| // Copyright 2018 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package checker defines the implementation of the checker commands. |
| // The same code drives the multi-analysis driver, the single-analysis |
| // driver that is conventionally provided for convenience along with |
| // each analysis package, and the test driver. |
| package checker |
| |
| import ( |
| "bytes" |
| "encoding/gob" |
| "flag" |
| "fmt" |
| "go/format" |
| "go/token" |
| "go/types" |
| "log" |
| "os" |
| "reflect" |
| "runtime" |
| "runtime/pprof" |
| "runtime/trace" |
| "sort" |
| "strings" |
| "sync" |
| "time" |
| |
| "golang.org/x/tools/go/analysis" |
| "golang.org/x/tools/go/analysis/internal/analysisflags" |
| "golang.org/x/tools/go/packages" |
| "golang.org/x/tools/internal/analysisinternal" |
| "golang.org/x/tools/internal/diff" |
| "golang.org/x/tools/internal/robustio" |
| ) |
| |
| var ( |
| // Debug is a set of single-letter flags: |
| // |
| // f show [f]acts as they are created |
| // p disable [p]arallel execution of analyzers |
| // s do additional [s]anity checks on fact types and serialization |
| // t show [t]iming info (NB: use 'p' flag to avoid GC/scheduler noise) |
| // v show [v]erbose logging |
| // |
| Debug = "" |
| |
| // Log files for optional performance tracing. |
| CPUProfile, MemProfile, Trace string |
| |
| // IncludeTests indicates whether test files should be analyzed too. |
| IncludeTests = true |
| |
| // Fix determines whether to apply all suggested fixes. |
| Fix bool |
| ) |
| |
| // RegisterFlags registers command-line flags used by the analysis driver. |
| func RegisterFlags() { |
| // When adding flags here, remember to update |
| // the list of suppressed flags in analysisflags. |
| |
| flag.StringVar(&Debug, "debug", Debug, `debug flags, any subset of "fpstv"`) |
| |
| flag.StringVar(&CPUProfile, "cpuprofile", "", "write CPU profile to this file") |
| flag.StringVar(&MemProfile, "memprofile", "", "write memory profile to this file") |
| flag.StringVar(&Trace, "trace", "", "write trace log to this file") |
| flag.BoolVar(&IncludeTests, "test", IncludeTests, "indicates whether test files should be analyzed, too") |
| |
| flag.BoolVar(&Fix, "fix", false, "apply all suggested fixes") |
| } |
| |
| // Run loads the packages specified by args using go/packages, |
| // then applies the specified analyzers to them. |
| // Analysis flags must already have been set. |
| // Analyzers must be valid according to [analysis.Validate]. |
| // It provides most of the logic for the main functions of both the |
| // singlechecker and the multi-analysis commands. |
| // It returns the appropriate exit code. |
| func Run(args []string, analyzers []*analysis.Analyzer) (exitcode int) { |
| if CPUProfile != "" { |
| f, err := os.Create(CPUProfile) |
| if err != nil { |
| log.Fatal(err) |
| } |
| if err := pprof.StartCPUProfile(f); err != nil { |
| log.Fatal(err) |
| } |
| // NB: profile won't be written in case of error. |
| defer pprof.StopCPUProfile() |
| } |
| |
| if Trace != "" { |
| f, err := os.Create(Trace) |
| if err != nil { |
| log.Fatal(err) |
| } |
| if err := trace.Start(f); err != nil { |
| log.Fatal(err) |
| } |
| // NB: trace log won't be written in case of error. |
| defer func() { |
| trace.Stop() |
| log.Printf("To view the trace, run:\n$ go tool trace view %s", Trace) |
| }() |
| } |
| |
| if MemProfile != "" { |
| f, err := os.Create(MemProfile) |
| if err != nil { |
| log.Fatal(err) |
| } |
| // NB: memprofile won't be written in case of error. |
| defer func() { |
| runtime.GC() // get up-to-date statistics |
| if err := pprof.WriteHeapProfile(f); err != nil { |
| log.Fatalf("Writing memory profile: %v", err) |
| } |
| f.Close() |
| }() |
| } |
| |
| // Load the packages. |
| if dbg('v') { |
| log.SetPrefix("") |
