blob: 7efab3578a351298ec91f735c79f60f8017b364e [file] [log] [blame]
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"go/types"
"golang.org/x/tools/internal/typeparams"
)
// Type substituter for a fixed set of replacement types.
//
// A nil *subster is an valid, empty substitution map. It always acts as
// the identity function. This allows for treating parameterized and
// non-parameterized functions identically while compiling to ssa.
//
// Not concurrency-safe.
type subster struct {
replacements map[*typeparams.TypeParam]types.Type // values should contain no type params
cache map[types.Type]types.Type // cache of subst results
ctxt *typeparams.Context // cache for instantiation
scope *types.Scope // *types.Named declared within this scope can be substituted (optional)
debug bool // perform extra debugging checks
// TODO(taking): consider adding Pos
// TODO(zpavlinovic): replacements can contain type params
// when generating instances inside of a generic function body.
}
// Returns a subster that replaces tparams[i] with targs[i]. Uses ctxt as a cache.
// targs should not contain any types in tparams.
// scope is the (optional) lexical block of the generic function for which we are substituting.
func makeSubster(ctxt *typeparams.Context, scope *types.Scope, tparams *typeparams.TypeParamList, targs []types.Type, debug bool) *subster {
assert(tparams.Len() == len(targs), "makeSubster argument count must match")
subst := &subster{
replacements: make(map[*typeparams.TypeParam]types.Type, tparams.Len()),
cache: make(map[types.Type]types.Type),
ctxt: ctxt,
scope: scope,
debug: debug,
}
for i := 0; i < tparams.Len(); i++ {
subst.replacements[tparams.At(i)] = targs[i]
}
if subst.debug {
subst.wellFormed()
}
return subst
}
// wellFormed asserts that subst was properly initialized.
func (subst *subster) wellFormed() {
if subst == nil {
return
}
// Check that all of the type params do not appear in the arguments.
s := make(map[types.Type]bool, len(subst.replacements))
for tparam := range subst.replacements {
s[tparam] = true
}
for _, r := range subst.replacements {
if reaches(r, s) {
panic(subst)
}
}
}
// typ returns the type of t with the type parameter tparams[i] substituted
// for the type targs[i] where subst was created using tparams and targs.
func (subst *subster) typ(t types.Type) (res types.Type) {
if subst == nil {
return t // A nil subst is type preserving.
}
if r, ok := subst.cache[t]; ok {
return r
}
defer func() {
subst.cache[t] = res
}()
// fall through if result r will be identical to t, types.Identical(r, t).
switch t := t.(type) {
case *typeparams.TypeParam:
r := subst.replacements[t]
assert(r != nil, "type param without replacement encountered")
return r
case *types.Basic:
return t
case *types.Array:
if r := subst.typ(t.Elem()); r != t.Elem() {
return types.NewArray(r, t.Len())
}
return t
case *types.Slice:
if r := subst.typ(t.Elem()); r != t.Elem() {
return types.NewSlice(r)
}
return t
case *types.Pointer:
if r := subst.typ(t.Elem()); r != t.Elem() {
return types.NewPointer(r)
}
return t
case *types.Tuple:
return subst.tuple(t)
case *types.Struct:
return subst.struct_(t)
case *types.Map:
key := subst.typ(t.Key())
elem := subst.typ(t.Elem())
if key != t.Key() || elem != t.Elem() {
return types.NewMap(key, elem)
}
return t
case *types.Chan:
if elem := subst.typ(t.Elem()); elem != t.Elem() {
return types.NewChan(t.Dir(), elem)
}
return t
case *types.Signature:
return subst.signature(t)
case *typeparams.Union:
return subst.union(t)
case *types.Interface:
return subst.interface_(t)
case *types.Named:
return subst.named(t)
default:
panic("unreachable")
}
}
// types returns the result of {subst.typ(ts[i])}.
func (subst *subster) types(ts []types.Type) []types.Type {
res := make([]types.Type, len(ts))
for i := range ts {
res[i] = subst.typ(ts[i])
}
return res
}
func (subst *subster) tuple(t *types.Tuple) *types.Tuple {
if t != nil {
if vars := subst.varlist(t); vars != nil {
return types.NewTuple(vars...)
