodes[c.params].pts.add(fnObj)
// Extract value and connect to method's receiver.
// Copy payload to method's receiver param (arg0).
arg0 := a.funcParams(fnObj)
recvSize := a.sizeof(sig.Recv().Type())
a.onlineCopyN(arg0, ifaceValue, recvSize)
// Copy iface object payload to method receiver.
src := c.params + 1 // skip past identity
dst := arg0 + nodeid(recvSize)
// Copy caller's argument block to method formal parameters.
paramsSize := a.sizeof(sig.Params())
a.onlineCopyN(dst, src, paramsSize)
src += nodeid(paramsSize)
dst += nodeid(paramsSize)
// Copy method results to caller's result block.
resultsSize := a.sizeof(sig.Results())
a.onlineCopyN(src, dst, resultsSize)
}
}
func (c *addrConstraint) solve(a *analysis, n *node, delta nodeset) {
panic("addr is not a complex constraint")
}
func (c *copyConstraint) solve(a *analysis, n *node, delta nodeset) {
panic("copy is not a complex constraint")
}