| // Copyright 2017 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package message |
| |
| import ( |
| "bytes" |
| "fmt" // TODO: consider copying interfaces from package fmt to avoid dependency. |
| "math" |
| "reflect" |
| "sync" |
| "unicode/utf8" |
| |
| "golang.org/x/text/internal/format" |
| "golang.org/x/text/internal/number" |
| "golang.org/x/text/language" |
| "golang.org/x/text/message/catalog" |
| ) |
| |
| // Strings for use with buffer.WriteString. |
| // This is less overhead than using buffer.Write with byte arrays. |
| const ( |
| commaSpaceString = ", " |
| nilAngleString = "<nil>" |
| nilParenString = "(nil)" |
| nilString = "nil" |
| mapString = "map[" |
| percentBangString = "%!" |
| missingString = "(MISSING)" |
| badIndexString = "(BADINDEX)" |
| panicString = "(PANIC=" |
| extraString = "%!(EXTRA " |
| badWidthString = "%!(BADWIDTH)" |
| badPrecString = "%!(BADPREC)" |
| noVerbString = "%!(NOVERB)" |
| |
| invReflectString = "<invalid reflect.Value>" |
| ) |
| |
| var printerPool = sync.Pool{ |
| New: func() interface{} { return new(printer) }, |
| } |
| |
| // newPrinter allocates a new printer struct or grabs a cached one. |
| func newPrinter(pp *Printer) *printer { |
| p := printerPool.Get().(*printer) |
| p.Printer = *pp |
| // TODO: cache most of the following call. |
| p.catContext = pp.cat.Context(pp.tag, p) |
| |
| p.panicking = false |
| p.erroring = false |
| p.fmt.init(&p.Buffer) |
| return p |
| } |
| |
| // free saves used printer structs in printerFree; avoids an allocation per invocation. |
| func (p *printer) free() { |
| p.Buffer.Reset() |
| p.arg = nil |
| p.value = reflect.Value{} |
| printerPool.Put(p) |
| } |
| |
| // printer is used to store a printer's state. |
| // It implements "golang.org/x/text/internal/format".State. |
| type printer struct { |
| Printer |
| |
| // the context for looking up message translations |
| catContext *catalog.Context |
| |
| // buffer for accumulating output. |
| bytes.Buffer |
| |
| // arg holds the current item, as an interface{}. |
| arg interface{} |
| // value is used instead of arg for reflect values. |
| value reflect.Value |
| |
| // fmt is used to format basic items such as integers or strings. |
| fmt formatInfo |
| |
| // panicking is set by catchPanic to avoid infinite panic, recover, panic, ... recursion. |
| panicking bool |
| // erroring is set when printing an error string to guard against calling handleMethods. |
| erroring bool |
| } |
| |
| // Language implements "golang.org/x/text/internal/format".State. |
| func (p *printer) Language() language.Tag { return p.tag } |
| |
| func (p *printer) Width() (wid int, ok bool) { return p.fmt.Width, p.fmt.WidthPresent } |
| |
| func (p *printer) Precision() (prec int, ok bool) { return p.fmt.Prec, p.fmt.PrecPresent } |
| |
| func (p *printer) Flag(b int) bool { |
| switch b { |
| case '-': |
| return p.fmt.Minus |
| case '+': |
| return p.fmt.Plus || p.fmt.PlusV |
| case '#': |
| return p.fmt.Sharp || p.fmt.SharpV |
| case ' ': |
| return p.fmt.Space |
| case '0': |
| return p.fmt.Zero |
| } |
| return false |
| } |
| |
| // getField gets the i'th field of the struct value. |