}
}
return t
}
type varlist interface {
At(i int) *types.Var
Len() int
}
// fieldlist is an adapter for structs for the varlist interface.
type fieldlist struct {
str *types.Struct
}
func (fl fieldlist) At(i int) *types.Var { return fl.str.Field(i) }
func (fl fieldlist) Len() int { return fl.str.NumFields() }
func (subst *subster) struct_(t *types.Struct) *types.Struct {
if t != nil {
if fields := subst.varlist(fieldlist{t}); fields != nil {
tags := make([]string, t.NumFields())
for i, n := 0, t.NumFields(); i < n; i++ {
tags[i] = t.Tag(i)
}
return types.NewStruct(fields, tags)
}
}
return t
}
// varlist reutrns subst(in[i]) or return nils if subst(v[i]) == v[i] for all i.
func (subst *subster) varlist(in varlist) []*types.Var {
var out []*types.Var // nil => no updates
for i, n := 0, in.Len(); i < n; i++ {
v := in.At(i)
w := subst.var_(v)
if v != w && out == nil {
out = make([]*types.Var, n)
for j := 0; j < i; j++ {
out[j] = in.At(j)
}
}
if out != nil {
out[i] = w
}
}
return out
}
func (subst *subster) var_(v *types.Var) *types.Var {
if v != nil {
if typ := subst.typ(v.Type()); typ != v.Type() {
if v.IsField() {
return types.NewField(v.Pos(), v.Pkg(), v.Name(), typ, v.Embedded())
}
return types.NewVar(v.Pos(), v.Pkg(), v.Name(), typ)
}
}
return v
}
func (subst *subster) union(u *typeparams.Union) *typeparams.Union {
var out []*typeparams.Term // nil => no updates
for i, n := 0, u.Len(); i < n; i++ {
t := u.Term(i)
r := subst.typ(t.Type())
if r != t.Type() && out == nil {
out = make([]*typeparams.Term, n)
for j := 0; j < i; j++ {
out[j] = u.Term(j)
}
}
if out != nil {
out[i] = typeparams.NewTerm(t.Tilde(), r)
}
}
if out != nil {
return typeparams.NewUnion(out)
}
return u
}
func (subst *subster) interface_(iface *types.Interface) *types.Interface {
if iface == nil {
return nil
}
// methods for the interface. Initially nil if there is no known change needed.
// Signatures for the method where recv is nil. NewInterfaceType fills in the recievers.
var methods []*types.Func
initMethods := func(n int) { // copy first n explicit methods
methods = make([]*types.Func, iface.NumExplicitMethods())
for i := 0; i < n; i++ {
f := iface.ExplicitMethod(i)
norecv := changeRecv(f.Type().(*types.Signature), nil)
methods[i] = types.NewFunc(f.Pos(), f.Pkg(), f.Name(), norecv)
}
}
for i := 0; i < iface.NumExplicitMethods(); i++ {
f := iface.ExplicitMethod(i)
// On interfaces, we need to cycle break on anonymous interface types
// being in a cycle with their signatures being in cycles with their recievers
// that do not go through a Named.
norecv := changeRecv(f.Type().(*types.Signature), nil)
sig := subst.typ(norecv)
if sig != norecv && methods == nil {
initMethods(i)
}
if methods != nil {
methods[i] = types.NewFunc(f.Pos(), f.Pkg(), f.Name(), sig.(*types.Signature))
}
}
var embeds []types.Type
initEmbeds := func(n int) { // copy first n embedded types
embeds = make([]types.Type, iface.NumEmbeddeds())
for i := 0; i < n; i++ {
embeds[i] = iface.EmbeddedType(i)
}
}
for i := 0; i < iface.NumEmbeddeds(); i++ {
e := iface.EmbeddedType(i)
r := subst.typ(e)
if e != r && embeds == nil {
initEmbeds(i)
}
if embeds != nil {
embeds[i] = r
}
}
if methods == nil && embeds == nil {
return iface
}
if methods == nil {
initMethods(iface.NumExplicitMethods())
}
if embeds == nil {
initEmbeds(iface.NumEmbeddeds())
}
return types.NewInterfaceType(methods, embeds).Complete()
}
func (subst *subster) named(t *types.Named) types.Type {
// A named type may be:
// (1) ordinary named type (non-local scope, no type parameters, no type arguments),
// (2) locally scoped type,
// (3) generic (type parameters but no type arguments), or
// (4) instantiated (type parameters and type arguments).
tparams := typeparams.ForNamed(t)
if tparams.Len() == 0 {
if subst.scope != nil && !subst.scope.Contains(t.Obj().Pos()) {
// Outside the current function scope?
return t // case (1) ordinary
}
// case (2) locally scoped type.
// Create a new named type to represent this instantiation.
// We assume that local types of distinct instantiations of a
// generic function are distinct, even if they don't refer to
// type parameters, but the spec is unclear; see golang/go#58573.
//
// Subtle: We short circuit substitution and use a newly created type in
// subst, i.e. cache[t]=n, to pre-emptively replace t with n in recursive
// types during traversal. This both breaks infinite cycles and allows for
// constructing types with the replacement applied in subst.typ(under).