| log.SetFlags(log.Lmicroseconds) // display timing |
| log.Printf("load %s", args) |
| } |
| |
| // Optimization: if the selected analyzers don't produce/consume |
| // facts, we need source only for the initial packages. |
| allSyntax := needFacts(analyzers) |
| initial, err := load(args, allSyntax) |
| if err != nil { |
| log.Print(err) |
| return 1 |
| } |
| |
| pkgsExitCode := 0 |
| // Print package and module errors regardless of RunDespiteErrors. |
| // Do not exit if there are errors, yet. |
| if n := packages.PrintErrors(initial); n > 0 { |
| pkgsExitCode = 1 |
| } |
| |
| // Run the analyzers. On each package with (transitive) |
| // errors, we run only the subset of analyzers that are |
| // marked (and whose transitive requirements are also |
| // marked) with RunDespiteErrors. |
| roots := analyze(initial, analyzers) |
| |
| // Apply fixes. |
| if Fix { |
| if err := applyFixes(roots); err != nil { |
| // Fail when applying fixes failed. |
| log.Print(err) |
| return 1 |
| } |
| } |
| |
| // Print the results. If !RunDespiteErrors and there |
| // are errors in the packages, this will have 0 exit |
| // code. Otherwise, we prefer to return exit code |
| // indicating diagnostics. |
| if diagExitCode := printDiagnostics(roots); diagExitCode != 0 { |
| return diagExitCode // there were diagnostics |
| } |
| return pkgsExitCode // package errors but no diagnostics |
| } |
| |
| // load loads the initial packages. Returns only top-level loading |
| // errors. Does not consider errors in packages. |
| func load(patterns []string, allSyntax bool) ([]*packages.Package, error) { |
| mode := packages.LoadSyntax |
| if allSyntax { |
| mode = packages.LoadAllSyntax |
| } |
| mode |= packages.NeedModule |
| conf := packages.Config{ |
| Mode: mode, |
| Tests: IncludeTests, |
| } |
| initial, err := packages.Load(&conf, patterns...) |
| if err == nil && len(initial) == 0 { |
| err = fmt.Errorf("%s matched no packages", strings.Join(patterns, " ")) |
| } |
| return initial, err |
| } |
| |
| // TestAnalyzer applies an analyzer to a set of packages (and their |
| // dependencies if necessary) and returns the results. |
| // The analyzer must be valid according to [analysis.Validate]. |
| // |
| // Facts about pkg are returned in a map keyed by object; package facts |
| // have a nil key. |
| // |
| // This entry point is used only by analysistest. |
| func TestAnalyzer(a *analysis.Analyzer, pkgs []*packages.Package) []*TestAnalyzerResult { |
| var results []*TestAnalyzerResult |
| for _, act := range analyze(pkgs, []*analysis.Analyzer{a}) { |
| facts := make(map[types.Object][]analysis.Fact) |
| for key, fact := range act.objectFacts { |
| if key.obj.Pkg() == act.pass.Pkg { |
| facts[key.obj] = append(facts[key.obj], fact) |
| } |
| } |
| for key, fact := range act.packageFacts { |
| if key.pkg == act.pass.Pkg { |
| facts[nil] = append(facts[nil], fact) |
| } |
| } |
| |
| results = append(results, &TestAnalyzerResult{act.pass, act.diagnostics, facts, act.result, act.err}) |
| } |
| return results |
| } |
| |
| type TestAnalyzerResult struct { |
| Pass *analysis.Pass |
| Diagnostics []analysis.Diagnostic |
| Facts map[types.Object][]analysis.Fact |
| Result interface{} |
| Err error |
| } |
| |
| func analyze(pkgs []*packages.Package, analyzers []*analysis.Analyzer) []*action { |
| // Construct the action graph. |
| if dbg('v') { |
| log.Printf("building graph of analysis passes") |
| } |
| |
| // Each graph node (action) is one unit of analysis. |
| // Edges express package-to-package (vertical) dependencies, |
| // and analysis-to-analysis (horizontal) dependencies. |
| type key struct { |
| *analysis.Analyzer |
| *packages.Package |
| } |
| actions := make(map[key]*action) |
| |
| var mkAction func(a *analysis.Analyzer, pkg *packages.Package) *action |