| // If the field is itself is an interface, return a value for |
| // the thing inside the interface, not the interface itself. |
| func getField(v reflect.Value, i int) reflect.Value { |
| val := v.Field(i) |
| if val.Kind() == reflect.Interface && !val.IsNil() { |
| val = val.Elem() |
| } |
| return val |
| } |
| |
| func (p *printer) unknownType(v reflect.Value) { |
| if !v.IsValid() { |
| p.WriteString(nilAngleString) |
| return |
| } |
| p.WriteByte('?') |
| p.WriteString(v.Type().String()) |
| p.WriteByte('?') |
| } |
| |
| func (p *printer) badVerb(verb rune) { |
| p.erroring = true |
| p.WriteString(percentBangString) |
| p.WriteRune(verb) |
| p.WriteByte('(') |
| switch { |
| case p.arg != nil: |
| p.WriteString(reflect.TypeOf(p.arg).String()) |
| p.WriteByte('=') |
| p.printArg(p.arg, 'v') |
| case p.value.IsValid(): |
| p.WriteString(p.value.Type().String()) |
| p.WriteByte('=') |
| p.printValue(p.value, 'v', 0) |
| default: |
| p.WriteString(nilAngleString) |
| } |
| p.WriteByte(')') |
| p.erroring = false |
| } |
| |
| func (p *printer) fmtBool(v bool, verb rune) { |
| switch verb { |
| case 't', 'v': |
| p.fmt.fmt_boolean(v) |
| default: |
| p.badVerb(verb) |
| } |
| } |
| |
| // fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x or |
| // not, as requested, by temporarily setting the sharp flag. |
| func (p *printer) fmt0x64(v uint64, leading0x bool) { |
| sharp := p.fmt.Sharp |
| p.fmt.Sharp = leading0x |
| p.fmt.fmt_integer(v, 16, unsigned, ldigits) |
| p.fmt.Sharp = sharp |
| } |
| |
| // fmtInteger formats a signed or unsigned integer. |
| func (p *printer) fmtInteger(v uint64, isSigned bool, verb rune) { |
| switch verb { |
| case 'v': |
| if p.fmt.SharpV && !isSigned { |
| p.fmt0x64(v, true) |
| return |
| } |
| fallthrough |
| case 'd': |
| if p.fmt.Sharp || p.fmt.SharpV { |
| p.fmt.fmt_integer(v, 10, isSigned, ldigits) |
| } else { |
| p.fmtDecimalInt(v, isSigned) |
| } |
| case 'b': |
| p.fmt.fmt_integer(v, 2, isSigned, ldigits) |
| case 'o': |
| p.fmt.fmt_integer(v, 8, isSigned, ldigits) |
| case 'x': |
| p.fmt.fmt_integer(v, 16, isSigned, ldigits) |
| case 'X': |
| p.fmt.fmt_integer(v, 16, isSigned, udigits) |
| case 'c': |
| p.fmt.fmt_c(v) |
| case 'q': |
| if v <= utf8.MaxRune { |
| p.fmt.fmt_qc(v) |
| } else { |
| p.badVerb(verb) |
| } |
| case 'U': |
| p.fmt.fmt_unicode(v) |
| default: |
| p.badVerb(verb) |
| } |
| } |
| |
| // fmtFloat formats a float. The default precision for each verb |
| // is specified as last argument in the call to fmt_float. |
| func (p *printer) fmtFloat(v float64, size int, verb rune) { |
| switch verb { |
| case 'b': |
| p.fmt.fmt_float(v, size, verb, -1) |
| case 'v': |
| verb = 'g' |
| fallthrough |
| case 'g', 'G': |
| if p.fmt.Sharp || p.fmt.SharpV { |
| p.fmt.fmt_float(v, size, verb, -1) |
| } else { |
| p.fmtVariableFloat(v, size) |
| } |
| case 'e', 'E': |
| if p.fmt.Sharp || p.fmt.SharpV { |
| p.fmt.fmt_float(v, size, verb, 6) |
| } else { |
| p.fmtScientific(v, size, 6) |
| } |
| case 'f', 'F': |
| if p.fmt.Sharp || p.fmt.SharpV { |
| p.fmt.fmt_float(v, size, verb, 6) |
| } else { |
