blob: a96f82d15211a649ce39e82281018ceb6dda67e2 [file] [log] [blame] [edit]
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package vta
import (
"go/types"
"iter"
"slices"
"golang.org/x/tools/go/callgraph/vta/internal/trie"
"golang.org/x/tools/go/ssa"
"golang.org/x/tools/go/types/typeutil"
)
// scc computes strongly connected components (SCCs) of `g` using the
// classical Tarjan's algorithm for SCCs. The result is two slices:
// - sccs: the SCCs, each represented as a slice of node indices
// - idxToSccID: the inverse map, from node index to SCC number.
//
// The SCCs are sorted in reverse topological order: for SCCs
// with ids X and Y s.t. X < Y, Y comes before X in the topological order.
func scc(g *vtaGraph) (sccs [][]idx, idxToSccID []int) {
// standard data structures used by Tarjan's algorithm.
type state struct {
pre int // preorder of the node (0 if unvisited)
lowLink int
onStack bool
}
states := make([]state, g.numNodes())
var stack []idx
idxToSccID = make([]int, g.numNodes())
nextPre := 0
var doSCC func(idx)
doSCC = func(n idx) {
nextPre++
ns := &states[n]
*ns = state{pre: nextPre, lowLink: nextPre, onStack: true}
stack = append(stack, n)
for s := range g.successors(n) {
if ss := &states[s]; ss.pre == 0 {
// Analyze successor s that has not been visited yet.
doSCC(s)
ns.lowLink = min(ns.lowLink, ss.lowLink)
} else if ss.onStack {
// The successor is on the stack, meaning it has to be
// in the current SCC.
ns.lowLink = min(ns.lowLink, ss.pre)
}
}
// if n is a root node, pop the stack and generate a new SCC.
if ns.lowLink == ns.pre {
sccStart := slicesLastIndex(stack, n)
scc := slices.Clone(stack[sccStart:])
stack = stack[:sccStart]
sccID := len(sccs)
sccs = append(sccs, scc)
for _, w := range scc {
states[w].onStack = false
idxToSccID[w] = sccID
}
}
}
for n, nn := 0, g.numNodes(); n < nn; n++ {
if states[n].pre == 0 {
doSCC(idx(n))
}
}
return sccs, idxToSccID
}
// slicesLastIndex returns the index of the last occurrence of v in s, or -1 if v is
// not present in s.
//
// slicesLastIndex iterates backwards through the elements of s, stopping when the ==
// operator determines an element is equal to v.
func slicesLastIndex[S ~[]E, E comparable](s S, v E) int {
// TODO: move to / dedup with slices.LastIndex
for i := len(s) - 1; i >= 0; i-- {
if s[i] == v {
return i
}
}
return -1
}
// propType represents type information being propagated
// over the vta graph. f != nil only for function nodes
// and nodes reachable from function nodes. There, we also
// remember the actual *ssa.Function in order to more
// precisely model higher-order flow.
type propType struct {
typ types.Type
f *ssa.Function
}
// propTypeMap is an auxiliary structure that serves
// the role of a map from nodes to a set of propTypes.
type propTypeMap map[node]*trie.MutMap
// propTypes returns an iterator for the propTypes associated with
// node `n` in map `ptm`.
func (ptm propTypeMap) propTypes(n node) iter.Seq[propType] {
return func(yield func(propType) bool) {
if types := ptm[n]; types != nil {
types.M.Range(func(_ uint64, elem any) bool {
return yield(elem.(propType))
})
}
}
}
// propagate reduces the `graph` based on its SCCs and
// then propagates type information through the reduced
// graph. The result is a map from nodes to a set of types
// and functions, stemming from higher-order data flow,
// reaching the node. `canon` is used for type uniqueness.
func propagate(graph *vtaGraph, canon *typeutil.Map) propTypeMap {
sccs, idxToSccID := scc(graph)
// propTypeIds are used to create unique ids for
// propType, to be used for trie-based type sets.
propTypeIds := make(map[propType]uint64)
// Id creation is based on == equality, which works
// as types are canonicalized (see getPropType).
propTypeId := func(p propType) uint64 {
if id, ok := propTypeIds[p]; ok {
return id
}
id := uint64(len(propTypeIds))
propTypeIds[p] = id
return id
}
builder := trie.NewBuilder()
// Initialize sccToTypes to avoid repeated check
// for initialization later.
sccToTypes := make([]*trie.MutMap, len(sccs))
for sccID, scc := range sccs {
typeSet := builder.MutEmpty()
for _, idx := range scc {
if n := graph.node[idx]; hasInitialTypes(n) {
// add the propType for idx to typeSet.
pt := getPropType(n, canon)
typeSet.Update(propTypeId(pt), pt)
}
}
sccToTypes[sccID] = &typeSet
}
for i := len(sccs) - 1; i >= 0; i-- {
nextSccs := make(map[int]empty)
for _, n := range sccs[i] {
for succ := range graph.successors(n) {
nextSccs[idxToSccID[succ]] = empty{}
}
}
// Propagate types to all successor SCCs.
for nextScc := range nextSccs {
sccToTypes[nextScc].Merge(sccToTypes[i].M)
}
}
nodeToTypes := make(propTypeMap, graph.numNodes())
for sccID, scc := range sccs {
types := sccToTypes[sccID]
for _, idx := range scc {
nodeToTypes[graph.node[idx]] = types
}
}
return nodeToTypes
}
// hasInitialTypes check if a node can have initial types.
// Returns true iff `n` is not a panic, recover, nestedPtr*
// node, nor a node whose type is an interface.
func hasInitialTypes(n node) bool {
switch n.(type) {
case panicArg, recoverReturn, nestedPtrFunction, nestedPtrInterface:
return false
default:
return !types.IsInterface(n.Type())
}
}
// getPropType creates a propType for `node` based on its type.
// propType.typ is always node.Type(). If node is function, then
// propType.val is the underlying function; nil otherwise.
func getPropType(node node, canon *typeutil.Map) propType {
t := canonicalize(node.Type(), canon)
if fn, ok := node.(function); ok {
return propType{f: fn.f, typ: t}
}
return propType{f: nil, typ: t}
}