| mkAction = func(a *analysis.Analyzer, pkg *packages.Package) *action { |
| k := key{a, pkg} |
| act, ok := actions[k] |
| if !ok { |
| act = &action{a: a, pkg: pkg} |
| |
| // Add a dependency on each required analyzers. |
| for _, req := range a.Requires { |
| act.deps = append(act.deps, mkAction(req, pkg)) |
| } |
| |
| // An analysis that consumes/produces facts |
| // must run on the package's dependencies too. |
| if len(a.FactTypes) > 0 { |
| paths := make([]string, 0, len(pkg.Imports)) |
| for path := range pkg.Imports { |
| paths = append(paths, path) |
| } |
| sort.Strings(paths) // for determinism |
| for _, path := range paths { |
| dep := mkAction(a, pkg.Imports[path]) |
| act.deps = append(act.deps, dep) |
| } |
| } |
| |
| actions[k] = act |
| } |
| return act |
| } |
| |
| // Build nodes for initial packages. |
| var roots []*action |
| for _, a := range analyzers { |
| for _, pkg := range pkgs { |
| root := mkAction(a, pkg) |
| root.isroot = true |
| roots = append(roots, root) |
| } |
| } |
| |
| // Execute the graph in parallel. |
| execAll(roots) |
| |
| return roots |
| } |
| |
| func applyFixes(roots []*action) error { |
| // visit all of the actions and accumulate the suggested edits. |
| paths := make(map[robustio.FileID]string) |
| editsByAction := make(map[robustio.FileID]map[*action][]diff.Edit) |
| visited := make(map[*action]bool) |
| var apply func(*action) error |
| var visitAll func(actions []*action) error |
| visitAll = func(actions []*action) error { |
| for _, act := range actions { |
| if !visited[act] { |
| visited[act] = true |
| if err := visitAll(act.deps); err != nil { |
| return err |
| } |
| if err := apply(act); err != nil { |
| return err |
| } |
| } |
| } |
| return nil |
| } |
| |
| apply = func(act *action) error { |
| editsForTokenFile := make(map[*token.File][]diff.Edit) |
| for _, diag := range act.diagnostics { |
| for _, sf := range diag.SuggestedFixes { |
| for _, edit := range sf.TextEdits { |
| // Validate the edit. |
| // Any error here indicates a bug in the analyzer. |
| start, end := edit.Pos, edit.End |
| file := act.pkg.Fset.File(start) |
| if file == nil { |
| return fmt.Errorf("analysis %q suggests invalid fix: missing file info for pos (%v)", |
| act.a.Name, start) |
| } |
| if !end.IsValid() { |
| end = start |
| } |
| if start > end { |
| return fmt.Errorf("analysis %q suggests invalid fix: pos (%v) > end (%v)", |
| act.a.Name, start, end) |
| } |
| if eof := token.Pos(file.Base() + file.Size()); end > eof { |
| return fmt.Errorf("analysis %q suggests invalid fix: end (%v) past end of file (%v)", |
| act.a.Name, end, eof) |
| } |
| edit := diff.Edit{ |
| Start: file.Offset(start), |
| End: file.Offset(end), |
| New: string(edit.NewText), |
| } |
| editsForTokenFile[file] = append(editsForTokenFile[file], edit) |
| } |
| } |
| } |
| |
| for f, edits := range editsForTokenFile { |
| id, _, err := robustio.GetFileID(f.Name()) |
| if err != nil { |
| return err |
| } |
| if _, hasId := paths[id]; !hasId { |
| paths[id] = f.Name() |
| editsByAction[id] = make(map[*action][]diff.Edit) |
| } |
| editsByAction[id][act] = edits |
| } |
| return nil |
| } |
| |
| if err := visitAll(roots); err != nil { |
| return err |
| } |
| |
| // Validate and group the edits to each actual file. |
| editsByPath := make(map[string][]diff.Edit) |
| for id, actToEdits := range editsByAction { |
| path := paths[id] |
| actions := make([]*action, 0, len(actToEdits)) |
| for act := range actToEdits { |
| actions = append(actions, act) |
| } |
| |
| // Does any action create conflicting edits? |
| for _, act := range actions { |
| edits := actToEdits[act] |
| if _, invalid := validateEdits(edits); invalid > 0 { |
| name, x, y := act.a.Name, edits[invalid-1], edits[invalid] |
| return diff3Conflict(path, name, name, []diff.Edit{x}, []diff.Edit{y}) |