| p.fmtDecimalFloat(v, size, 6) |
| } |
| default: |
| p.badVerb(verb) |
| } |
| } |
| |
| func (p *printer) setFlags(f *number.Formatter) { |
| f.Flags &^= number.ElideSign |
| if p.fmt.Plus || p.fmt.Space { |
| f.Flags |= number.AlwaysSign |
| if !p.fmt.Plus { |
| f.Flags |= number.ElideSign |
| } |
| } else { |
| f.Flags &^= number.AlwaysSign |
| } |
| } |
| |
| func (p *printer) updatePadding(f *number.Formatter) { |
| f.Flags &^= number.PadMask |
| if p.fmt.Minus { |
| f.Flags |= number.PadAfterSuffix |
| } else { |
| f.Flags |= number.PadBeforePrefix |
| } |
| f.PadRune = ' ' |
| f.FormatWidth = uint16(p.fmt.Width) |
| } |
| |
| func (p *printer) initDecimal(minFrac, maxFrac int) { |
| f := &p.toDecimal |
| f.MinIntegerDigits = 1 |
| f.MaxIntegerDigits = 0 |
| f.MinFractionDigits = uint8(minFrac) |
| f.MaxFractionDigits = int16(maxFrac) |
| p.setFlags(f) |
| f.PadRune = 0 |
| if p.fmt.WidthPresent { |
| if p.fmt.Zero { |
| wid := p.fmt.Width |
| // Use significant integers for this. |
| // TODO: this is not the same as width, but so be it. |
| if f.MinFractionDigits > 0 { |
| wid -= 1 + int(f.MinFractionDigits) |
| } |
| if p.fmt.Plus || p.fmt.Space { |
| wid-- |
| } |
| if wid > 0 && wid > int(f.MinIntegerDigits) { |
| f.MinIntegerDigits = uint8(wid) |
| } |
| } |
| p.updatePadding(f) |
| } |
| } |
| |
| func (p *printer) initScientific(minFrac, maxFrac int) { |
| f := &p.toScientific |
| if maxFrac < 0 { |
| f.SetPrecision(maxFrac) |
| } else { |
| f.SetPrecision(maxFrac + 1) |
| f.MinFractionDigits = uint8(minFrac) |
| f.MaxFractionDigits = int16(maxFrac) |
| } |
| f.MinExponentDigits = 2 |
| p.setFlags(f) |
| f.PadRune = 0 |
| if p.fmt.WidthPresent { |
| f.Flags &^= number.PadMask |
| if p.fmt.Zero { |
| f.PadRune = f.Digit(0) |
| f.Flags |= number.PadAfterPrefix |
| } else { |
| f.PadRune = ' ' |
| f.Flags |= number.PadBeforePrefix |
| } |
| p.updatePadding(f) |
| } |
| } |
| |
| func (p *printer) fmtDecimalInt(v uint64, isSigned bool) { |
| var d number.Decimal |
| |
| f := &p.toDecimal |
| if p.fmt.PrecPresent { |
| p.setFlags(f) |
| f.MinIntegerDigits = uint8(p.fmt.Prec) |
| f.MaxIntegerDigits = 0 |
| f.MinFractionDigits = 0 |
| f.MaxFractionDigits = 0 |
| if p.fmt.WidthPresent { |
| p.updatePadding(f) |
| } |
| } else { |
| p.initDecimal(0, 0) |
| } |
| d.ConvertInt(p.toDecimal.RoundingContext, isSigned, v) |
| |
| out := p.toDecimal.Format([]byte(nil), &d) |
| p.Buffer.Write(out) |
| } |
| |
| func (p *printer) fmtDecimalFloat(v float64, size, prec int) { |
| var d number.Decimal |
| if p.fmt.PrecPresent { |
| prec = p.fmt.Prec |
| } |
| p.initDecimal(prec, prec) |
| d.ConvertFloat(p.toDecimal.RoundingContext, v, size) |
| |
| out := p.toDecimal.Format([]byte(nil), &d) |
| p.Buffer.Write(out) |
| } |
| |
| func (p *printer) fmtVariableFloat(v float64, size int) { |
| prec := -1 |
| if p.fmt.PrecPresent { |
| prec = p.fmt.Prec |
| } |
| var d number.Decimal |
| p.initScientific(0, prec) |
| d.ConvertFloat(p.toScientific.RoundingContext, v, size) |
| |
| // Copy logic of 'g' formatting from strconv. It is simplified a bit as |
| // we don't have to mind having prec > len(d.Digits). |
| shortest := prec < 0 |
