blob: 778bf88fc479b3fd6e360dfe1a4e31b553e1438e [file] [log] [blame]
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements commonly used type predicates.
package types
func isNamed(typ Type) bool {
if _, ok := typ.(*Basic); ok {
return ok
}
_, ok := typ.(*Named)
return ok
}
func isBoolean(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsBoolean != 0
}
func isInteger(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsInteger != 0
}
func isUnsigned(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsUnsigned != 0
}
func isFloat(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsFloat != 0
}
func isComplex(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsComplex != 0
}
func isNumeric(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsNumeric != 0
}
func isString(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsString != 0
}
func isUntyped(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsUntyped != 0
}
func isOrdered(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsOrdered != 0
}
func isConstType(typ Type) bool {
t, ok := typ.Underlying().(*Basic)
return ok && t.info&IsConstType != 0
}
func isComparable(typ Type) bool {
switch t := typ.Underlying().(type) {
case *Basic:
return t.kind != Invalid && t.kind != UntypedNil
case *Pointer, *Interface, *Chan:
// assumes types are equal for pointers and channels
return true
case *Struct:
for _, f := range t.fields {
if !isComparable(f.typ) {
return false
}
}
return true
case *Array:
return isComparable(t.elt)
}
return false
}
func hasNil(typ Type) bool {
switch typ.Underlying().(type) {
case *Slice, *Pointer, *Signature, *Interface, *Map, *Chan:
return true
}
return false
}
// IsIdentical returns true if x and y are identical.
func IsIdentical(x, y Type) bool {
if x == y {
return true
}
switch x := x.(type) {
case *Basic:
// Basic types are singletons except for the rune and byte
// aliases, thus we cannot solely rely on the x == y check
// above.
if y, ok := y.(*Basic); ok {
return x.kind == y.kind
}
case *Array:
// Two array types are identical if they have identical element types
// and the same array length.
if y, ok := y.(*Array); ok {
return x.len == y.len && IsIdentical(x.elt, y.elt)
}
case *Slice:
// Two slice types are identical if they have identical element types.
if y, ok := y.(*Slice); ok {
return IsIdentical(x.elt, y.elt)
}
case *Struct:
// Two struct types are identical if they have the same sequence of fields,
// and if corresponding fields have the same names, and identical types,
// and identical tags. Two anonymous fields are considered to have the same
// name. Lower-case field names from different packages are always different.
if y, ok := y.(*Struct); ok {
if x.NumFields() == y.NumFields() {
for i, f := range x.fields {
g := y.fields[i]
if f.anonymous != g.anonymous ||
x.Tag(i) != y.Tag(i) ||
!f.sameId(g.pkg, g.name) ||
!IsIdentical(f.typ, g.typ) {
return false
}
}
return true
}
}
case *Pointer:
// Two pointer types are identical if they have identical base types.
if y, ok := y.(*Pointer); ok {
return IsIdentical(x.base, y.base)
}
case *Tuple:
// Two tuples types are identical if they have the same number of elements
// and corresponding elements have identical types.
if y, ok := y.(*Tuple); ok {
return identicalTuples(x, y)
}
case *Signature:
// Two function types are identical if they have the same number of parameters
// and result values, corresponding parameter and result types are identical,
// and either both functions are variadic or neither is. Parameter and result
// names are not required to match.
if y, ok := y.(*Signature); ok {
return x.isVariadic == y.isVariadic &&
identicalTuples(x.params, y.params) &&
identicalTuples(x.results, y.results)
}
case *Interface:
// Two interface types are identical if they have the same set of methods with
// the same names and identical function types. Lower-case method names from
// different packages are always different. The order of the methods is irrelevant.
if y, ok := y.(*Interface); ok {
return identicalMethods(x.methods, y.methods) // methods are sorted
}
case *Map:
// Two map types are identical if they have identical key and value types.
if y, ok := y.(*Map); ok {
return IsIdentical(x.key, y.key) && IsIdentical(x.elt, y.elt)
}
case *Chan:
// Two channel types are identical if they have identical value types
// and the same direction.
if y, ok := y.(*Chan); ok {
return x.dir == y.dir && IsIdentical(x.elt, y.elt)
}
case *Named:
// Two named types are identical if their type names originate
// in the same type declaration.
if y, ok := y.(*Named); ok {
return x.obj == y.obj
}
}
return false
}
// identicalTuples returns true if both tuples a and b have the
// same length and corresponding elements have identical types.
func identicalTuples(a, b *Tuple) bool {
if a.Len() != b.Len() {
return false
}
if a != nil {
for i, x := range a.vars {
y := b.vars[i]
if !IsIdentical(x.typ, y.typ) {
return false
}
}
}
return true
}
// identicalMethods returns true if both slices a and b have the
// same length and corresponding entries have identical types.
// TODO(gri) make this more efficient (e.g., sort them on completion)
func identicalMethods(a, b []*Func) bool {
if len(a) != len(b) {
return false
}
m := make(map[string]*Func)
for _, x := range a {
key := x.Id()
assert(m[key] == nil) // method list must not have duplicate entries
m[key] = x
}
for _, y := range b {
key := y.Id()
if x := m[key]; x == nil || !IsIdentical(x.typ, y.typ) {
return false
}
}
return true
}
// defaultType returns the default "typed" type for an "untyped" type;
// it returns the incoming type for all other types. The default type
// for untyped nil is untyped nil.
//
func defaultType(typ Type) Type {
if t, ok := typ.(*Basic); ok {
k := t.kind
switch k {
case UntypedBool:
k = Bool
case UntypedInt:
k = Int
case UntypedRune:
k = Rune
case UntypedFloat:
k = Float64
case UntypedComplex:
k = Complex128
case UntypedString:
k = String
}
typ = Typ[k]
}
return typ
}