| } |
| } |
| |
| // Does any pair of different actions create edits that conflict? |
| for j := range actions { |
| for k := range actions[:j] { |
| x, y := actions[j], actions[k] |
| if x.a.Name > y.a.Name { |
| x, y = y, x |
| } |
| xedits, yedits := actToEdits[x], actToEdits[y] |
| combined := append(xedits, yedits...) |
| if _, invalid := validateEdits(combined); invalid > 0 { |
| // TODO: consider applying each action's consistent list of edits entirely, |
| // and then using a three-way merge (such as GNU diff3) on the resulting |
| // files to report more precisely the parts that actually conflict. |
| return diff3Conflict(path, x.a.Name, y.a.Name, xedits, yedits) |
| } |
| } |
| } |
| |
| var edits []diff.Edit |
| for act := range actToEdits { |
| edits = append(edits, actToEdits[act]...) |
| } |
| editsByPath[path], _ = validateEdits(edits) // remove duplicates. already validated. |
| } |
| |
| // Now we've got a set of valid edits for each file. Apply them. |
| for path, edits := range editsByPath { |
| // TODO(adonovan): this should really work on the same |
| // gulp from the file system that fed the analyzer (see #62292). |
| contents, err := os.ReadFile(path) |
| if err != nil { |
| return err |
| } |
| |
| out, err := diff.ApplyBytes(contents, edits) |
| if err != nil { |
| return err |
| } |
| |
| // Try to format the file. |
| if formatted, err := format.Source(out); err == nil { |
| out = formatted |
| } |
| |
| if err := os.WriteFile(path, out, 0644); err != nil { |
| return err |
| } |
| } |
| return nil |
| } |
| |
| // validateEdits returns a list of edits that is sorted and |
| // contains no duplicate edits. Returns the index of some |
| // overlapping adjacent edits if there is one and <0 if the |
| // edits are valid. |
| func validateEdits(edits []diff.Edit) ([]diff.Edit, int) { |
| if len(edits) == 0 { |
| return nil, -1 |
| } |
| equivalent := func(x, y diff.Edit) bool { |
| return x.Start == y.Start && x.End == y.End && x.New == y.New |
| } |
| diff.SortEdits(edits) |
| unique := []diff.Edit{edits[0]} |
| invalid := -1 |
| for i := 1; i < len(edits); i++ { |
| prev, cur := edits[i-1], edits[i] |
| // We skip over equivalent edits without considering them |
| // an error. This handles identical edits coming from the |
| // multiple ways of loading a package into a |
| // *go/packages.Packages for testing, e.g. packages "p" and "p [p.test]". |
| if !equivalent(prev, cur) { |
| unique = append(unique, cur) |
| if prev.End > cur.Start { |
| invalid = i |
| } |
| } |
| } |
| return unique, invalid |
| } |
| |
| // diff3Conflict returns an error describing two conflicting sets of |
| // edits on a file at path. |
| func diff3Conflict(path string, xlabel, ylabel string, xedits, yedits []diff.Edit) error { |
| contents, err := os.ReadFile(path) |
| if err != nil { |
| return err |
| } |
| oldlabel, old := "base", string(contents) |
| |
| xdiff, err := diff.ToUnified(oldlabel, xlabel, old, xedits, diff.DefaultContextLines) |
| if err != nil { |
| return err |
| } |
| ydiff, err := diff.ToUnified(oldlabel, ylabel, old, yedits, diff.DefaultContextLines) |
| if err != nil { |
| return err |
| } |
| |
| return fmt.Errorf("conflicting edits from %s and %s on %s\nfirst edits:\n%s\nsecond edits:\n%s", |
| xlabel, ylabel, path, xdiff, ydiff) |
| } |
| |
| // printDiagnostics prints the diagnostics for the root packages in either |
| // plain text or JSON format. JSON format also includes errors for any |
| // dependencies. |
| // |
| // It returns the exitcode: in plain mode, 0 for success, 1 for analysis |
| // errors, and 3 for diagnostics. We avoid 2 since the flag package uses |
| // it. JSON mode always succeeds at printing errors and diagnostics in a |
| // structured form to stdout. |
| func printDiagnostics(roots []*action) (exitcode int) { |