| ePrec := prec |
| if shortest { |
| prec = len(d.Digits) |
| ePrec = 6 |
| } else if prec == 0 { |
| prec = 1 |
| ePrec = 1 |
| } |
| exp := int(d.Exp) - 1 |
| if exp < -4 || exp >= ePrec { |
| p.initScientific(0, prec) |
| |
| out := p.toScientific.Format([]byte(nil), &d) |
| p.Buffer.Write(out) |
| } else { |
| if prec > int(d.Exp) { |
| prec = len(d.Digits) |
| } |
| if prec -= int(d.Exp); prec < 0 { |
| prec = 0 |
| } |
| p.initDecimal(0, prec) |
| |
| out := p.toDecimal.Format([]byte(nil), &d) |
| p.Buffer.Write(out) |
| } |
| } |
| |
| func (p *printer) fmtScientific(v float64, size, prec int) { |
| var d number.Decimal |
| if p.fmt.PrecPresent { |
| prec = p.fmt.Prec |
| } |
| p.initScientific(prec, prec) |
| rc := p.toScientific.RoundingContext |
| d.ConvertFloat(rc, v, size) |
| |
| out := p.toScientific.Format([]byte(nil), &d) |
| p.Buffer.Write(out) |
| |
| } |
| |
| // fmtComplex formats a complex number v with |
| // r = real(v) and j = imag(v) as (r+ji) using |
| // fmtFloat for r and j formatting. |
| func (p *printer) fmtComplex(v complex128, size int, verb rune) { |
| // Make sure any unsupported verbs are found before the |
| // calls to fmtFloat to not generate an incorrect error string. |
| switch verb { |
| case 'v', 'b', 'g', 'G', 'f', 'F', 'e', 'E': |
| p.WriteByte('(') |
| p.fmtFloat(real(v), size/2, verb) |
| // Imaginary part always has a sign. |
| if math.IsNaN(imag(v)) { |
| // By CLDR's rules, NaNs do not use patterns or signs. As this code |
| // relies on AlwaysSign working for imaginary parts, we need to |
| // manually handle NaNs. |
| f := &p.toScientific |
| p.setFlags(f) |
| p.updatePadding(f) |
| p.setFlags(f) |
| nan := f.Symbol(number.SymNan) |
| extra := 0 |
| if w, ok := p.Width(); ok { |
| extra = w - utf8.RuneCountInString(nan) - 1 |
| } |
| if f.Flags&number.PadAfterNumber == 0 { |
| for ; extra > 0; extra-- { |
| p.WriteRune(f.PadRune) |
| } |
| } |
| p.WriteString(f.Symbol(number.SymPlusSign)) |
| p.WriteString(nan) |
| for ; extra > 0; extra-- { |
| p.WriteRune(f.PadRune) |
| } |
| p.WriteString("i)") |
| return |
| } |
| oldPlus := p.fmt.Plus |
| p.fmt.Plus = true |
| p.fmtFloat(imag(v), size/2, verb) |
| p.WriteString("i)") // TODO: use symbol? |
| p.fmt.Plus = oldPlus |
| default: |
| p.badVerb(verb) |
| } |
| } |
| |
| func (p *printer) fmtString(v string, verb rune) { |
| switch verb { |
| case 'v': |
| if p.fmt.SharpV { |
| p.fmt.fmt_q(v) |
| } else { |
| p.fmt.fmt_s(v) |
| } |
| case 's': |
| p.fmt.fmt_s(v) |
| case 'x': |
| p.fmt.fmt_sx(v, ldigits) |
| case 'X': |
| p.fmt.fmt_sx(v, udigits) |
| case 'q': |
| p.fmt.fmt_q(v) |
| case 'm': |
| ctx := p.cat.Context(p.tag, rawPrinter{p}) |
| if ctx.Execute(v) == catalog.ErrNotFound { |
| p.WriteString(v) |
| } |
| default: |
| p.badVerb(verb) |
| } |
| } |
| |
| func (p *printer) fmtBytes(v []byte, verb rune, typeString string) { |
| switch verb { |
| case 'v', 'd': |
| if p.fmt.SharpV { |
| p.WriteString(typeString) |
| if v == nil { |
| p.WriteString(nilParenString) |
| return |
| } |
| p.WriteByte('{') |
| for i, c := range v { |
| if i > 0 { |
| p.WriteString(commaSpaceString) |
