blob: 6d6ea9d3dd144bad419ae2c9d9a9d6c6f0d27610 [file] [log] [blame]
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file contains the pieces of the tool that use typechecking from the go/types package.
package main
import (
"go/ast"
"go/token"
"code.google.com/p/go.tools/go/exact"
"code.google.com/p/go.tools/go/types"
)
func (pkg *Package) check(fs *token.FileSet, astFiles []*ast.File) error {
pkg.idents = make(map[*ast.Ident]types.Object)
pkg.spans = make(map[types.Object]Span)
pkg.types = make(map[ast.Expr]types.Type)
pkg.values = make(map[ast.Expr]exact.Value)
// By providing a Config with our own error function, it will continue
// past the first error. There is no need for that function to do anything.
config := types.Config{
Error: func(error) {},
}
info := &types.Info{
Types: pkg.types,
Values: pkg.values,
Objects: pkg.idents,
}
_, err := config.Check(pkg.path, fs, astFiles, info)
// update spans
for id, obj := range pkg.idents {
pkg.growSpan(id, obj)
}
return err
}
// isStruct reports whether the composite literal c is a struct.
// If it is not (probably a struct), it returns a printable form of the type.
func (pkg *Package) isStruct(c *ast.CompositeLit) (bool, string) {
// Check that the CompositeLit's type is a slice or array (which needs no field keys), if possible.
typ := pkg.types[c]
// If it's a named type, pull out the underlying type. If it's not, the Underlying
// method returns the type itself.
actual := typ
if actual != nil {
actual = actual.Underlying()
}
if actual == nil {
// No type information available. Assume true, so we do the check.
return true, ""
}
switch actual.(type) {
case *types.Struct:
return true, typ.String()
default:
return false, ""
}
}
var (
stringerMethodType = types.New("func() string")
errorType = types.New("interface{ Error() string }")
stringerType = types.New("interface{ String() string }")
// One day this might work. See issue 6259.
// formatterType = types.New("interface{Format(f fmt.State, c rune)}")
)
// matchArgType reports an error if printf verb t is not appropriate
// for operand arg.
//
// typ is used only for recursive calls; external callers must supply nil.
//
// (Recursion arises from the compound types {map,chan,slice} which
// may be printed with %d etc. if that is appropriate for their element
// types.)
func (f *File) matchArgType(t printfArgType, typ types.Type, arg ast.Expr) bool {
// %v, %T accept any argument type.
if t == anyType {
return true
}
if typ == nil {
// external call
typ = f.pkg.types[arg]
if typ == nil {
return true // probably a type check problem
}
}
// If the type implements fmt.Formatter, we have nothing to check.
// But (see issue 6259) that's not easy to verify, so instead we see
// if its method set contains a Format function. We could do better,
// even now, but we don't need to be 100% accurate. Wait for 6259 to
// be fixed instead. TODO.
if hasMethod(typ, "Format") {
return true
}
// If we can use a string, does arg implement the Stringer or Error interface?
if t&argString != 0 {
if types.IsAssignableTo(typ, errorType) || types.IsAssignableTo(typ, stringerType) {
return true
}
}
switch typ := typ.Underlying().(type) {
case *types.Signature:
return t&argPointer != 0
case *types.Map:
// Recur: map[int]int matches %d.
return t&argPointer != 0 ||
(f.matchArgType(t, typ.Key(), arg) && f.matchArgType(t, typ.Elem(), arg))
case *types.Chan:
return t&argPointer != 0
case *types.Array:
// Same as slice.
if types.IsIdentical(typ.Elem().Underlying(), types.Typ[types.Byte]) && t&argString != 0 {
return true // %s matches []byte
}
// Recur: []int matches %d.
return t&argPointer != 0 || f.matchArgType(t, typ.Elem().Underlying(), arg)
case *types.Slice:
// Same as array.
if types.IsIdentical(typ.Elem().Underlying(), types.Typ[types.Byte]) && t&argString != 0 {
return true // %s matches []byte
}
// Recur: []int matches %d.
return t&argPointer != 0 || f.matchArgType(t, typ.Elem().Underlying(), arg)
case *types.Pointer:
// Ugly, but dealing with an edge case: a known pointer to an invalid type,
// probably something from a failed import.
if typ.Elem().String() == "invalid type" {
if *verbose {
f.Warnf(arg.Pos(), "printf argument %v is pointer to invalid or unknown type", f.gofmt(arg))
}
return true // special case
}
// If it's actually a pointer with %p, it prints as one.
if t == argPointer {
return true
}
// If it's pointer to struct, that's equivalent in our analysis to whether we can print the struct.
if str, ok := typ.Elem().Underlying().(*types.Struct); ok {
return f.matchStructArgType(t, str, arg)
}
// The rest can print with %p as pointers, or as integers with %x etc.
return t&(argInt|argPointer) != 0
case *types.Struct:
return f.matchStructArgType(t, typ, arg)
case *types.Interface:
// If the static type of the argument is empty interface, there's little we can do.