| // Print the output. |
| // |
| // Print diagnostics only for root packages, |
| // but errors for all packages. |
| printed := make(map[*action]bool) |
| var print func(*action) |
| var visitAll func(actions []*action) |
| visitAll = func(actions []*action) { |
| for _, act := range actions { |
| if !printed[act] { |
| printed[act] = true |
| visitAll(act.deps) |
| print(act) |
| } |
| } |
| } |
| |
| if analysisflags.JSON { |
| // JSON output |
| tree := make(analysisflags.JSONTree) |
| print = func(act *action) { |
| var diags []analysis.Diagnostic |
| if act.isroot { |
| diags = act.diagnostics |
| } |
| tree.Add(act.pkg.Fset, act.pkg.ID, act.a.Name, diags, act.err) |
| } |
| visitAll(roots) |
| tree.Print() |
| } else { |
| // plain text output |
| |
| // De-duplicate diagnostics by position (not token.Pos) to |
| // avoid double-reporting in source files that belong to |
| // multiple packages, such as foo and foo.test. |
| type key struct { |
| pos token.Position |
| end token.Position |
| *analysis.Analyzer |
| message string |
| } |
| seen := make(map[key]bool) |
| |
| print = func(act *action) { |
| if act.err != nil { |
| fmt.Fprintf(os.Stderr, "%s: %v\n", act.a.Name, act.err) |
| exitcode = 1 // analysis failed, at least partially |
| return |
| } |
| if act.isroot { |
| for _, diag := range act.diagnostics { |
| // We don't display a.Name/f.Category |
| // as most users don't care. |
| |
| posn := act.pkg.Fset.Position(diag.Pos) |
| end := act.pkg.Fset.Position(diag.End) |
| k := key{posn, end, act.a, diag.Message} |
| if seen[k] { |
| continue // duplicate |
| } |
| seen[k] = true |
| |
| analysisflags.PrintPlain(act.pkg.Fset, diag) |
| } |
| } |
| } |
| visitAll(roots) |
| |
| if exitcode == 0 && len(seen) > 0 { |
| exitcode = 3 // successfully produced diagnostics |
| } |
| } |
| |
| // Print timing info. |
| if dbg('t') { |
| if !dbg('p') { |
| log.Println("Warning: times are mostly GC/scheduler noise; use -debug=tp to disable parallelism") |
| } |
| var all []*action |
| var total time.Duration |
| for act := range printed { |
| all = append(all, act) |
| total += act.duration |
| } |
| sort.Slice(all, func(i, j int) bool { |
| return all[i].duration > all[j].duration |
| }) |
| |
| // Print actions accounting for 90% of the total. |
| var sum time.Duration |
| for _, act := range all { |
| fmt.Fprintf(os.Stderr, "%s\t%s\n", act.duration, act) |
| sum += act.duration |
| if sum >= total*9/10 { |
| break |
| } |
| } |
| } |
| |
| return exitcode |
| } |
| |
| // needFacts reports whether any analysis required by the specified set |
| // needs facts. If so, we must load the entire program from source. |
| func needFacts(analyzers []*analysis.Analyzer) bool { |
| seen := make(map[*analysis.Analyzer]bool) |
| var q []*analysis.Analyzer // for BFS |
| q = append(q, analyzers...) |
| for len(q) > 0 { |
| a := q[0] |
| q = q[1:] |
| if !seen[a] { |
| seen[a] = true |
| if len(a.FactTypes) > 0 { |
| return true |
| } |
| q = append(q, a.Requires...) |
| } |
| } |
| return false |
| } |
| |
| // An action represents one unit of analysis work: the application of |
| // one analysis to one package. Actions form a DAG, both within a |
| // package (as different analyzers are applied, either in sequence or |
| // parallel), and across packages (as dependencies are analyzed). |
| type action struct { |
| once sync.Once |
| a *analysis.Analyzer |
| pkg *packages.Package |
| pass *analysis.Pass |
| isroot bool |
| deps []*action |
| objectFacts map[objectFactKey]analysis.Fact |
| packageFacts map[packageFactKey]analysis.Fact |
| result interface{} |
| diagnostics []analysis.Diagnostic |
| err error |
| duration time.Duration |
| } |
| |
| type objectFactKey struct { |
| obj types.Object |
| typ reflect.Type |
| } |
| |
| type packageFactKey struct { |