| } |
| p.fmt0x64(uint64(c), true) |
| } |
| p.WriteByte('}') |
| } else { |
| p.WriteByte('[') |
| for i, c := range v { |
| if i > 0 { |
| p.WriteByte(' ') |
| } |
| p.fmt.fmt_integer(uint64(c), 10, unsigned, ldigits) |
| } |
| p.WriteByte(']') |
| } |
| case 's': |
| p.fmt.fmt_s(string(v)) |
| case 'x': |
| p.fmt.fmt_bx(v, ldigits) |
| case 'X': |
| p.fmt.fmt_bx(v, udigits) |
| case 'q': |
| p.fmt.fmt_q(string(v)) |
| default: |
| p.printValue(reflect.ValueOf(v), verb, 0) |
| } |
| } |
| |
| func (p *printer) fmtPointer(value reflect.Value, verb rune) { |
| var u uintptr |
| switch value.Kind() { |
| case reflect.Chan, reflect.Func, reflect.Map, reflect.Ptr, reflect.Slice, reflect.UnsafePointer: |
| u = value.Pointer() |
| default: |
| p.badVerb(verb) |
| return |
| } |
| |
| switch verb { |
| case 'v': |
| if p.fmt.SharpV { |
| p.WriteByte('(') |
| p.WriteString(value.Type().String()) |
| p.WriteString(")(") |
| if u == 0 { |
| p.WriteString(nilString) |
| } else { |
| p.fmt0x64(uint64(u), true) |
| } |
| p.WriteByte(')') |
| } else { |
| if u == 0 { |
| p.fmt.padString(nilAngleString) |
| } else { |
| p.fmt0x64(uint64(u), !p.fmt.Sharp) |
| } |
| } |
| case 'p': |
| p.fmt0x64(uint64(u), !p.fmt.Sharp) |
| case 'b', 'o', 'd', 'x', 'X': |
| if verb == 'd' { |
| p.fmt.Sharp = true // Print as standard go. TODO: does this make sense? |
| } |
| p.fmtInteger(uint64(u), unsigned, verb) |
| default: |
| p.badVerb(verb) |
| } |
| } |
| |
| func (p *printer) catchPanic(arg interface{}, verb rune) { |
| if err := recover(); err != nil { |
| // If it's a nil pointer, just say "<nil>". The likeliest causes are a |
| // Stringer that fails to guard against nil or a nil pointer for a |
| // value receiver, and in either case, "<nil>" is a nice result. |
| if v := reflect.ValueOf(arg); v.Kind() == reflect.Ptr && v.IsNil() { |
| p.WriteString(nilAngleString) |
| return |
| } |
| // Otherwise print a concise panic message. Most of the time the panic |
| // value will print itself nicely. |
| if p.panicking { |
| // Nested panics; the recursion in printArg cannot succeed. |
| panic(err) |
| } |
| |
| oldFlags := p.fmt.Parser |
| // For this output we want default behavior. |
| p.fmt.ClearFlags() |
| |
| p.WriteString(percentBangString) |
| p.WriteRune(verb) |
| p.WriteString(panicString) |
| p.panicking = true |
| p.printArg(err, 'v') |
| p.panicking = false |
| p.WriteByte(')') |
| |
| p.fmt.Parser = oldFlags |
| } |
| } |
| |
| func (p *printer) handleMethods(verb rune) (handled bool) { |
| if p.erroring { |
| return |
| } |
| // Is it a Formatter? |
| if formatter, ok := p.arg.(format.Formatter); ok { |
| handled = true |
| defer p.catchPanic(p.arg, verb) |
| formatter.Format(p, verb) |
| return |
| } |
| if formatter, ok := p.arg.(fmt.Formatter); ok { |
| handled = true |
| defer p.catchPanic(p.arg, verb) |
| formatter.Format(p, verb) |
| return |
| } |
| |
| // If we're doing Go syntax and the argument knows how to supply it, take care of it now. |
| if p.fmt.SharpV { |
| if stringer, ok := p.arg.(fmt.GoStringer); ok { |
| handled = true |
| defer p.catchPanic(p.arg, verb) |
| // Print the result of GoString unadorned. |