//
// Example:
// func foo[T any]() {
// type linkedlist struct {
// next *linkedlist
// val T
// }
// }
//
// When the field `next *linkedlist` is visited during subst.typ(under),
// we want the substituted type for the field `next` to be `*n`.
n := types.NewNamed(t.Obj(), nil, nil)
subst.cache[t] = n
subst.cache[n] = n
n.SetUnderlying(subst.typ(t.Underlying()))
return n
}
targs := typeparams.NamedTypeArgs(t)
// insts are arguments to instantiate using.
insts := make([]types.Type, tparams.Len())
// case (3) generic ==> targs.Len() == 0
// Instantiating a generic with no type arguments should be unreachable.
// Please report a bug if you encounter this.
assert(targs.Len() != 0, "substition into a generic Named type is currently unsupported")
// case (4) instantiated.
// Substitute into the type arguments and instantiate the replacements/
// Example:
// type N[A any] func() A
// func Foo[T](g N[T]) {}
// To instantiate Foo[string], one goes through {T->string}. To get the type of g
// one subsitutes T with string in {N with typeargs == {T} and typeparams == {A} }
// to get {N with TypeArgs == {string} and typeparams == {A} }.
assert(targs.Len() == tparams.Len(), "typeargs.Len() must match typeparams.Len() if present")
for i, n := 0, targs.Len(); i < n; i++ {
inst := subst.typ(targs.At(i)) // TODO(generic): Check with rfindley for mutual recursion
insts[i] = inst
}
r, err := typeparams.Instantiate(subst.ctxt, typeparams.NamedTypeOrigin(t), insts, false)
assert(err == nil, "failed to Instantiate Named type")
return r
}
func (subst *subster) signature(t *types.Signature) types.Type {
tparams := typeparams.ForSignature(t)
// We are choosing not to support tparams.Len() > 0 until a need has been observed in practice.
//
// There are some known usages for types.Types coming from types.{Eval,CheckExpr}.
// To support tparams.Len() > 0, we just need to do the following [psuedocode]:
// targs := {subst.replacements[tparams[i]]]}; Instantiate(ctxt, t, targs, false)
assert(tparams.Len() == 0, "Substituting types.Signatures with generic functions are currently unsupported.")
// Either:
// (1)non-generic function.
// no type params to substitute
// (2)generic method and recv needs to be substituted.
// Recievers can be either:
// named
// pointer to named
// interface
// nil
// interface is the problematic case. We need to cycle break there!
recv := subst.var_(t.Recv())
params := subst.tuple(t.Params())
results := subst.tuple(t.Results())
if recv != t.Recv() || params != t.Params() || results != t.Results() {
return typeparams.NewSignatureType(recv, nil, nil, params, results, t.Variadic())
}
return t
}
// reaches returns true if a type t reaches any type t' s.t. c[t'] == true.
// It updates c to cache results.
//
// reaches is currently only part of the wellFormed debug logic, and
// in practice c is initially only type parameters. It is not currently
// relied on in production.
func reaches(t types.Type, c map[types.Type]bool) (res bool) {
if c, ok := c[t]; ok {
return c
}
// c is populated with temporary false entries as types are visited.
// This avoids repeat visits and break cycles.
c[t] = false
defer func() {
c[t] = res
}()
switch t := t.(type) {
case *typeparams.TypeParam, *types.Basic:
return false
case *types.Array:
return reaches(t.Elem(), c)
case *types.Slice:
return reaches(t.Elem(), c)
case *types.Pointer:
return reaches(t.Elem(), c)
case *types.Tuple:
for i := 0; i < t.Len(); i++ {
if reaches(t.At(i).Type(), c) {
return true
}
}
case *types.Struct:
for i := 0; i < t.NumFields(); i++ {
if reaches(t.Field(i).Type(), c) {
return true
}
}
case *types.Map:
return reaches(t.Key(), c) || reaches(t.Elem(), c)
case *types.Chan:
return reaches(t.Elem(), c)
case *types.Signature:
if t.Recv() != nil && reaches(t.Recv().Type(), c) {
return true
}
return reaches(t.Params(), c) || reaches(t.Results(), c)
case *typeparams.Union:
for i := 0; i < t.Len(); i++ {
if reaches(t.Term(i).Type(), c) {
return true
}
}
case *types.Interface:
for i := 0; i < t.NumEmbeddeds(); i++ {
if reaches(t.Embedded(i), c) {
return true
}
}
for i := 0; i < t.NumExplicitMethods(); i++ {
if reaches(t.ExplicitMethod(i).Type(), c) {
return true
}
}
case *types.Named:
return reaches(t.Underlying(), c)
default:
panic("unreachable")
}
return false
}