| pkg *types.Package |
| typ reflect.Type |
| } |
| |
| func (act *action) String() string { |
| return fmt.Sprintf("%s@%s", act.a, act.pkg) |
| } |
| |
| func execAll(actions []*action) { |
| sequential := dbg('p') |
| var wg sync.WaitGroup |
| for _, act := range actions { |
| wg.Add(1) |
| work := func(act *action) { |
| act.exec() |
| wg.Done() |
| } |
| if sequential { |
| work(act) |
| } else { |
| go work(act) |
| } |
| } |
| wg.Wait() |
| } |
| |
| func (act *action) exec() { act.once.Do(act.execOnce) } |
| |
| func (act *action) execOnce() { |
| // Analyze dependencies. |
| execAll(act.deps) |
| |
| // TODO(adonovan): uncomment this during profiling. |
| // It won't build pre-go1.11 but conditional compilation |
| // using build tags isn't warranted. |
| // |
| // ctx, task := trace.NewTask(context.Background(), "exec") |
| // trace.Log(ctx, "pass", act.String()) |
| // defer task.End() |
| |
| // Record time spent in this node but not its dependencies. |
| // In parallel mode, due to GC/scheduler contention, the |
| // time is 5x higher than in sequential mode, even with a |
| // semaphore limiting the number of threads here. |
| // So use -debug=tp. |
| if dbg('t') { |
| t0 := time.Now() |
| defer func() { act.duration = time.Since(t0) }() |
| } |
| |
| // Report an error if any dependency failed. |
| var failed []string |
| for _, dep := range act.deps { |
| if dep.err != nil { |
| failed = append(failed, dep.String()) |
| } |
| } |
| if failed != nil { |
| sort.Strings(failed) |
| act.err = fmt.Errorf("failed prerequisites: %s", strings.Join(failed, ", ")) |
| return |
| } |
| |
| // Plumb the output values of the dependencies |
| // into the inputs of this action. Also facts. |
| inputs := make(map[*analysis.Analyzer]interface{}) |
| act.objectFacts = make(map[objectFactKey]analysis.Fact) |
| act.packageFacts = make(map[packageFactKey]analysis.Fact) |
| for _, dep := range act.deps { |
| if dep.pkg == act.pkg { |
| // Same package, different analysis (horizontal edge): |
| // in-memory outputs of prerequisite analyzers |
| // become inputs to this analysis pass. |
| inputs[dep.a] = dep.result |
| |
| } else if dep.a == act.a { // (always true) |
| // Same analysis, different package (vertical edge): |
| // serialized facts produced by prerequisite analysis |
| // become available to this analysis pass. |
| inheritFacts(act, dep) |
| } |
| } |
| |
| module := &analysis.Module{} // possibly empty (non nil) in go/analysis drivers. |
| if mod := act.pkg.Module; mod != nil { |
| module.Path = mod.Path |
| module.Version = mod.Version |
| module.GoVersion = mod.GoVersion |
| } |
| |
| // Run the analysis. |
| pass := &analysis.Pass{ |
| Analyzer: act.a, |
| Fset: act.pkg.Fset, |
| Files: act.pkg.Syntax, |
| OtherFiles: act.pkg.OtherFiles, |
| IgnoredFiles: act.pkg.IgnoredFiles, |
| Pkg: act.pkg.Types, |
| TypesInfo: act.pkg.TypesInfo, |
| TypesSizes: act.pkg.TypesSizes, |
| TypeErrors: act.pkg.TypeErrors, |
| Module: module, |
| |
| ResultOf: inputs, |
| Report: func(d analysis.Diagnostic) { act.diagnostics = append(act.diagnostics, d) }, |
| ImportObjectFact: act.importObjectFact, |
| ExportObjectFact: act.exportObjectFact, |
| ImportPackageFact: act.importPackageFact, |
| ExportPackageFact: act.exportPackageFact, |
| AllObjectFacts: act.allObjectFacts, |
| AllPackageFacts: act.allPackageFacts, |
| } |
| pass.ReadFile = analysisinternal.MakeReadFile(pass) |
| act.pass = pass |
| |
| var err error |
| if act.pkg.IllTyped && !pass.Analyzer.RunDespiteErrors { |
| err = fmt.Errorf("analysis skipped due to errors in package") |
| } else { |
| act.result, err = pass.Analyzer.Run(pass) |
| if err == nil { |
| if got, want := reflect.TypeOf(act.result), pass.Analyzer.ResultType; got != want { |
| err = fmt.Errorf( |