| p.fmt.fmt_s(stringer.GoString()) |
| return |
| } |
| } else { |
| // If a string is acceptable according to the format, see if |
| // the value satisfies one of the string-valued interfaces. |
| // Println etc. set verb to %v, which is "stringable". |
| switch verb { |
| case 'v', 's', 'x', 'X', 'q': |
| // Is it an error or Stringer? |
| // The duplication in the bodies is necessary: |
| // setting handled and deferring catchPanic |
| // must happen before calling the method. |
| switch v := p.arg.(type) { |
| case error: |
| handled = true |
| defer p.catchPanic(p.arg, verb) |
| p.fmtString(v.Error(), verb) |
| return |
| |
| case fmt.Stringer: |
| handled = true |
| defer p.catchPanic(p.arg, verb) |
| p.fmtString(v.String(), verb) |
| return |
| } |
| } |
| } |
| return false |
| } |
| |
| func (p *printer) printArg(arg interface{}, verb rune) { |
| p.arg = arg |
| p.value = reflect.Value{} |
| |
| if arg == nil { |
| switch verb { |
| case 'T', 'v': |
| p.fmt.padString(nilAngleString) |
| default: |
| p.badVerb(verb) |
| } |
| return |
| } |
| |
| // Special processing considerations. |
| // %T (the value's type) and %p (its address) are special; we always do them first. |
| switch verb { |
| case 'T': |
| p.fmt.fmt_s(reflect.TypeOf(arg).String()) |
| return |
| case 'p': |
| p.fmtPointer(reflect.ValueOf(arg), 'p') |
| return |
| } |
| |
| // Some types can be done without reflection. |
| switch f := arg.(type) { |
| case bool: |
| p.fmtBool(f, verb) |
| case float32: |
| p.fmtFloat(float64(f), 32, verb) |
| case float64: |
| p.fmtFloat(f, 64, verb) |
| case complex64: |
| p.fmtComplex(complex128(f), 64, verb) |
| case complex128: |
| p.fmtComplex(f, 128, verb) |
| case int: |
| p.fmtInteger(uint64(f), signed, verb) |
| case int8: |
| p.fmtInteger(uint64(f), signed, verb) |
| case int16: |
| p.fmtInteger(uint64(f), signed, verb) |
| case int32: |
| p.fmtInteger(uint64(f), signed, verb) |
| case int64: |
| p.fmtInteger(uint64(f), signed, verb) |
| case uint: |
| p.fmtInteger(uint64(f), unsigned, verb) |
| case uint8: |
| p.fmtInteger(uint64(f), unsigned, verb) |
| case uint16: |
| p.fmtInteger(uint64(f), unsigned, verb) |
| case uint32: |
| p.fmtInteger(uint64(f), unsigned, verb) |
| case uint64: |
| p.fmtInteger(f, unsigned, verb) |
| case uintptr: |
| p.fmtInteger(uint64(f), unsigned, verb) |
| case string: |
| p.fmtString(f, verb) |
| case []byte: |
| p.fmtBytes(f, verb, "[]byte") |
| case reflect.Value: |
| // Handle extractable values with special methods |
| // since printValue does not handle them at depth 0. |
| if f.IsValid() && f.CanInterface() { |
| p.arg = f.Interface() |
| if p.handleMethods(verb) { |
| return |
| } |
| } |
| p.printValue(f, verb, 0) |
| default: |
| // If the type is not simple, it might have methods. |
| if !p.handleMethods(verb) { |
| // Need to use reflection, since the type had no |
| // interface methods that could be used for formatting. |
| p.printValue(reflect.ValueOf(f), verb, 0) |
| } |
| } |
| } |
| |
| // printValue is similar to printArg but starts with a reflect value, not an interface{} value. |
