blob: 646bbd2bfe8b2bd2afe9dad48c2dd4aa21db7c9d [file] [log] [blame]
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package importer
// TODO(gri): absorb this into go/types.
import (
"fmt"
"go/ast"
"go/token"
"code.google.com/p/go.tools/go/exact"
"code.google.com/p/go.tools/go/types"
)
// PackageInfo holds the ASTs and facts derived by the type-checker
// for a single package.
//
// Not mutated once constructed.
//
type PackageInfo struct {
Pkg *types.Package
Importable bool // true if 'import "Pkg.Path()"' would resolve to this
Err error // non-nil if the package had static errors
Files []*ast.File // abstract syntax for the package's files
types.Info // type-checker deductions.
}
func (info *PackageInfo) String() string {
return fmt.Sprintf("PackageInfo(%s)", info.Pkg.Path())
}
// TypeOf returns the type of expression e.
// Precondition: e belongs to the package's ASTs.
//
func (info *PackageInfo) TypeOf(e ast.Expr) types.Type {
if t, ok := info.Types[e]; ok {
return t
}
// Defining ast.Idents (id := expr) get only Ident callbacks
// but not Expr callbacks.
if id, ok := e.(*ast.Ident); ok {
return info.ObjectOf(id).Type()
}
panic("no type for expression")
}
// ValueOf returns the value of expression e if it is a constant, nil
// otherwise.
// Precondition: e belongs to the package's ASTs.
//
func (info *PackageInfo) ValueOf(e ast.Expr) exact.Value {
return info.Values[e]
}
// ObjectOf returns the typechecker object denoted by the specified id.
// Precondition: id belongs to the package's ASTs.
//
func (info *PackageInfo) ObjectOf(id *ast.Ident) types.Object {
return info.Objects[id]
}
// IsType returns true iff expression e denotes a type.
// Precondition: e belongs to the package's ASTs.
//
// TODO(gri): move this into go/types.
//
func (info *PackageInfo) IsType(e ast.Expr) bool {
switch e := e.(type) {
case *ast.SelectorExpr: // pkg.Type
if sel := info.Selections[e]; sel.Kind() == types.PackageObj {
_, isType := sel.Obj().(*types.TypeName)
return isType
}
case *ast.StarExpr: // *T
return info.IsType(e.X)
case *ast.Ident:
_, isType := info.ObjectOf(e).(*types.TypeName)
return isType
case *ast.ArrayType, *ast.StructType, *ast.FuncType, *ast.InterfaceType, *ast.MapType, *ast.ChanType:
return true
case *ast.ParenExpr:
return info.IsType(e.X)
}
return false
}
// TypeCaseVar returns the implicit variable created by a single-type
// case clause in a type switch, or nil if not found.
//
func (info *PackageInfo) TypeCaseVar(cc *ast.CaseClause) *types.Var {
if v := info.Implicits[cc]; v != nil {
return v.(*types.Var)
}
return nil
}
var (
tEface = new(types.Interface)
tComplex64 = types.Typ[types.Complex64]
tComplex128 = types.Typ[types.Complex128]
tFloat32 = types.Typ[types.Float32]
tFloat64 = types.Typ[types.Float64]
)
// BuiltinCallSignature returns a new Signature describing the
// effective type of a builtin operator for the particular call e.
//
// This requires ad-hoc typing rules for all variadic (append, print,
// println) and polymorphic (append, copy, delete, close) built-ins.
// This logic could be part of the typechecker, and should arguably
// be moved there and made accessible via an additional types.Context
// callback.
//
func (info *PackageInfo) BuiltinCallSignature(e *ast.CallExpr) *types.Signature {
var params []*types.Var
var isVariadic bool
switch builtin := unparen(e.Fun).(*ast.Ident).Name; builtin {
case "append":
var t0, t1 types.Type
t0 = info.TypeOf(e) // infer arg[0] type from result type
if e.Ellipsis != 0 {
// append(tslice, tslice...) []T
// append(byteslice, "foo"...) []byte
t1 = info.TypeOf(e.Args[1]) // no conversion
} else {
// append([]T, x, y, z) []T
t1 = t0.Underlying()
isVariadic = true
}
params = append(params,
types.NewVar(token.NoPos, nil, "", t0),
types.NewVar(token.NoPos, nil, "", t1))
case "print", "println": // print{,ln}(any, ...interface{})
isVariadic = true
// Note, arg0 may have any type, not necessarily tEface.
params = append(params,
types.NewVar(token.NoPos, nil, "", info.TypeOf(e.Args[0])),
types.NewVar(token.NoPos, nil, "", types.NewSlice(tEface)))
case "close":
params = append(params, types.NewVar(token.NoPos, nil, "", info.TypeOf(e.Args[0])))
case "copy":
// copy([]T, []T) int
// Infer arg types from each other. Sleazy.
var st *types.Slice
if t, ok := info.TypeOf(e.Args[0]).Underlying().(*types.Slice); ok {
st = t
} else if t, ok := info.TypeOf(e.Args[1]).Underlying().(*types.Slice); ok {
st = t
} else {
panic("cannot infer types in call to copy()")
}
stvar := types.NewVar(token.NoPos, nil, "", st)
params = append(params, stvar, stvar)
case "delete":
// delete(map[K]V, K)
tmap := info.TypeOf(e.Args[0])
tkey := tmap.Underlying().(*types.Map).Key()
params = append(params,
types.NewVar(token.NoPos, nil, "", tmap),
types.NewVar(token.NoPos, nil, "", tkey))
case "len", "cap":
params = append(params, types.NewVar(token.NoPos, nil, "", info.TypeOf(e.Args[0])))
case "real", "imag":
// Reverse conversion to "complex" case below.
var argType types.Type
switch info.TypeOf(e).(*types.Basic).Kind() {
case types.UntypedFloat:
argType = types.Typ[types.UntypedComplex]
case types.Float64:
argType = tComplex128
case types.Float32:
argType = tComplex64
default:
unreachable()
}
params = append(params, types.NewVar(token.NoPos, nil, "", argType))
case "complex":
var argType types.Type
switch info.TypeOf(e).(*types.Basic).Kind() {
case types.UntypedComplex:
argType = types.Typ[types.UntypedFloat]
case types.Complex128:
argType = tFloat64
case types.Complex64:
argType = tFloat32
default:
unreachable()
}
v := types.NewVar(token.NoPos, nil, "", argType)
params = append(params, v, v)
case "panic":
params = append(params, types.NewVar(token.NoPos, nil, "", tEface))
case "recover":
// no params
default:
panic("unknown builtin: " + builtin)
}
return types.NewSignature(nil, nil, types.NewTuple(params...), nil, isVariadic)
}