| "internal error: on package %s, analyzer %s returned a result of type %v, but declared ResultType %v", |
| pass.Pkg.Path(), pass.Analyzer, got, want) |
| } |
| } |
| } |
| if err == nil { // resolve diagnostic URLs |
| for i := range act.diagnostics { |
| if url, uerr := analysisflags.ResolveURL(act.a, act.diagnostics[i]); uerr == nil { |
| act.diagnostics[i].URL = url |
| } else { |
| err = uerr // keep the last error |
| } |
| } |
| } |
| act.err = err |
| |
| // disallow calls after Run |
| pass.ExportObjectFact = nil |
| pass.ExportPackageFact = nil |
| } |
| |
| // inheritFacts populates act.facts with |
| // those it obtains from its dependency, dep. |
| func inheritFacts(act, dep *action) { |
| serialize := dbg('s') |
| |
| for key, fact := range dep.objectFacts { |
| // Filter out facts related to objects |
| // that are irrelevant downstream |
| // (equivalently: not in the compiler export data). |
| if !exportedFrom(key.obj, dep.pkg.Types) { |
| if false { |
| log.Printf("%v: discarding %T fact from %s for %s: %s", act, fact, dep, key.obj, fact) |
| } |
| continue |
| } |
| |
| // Optionally serialize/deserialize fact |
| // to verify that it works across address spaces. |
| if serialize { |
| encodedFact, err := codeFact(fact) |
| if err != nil { |
| log.Panicf("internal error: encoding of %T fact failed in %v: %v", fact, act, err) |
| } |
| fact = encodedFact |
| } |
| |
| if false { |
| log.Printf("%v: inherited %T fact for %s: %s", act, fact, key.obj, fact) |
| } |
| act.objectFacts[key] = fact |
| } |
| |
| for key, fact := range dep.packageFacts { |
| // TODO: filter out facts that belong to |
| // packages not mentioned in the export data |
| // to prevent side channels. |
| |
| // Optionally serialize/deserialize fact |
| // to verify that it works across address spaces |
| // and is deterministic. |
| if serialize { |
| encodedFact, err := codeFact(fact) |
| if err != nil { |
| log.Panicf("internal error: encoding of %T fact failed in %v", fact, act) |
| } |
| fact = encodedFact |
| } |
| |
| if false { |
| log.Printf("%v: inherited %T fact for %s: %s", act, fact, key.pkg.Path(), fact) |
| } |
| act.packageFacts[key] = fact |
| } |
| } |
| |
| // codeFact encodes then decodes a fact, |
| // just to exercise that logic. |
| func codeFact(fact analysis.Fact) (analysis.Fact, error) { |
| // We encode facts one at a time. |
| // A real modular driver would emit all facts |
| // into one encoder to improve gob efficiency. |
| var buf bytes.Buffer |
| if err := gob.NewEncoder(&buf).Encode(fact); err != nil { |
| return nil, err |
| } |
| |
| // Encode it twice and assert that we get the same bits. |
| // This helps detect nondeterministic Gob encoding (e.g. of maps). |
| var buf2 bytes.Buffer |
| if err := gob.NewEncoder(&buf2).Encode(fact); err != nil { |
| return nil, err |
| } |
| if !bytes.Equal(buf.Bytes(), buf2.Bytes()) { |
| return nil, fmt.Errorf("encoding of %T fact is nondeterministic", fact) |
| } |
| |
| new := reflect.New(reflect.TypeOf(fact).Elem()).Interface().(analysis.Fact) |
| if err := gob.NewDecoder(&buf).Decode(new); err != nil { |
| return nil, err |
| } |
| return new, nil |
| } |
| |
| // exportedFrom reports whether obj may be visible to a package that imports pkg. |
| // This includes not just the exported members of pkg, but also unexported |
| // constants, types, fields, and methods, perhaps belonging to other packages, |
| // that find there way into the API. |
| // This is an overapproximation of the more accurate approach used by |
| // gc export data, which walks the type graph, but it's much simpler. |
| // |
| // TODO(adonovan): do more accurate filtering by walking the type graph. |
| func exportedFrom(obj types.Object, pkg *types.Package) bool { |
| switch obj := obj.(type) { |
| case *types.Func: |
| return obj.Exported() && obj.Pkg() == pkg || |