| // It does not handle 'p' and 'T' verbs because these should have been already handled by printArg. |
| func (p *printer) printValue(value reflect.Value, verb rune, depth int) { |
| // Handle values with special methods if not already handled by printArg (depth == 0). |
| if depth > 0 && value.IsValid() && value.CanInterface() { |
| p.arg = value.Interface() |
| if p.handleMethods(verb) { |
| return |
| } |
| } |
| p.arg = nil |
| p.value = value |
| |
| switch f := value; value.Kind() { |
| case reflect.Invalid: |
| if depth == 0 { |
| p.WriteString(invReflectString) |
| } else { |
| switch verb { |
| case 'v': |
| p.WriteString(nilAngleString) |
| default: |
| p.badVerb(verb) |
| } |
| } |
| case reflect.Bool: |
| p.fmtBool(f.Bool(), verb) |
| case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: |
| p.fmtInteger(uint64(f.Int()), signed, verb) |
| case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: |
| p.fmtInteger(f.Uint(), unsigned, verb) |
| case reflect.Float32: |
| p.fmtFloat(f.Float(), 32, verb) |
| case reflect.Float64: |
| p.fmtFloat(f.Float(), 64, verb) |
| case reflect.Complex64: |
| p.fmtComplex(f.Complex(), 64, verb) |
| case reflect.Complex128: |
| p.fmtComplex(f.Complex(), 128, verb) |
| case reflect.String: |
| p.fmtString(f.String(), verb) |
| case reflect.Map: |
| if p.fmt.SharpV { |
| p.WriteString(f.Type().String()) |
| if f.IsNil() { |
| p.WriteString(nilParenString) |
| return |
| } |
| p.WriteByte('{') |
| } else { |
| p.WriteString(mapString) |
| } |
| keys := f.MapKeys() |
| for i, key := range keys { |
| if i > 0 { |
| if p.fmt.SharpV { |
| p.WriteString(commaSpaceString) |
| } else { |
| p.WriteByte(' ') |
| } |
| } |
| p.printValue(key, verb, depth+1) |
| p.WriteByte(':') |
| p.printValue(f.MapIndex(key), verb, depth+1) |
| } |
| if p.fmt.SharpV { |
| p.WriteByte('}') |
| } else { |
| p.WriteByte(']') |
| } |
| case reflect.Struct: |
| if p.fmt.SharpV { |
| p.WriteString(f.Type().String()) |
| } |
| p.WriteByte('{') |
| for i := 0; i < f.NumField(); i++ { |
| if i > 0 { |
| if p.fmt.SharpV { |
| p.WriteString(commaSpaceString) |
| } else { |
| p.WriteByte(' ') |
| } |
| } |
| if p.fmt.PlusV || p.fmt.SharpV { |
| if name := f.Type().Field(i).Name; name != "" { |
| p.WriteString(name) |
| p.WriteByte(':') |
| } |
| } |
| p.printValue(getField(f, i), verb, depth+1) |
| } |
| p.WriteByte('}') |
| case reflect.Interface: |
| value := f.Elem() |
| if !value.IsValid() { |
| if p.fmt.SharpV { |
| p.WriteString(f.Type().String()) |
| p.WriteString(nilParenString) |
| } else { |
| p.WriteString(nilAngleString) |
| } |
| } else { |
| p.printValue(value, verb, depth+1) |
| } |
| case reflect.Array, reflect.Slice: |
| switch verb { |
| case 's', 'q', 'x', 'X': |
| // Handle byte and uint8 slices and arrays special for the above verbs. |
| t := f.Type() |
| if t.Elem().Kind() == reflect.Uint8 { |
| var bytes []byte |
| if f.Kind() == reflect.Slice { |
| bytes = f.Bytes() |
| } else if f.CanAddr() { |
| bytes = f.Slice(0, f.Len()).Bytes() |
| } else { |
| // We have an array, but we cannot Slice() a non-addressable array, |
| // so we build a slice by hand. This is a rare case but it would be nice |