// Example:
// func f(x interface{}) { fmt.Printf("%s", x) }
// Whether x is valid for %s depends on the type of the argument to f. One day
// we will be able to do better. For now, we assume that empty interface is OK
// but non-empty interfaces, with Stringer and Error handled above, are errors.
return typ.NumMethods() == 0
case *types.Basic:
switch typ.Kind() {
case types.UntypedBool,
types.Bool:
return t&argBool != 0
case types.UntypedInt,
types.Int,
types.Int8,
types.Int16,
types.Int32,
types.Int64,
types.Uint,
types.Uint8,
types.Uint16,
types.Uint32,
types.Uint64,
types.Uintptr:
return t&argInt != 0
case types.UntypedFloat,
types.Float32,
types.Float64:
return t&argFloat != 0
case types.UntypedComplex,
types.Complex64,
types.Complex128:
return t&argComplex != 0
case types.UntypedString,
types.String:
return t&argString != 0
case types.UnsafePointer:
return t&(argPointer|argInt) != 0
case types.UntypedRune:
return t&(argInt|argRune) != 0
case types.UntypedNil:
return t&argPointer != 0 // TODO?
case types.Invalid:
if *verbose {
f.Warnf(arg.Pos(), "printf argument %v has invalid or unknown type", f.gofmt(arg))
}
return true // Probably a type check problem.
}
panic("unreachable")
}
return false
}
// matchStructArgType reports whether all the elements of the struct match the expected
// type. For instance, with "%d" all the elements must be printable with the "%d" format.
func (f *File) matchStructArgType(t printfArgType, typ *types.Struct, arg ast.Expr) bool {
for i := 0; i < typ.NumFields(); i++ {
if !f.matchArgType(t, typ.Field(i).Type(), arg) {
return false
}
}
return true
}
// numArgsInSignature tells how many formal arguments the function type
// being called has.
func (f *File) numArgsInSignature(call *ast.CallExpr) int {
// Check the type of the function or method declaration
typ := f.pkg.types[call.Fun]
if typ == nil {
return 0
}
// The type must be a signature, but be sure for safety.
sig, ok := typ.(*types.Signature)
if !ok {
return 0
}
return sig.Params().Len()
}
// isErrorMethodCall reports whether the call is of a method with signature
// func Error() string
// where "string" is the universe's string type. We know the method is called "Error".
func (f *File) isErrorMethodCall(call *ast.CallExpr) bool {
typ := f.pkg.types[call]
if typ != nil {
// We know it's called "Error", so just check the function signature.
return types.IsIdentical(f.pkg.types[call.Fun], stringerMethodType)
}
// Without types, we can still check by hand.
// Is it a selector expression? Otherwise it's a function call, not a method call.
sel, ok := call.Fun.(*ast.SelectorExpr)
if !ok {
return false
}
// The package is type-checked, so if there are no arguments, we're done.
if len(call.Args) > 0 {
return false
}
// Check the type of the method declaration
typ = f.pkg.types[sel]
if typ == nil {
return false
}
// The type must be a signature, but be sure for safety.
sig, ok := typ.(*types.Signature)
if !ok {
return false
}
// There must be a receiver for it to be a method call. Otherwise it is
// a function, not something that satisfies the error interface.
if sig.Recv() == nil {
return false
}
// There must be no arguments. Already verified by type checking, but be thorough.
if sig.Params().Len() > 0 {
return false
}
// Finally the real questions.
// There must be one result.
if sig.Results().Len() != 1 {
return false
}
// It must have return type "string" from the universe.
return sig.Results().At(0).Type() == types.Typ[types.String]
}
// hasMethod reports whether the type contains a method with the given name.
// It is part of the workaround for Formatters and should be deleted when
// that workaround is no longer necessary. TODO: delete when fixed.
func hasMethod(typ types.Type, name string) bool {
set := typ.MethodSet()
for i := 0; i < set.Len(); i++ {
if set.At(i).Obj().Name() == name {
return true
}
}
return false
}