| obj.Type().(*types.Signature).Recv() != nil |
| case *types.Var: |
| if obj.IsField() { |
| return true |
| } |
| // we can't filter more aggressively than this because we need |
| // to consider function parameters exported, but have no way |
| // of telling apart function parameters from local variables. |
| return obj.Pkg() == pkg |
| case *types.TypeName, *types.Const: |
| return true |
| } |
| return false // Nil, Builtin, Label, or PkgName |
| } |
| |
| // importObjectFact implements Pass.ImportObjectFact. |
| // Given a non-nil pointer ptr of type *T, where *T satisfies Fact, |
| // importObjectFact copies the fact value to *ptr. |
| func (act *action) importObjectFact(obj types.Object, ptr analysis.Fact) bool { |
| if obj == nil { |
| panic("nil object") |
| } |
| key := objectFactKey{obj, factType(ptr)} |
| if v, ok := act.objectFacts[key]; ok { |
| reflect.ValueOf(ptr).Elem().Set(reflect.ValueOf(v).Elem()) |
| return true |
| } |
| return false |
| } |
| |
| // exportObjectFact implements Pass.ExportObjectFact. |
| func (act *action) exportObjectFact(obj types.Object, fact analysis.Fact) { |
| if act.pass.ExportObjectFact == nil { |
| log.Panicf("%s: Pass.ExportObjectFact(%s, %T) called after Run", act, obj, fact) |
| } |
| |
| if obj.Pkg() != act.pkg.Types { |
| log.Panicf("internal error: in analysis %s of package %s: Fact.Set(%s, %T): can't set facts on objects belonging another package", |
| act.a, act.pkg, obj, fact) |
| } |
| |
| key := objectFactKey{obj, factType(fact)} |
| act.objectFacts[key] = fact // clobber any existing entry |
| if dbg('f') { |
| objstr := types.ObjectString(obj, (*types.Package).Name) |
| fmt.Fprintf(os.Stderr, "%s: object %s has fact %s\n", |
| act.pkg.Fset.Position(obj.Pos()), objstr, fact) |
| } |
| } |
| |
| // allObjectFacts implements Pass.AllObjectFacts. |
| func (act *action) allObjectFacts() []analysis.ObjectFact { |
| facts := make([]analysis.ObjectFact, 0, len(act.objectFacts)) |
| for k := range act.objectFacts { |
| facts = append(facts, analysis.ObjectFact{Object: k.obj, Fact: act.objectFacts[k]}) |
| } |
| return facts |
| } |
| |
| // importPackageFact implements Pass.ImportPackageFact. |
| // Given a non-nil pointer ptr of type *T, where *T satisfies Fact, |
| // fact copies the fact value to *ptr. |
| func (act *action) importPackageFact(pkg *types.Package, ptr analysis.Fact) bool { |
| if pkg == nil { |
| panic("nil package") |
| } |
| key := packageFactKey{pkg, factType(ptr)} |
| if v, ok := act.packageFacts[key]; ok { |
| reflect.ValueOf(ptr).Elem().Set(reflect.ValueOf(v).Elem()) |
| return true |
| } |
| return false |
| } |
| |
| // exportPackageFact implements Pass.ExportPackageFact. |
| func (act *action) exportPackageFact(fact analysis.Fact) { |
| if act.pass.ExportPackageFact == nil { |
| log.Panicf("%s: Pass.ExportPackageFact(%T) called after Run", act, fact) |
| } |
| |
| key := packageFactKey{act.pass.Pkg, factType(fact)} |
| act.packageFacts[key] = fact // clobber any existing entry |
| if dbg('f') { |
| fmt.Fprintf(os.Stderr, "%s: package %s has fact %s\n", |
| act.pkg.Fset.Position(act.pass.Files[0].Pos()), act.pass.Pkg.Path(), fact) |
| } |
| } |
| |
| func factType(fact analysis.Fact) reflect.Type { |
| t := reflect.TypeOf(fact) |
| if t.Kind() != reflect.Ptr { |
| log.Fatalf("invalid Fact type: got %T, want pointer", fact) |
| } |
| return t |
| } |
| |
| // allPackageFacts implements Pass.AllPackageFacts. |
| func (act *action) allPackageFacts() []analysis.PackageFact { |
| facts := make([]analysis.PackageFact, 0, len(act.packageFacts)) |
| for k := range act.packageFacts { |
| facts = append(facts, analysis.PackageFact{Package: k.pkg, Fact: act.packageFacts[k]}) |
| } |
| return facts |
| } |
| |
| func dbg(b byte) bool { return strings.IndexByte(Debug, b) >= 0 } |