| // if reflection could help a little more. |
| bytes = make([]byte, f.Len()) |
| for i := range bytes { |
| bytes[i] = byte(f.Index(i).Uint()) |
| } |
| } |
| p.fmtBytes(bytes, verb, t.String()) |
| return |
| } |
| } |
| if p.fmt.SharpV { |
| p.WriteString(f.Type().String()) |
| if f.Kind() == reflect.Slice && f.IsNil() { |
| p.WriteString(nilParenString) |
| return |
| } |
| p.WriteByte('{') |
| for i := 0; i < f.Len(); i++ { |
| if i > 0 { |
| p.WriteString(commaSpaceString) |
| } |
| p.printValue(f.Index(i), verb, depth+1) |
| } |
| p.WriteByte('}') |
| } else { |
| p.WriteByte('[') |
| for i := 0; i < f.Len(); i++ { |
| if i > 0 { |
| p.WriteByte(' ') |
| } |
| p.printValue(f.Index(i), verb, depth+1) |
| } |
| p.WriteByte(']') |
| } |
| case reflect.Ptr: |
| // pointer to array or slice or struct? ok at top level |
| // but not embedded (avoid loops) |
| if depth == 0 && f.Pointer() != 0 { |
| switch a := f.Elem(); a.Kind() { |
| case reflect.Array, reflect.Slice, reflect.Struct, reflect.Map: |
| p.WriteByte('&') |
| p.printValue(a, verb, depth+1) |
| return |
| } |
| } |
| fallthrough |
| case reflect.Chan, reflect.Func, reflect.UnsafePointer: |
| p.fmtPointer(f, verb) |
| default: |
| p.unknownType(f) |
| } |
| } |
| |
| func (p *printer) badArgNum(verb rune) { |
| p.WriteString(percentBangString) |
| p.WriteRune(verb) |
| p.WriteString(badIndexString) |
| } |
| |
| func (p *printer) missingArg(verb rune) { |
| p.WriteString(percentBangString) |
| p.WriteRune(verb) |
| p.WriteString(missingString) |
| } |
| |
| func (p *printer) doPrintf(fmt string) { |
| for p.fmt.Parser.SetFormat(fmt); p.fmt.Scan(); { |
| switch p.fmt.Status { |
| case format.StatusText: |
| p.WriteString(p.fmt.Text()) |
| case format.StatusSubstitution: |
| p.printArg(p.Arg(p.fmt.ArgNum), p.fmt.Verb) |
| case format.StatusBadWidthSubstitution: |
| p.WriteString(badWidthString) |
| p.printArg(p.Arg(p.fmt.ArgNum), p.fmt.Verb) |
| case format.StatusBadPrecSubstitution: |
| p.WriteString(badPrecString) |
| p.printArg(p.Arg(p.fmt.ArgNum), p.fmt.Verb) |
| case format.StatusNoVerb: |
| p.WriteString(noVerbString) |
| case format.StatusBadArgNum: |
| p.badArgNum(p.fmt.Verb) |
| case format.StatusMissingArg: |
| p.missingArg(p.fmt.Verb) |
| default: |
| panic("unreachable") |
| } |
| } |
| |
| // Check for extra arguments, but only if there was at least one ordered |
| // argument. Note that this behavior is necessarily different from fmt: |
| // different variants of messages may opt to drop some or all of the |
| // arguments. |
| if !p.fmt.Reordered && p.fmt.ArgNum < len(p.fmt.Args) && p.fmt.ArgNum != 0 { |
| p.fmt.ClearFlags() |
| p.WriteString(extraString) |
| for i, arg := range p.fmt.Args[p.fmt.ArgNum:] { |
| if i > 0 { |
| p.WriteString(commaSpaceString) |
| } |
| if arg == nil { |
| p.WriteString(nilAngleString) |
| } else { |
| p.WriteString(reflect.TypeOf(arg).String()) |
| p.WriteString("=") |
| p.printArg(arg, 'v') |
| } |
| } |
| p.WriteByte(')') |
| } |
| } |
| |
| func (p *printer) doPrint(a []interface{}) { |
| prevString := false |
| for argNum, arg := range a { |
| isString := arg != nil && reflect.TypeOf(arg).Kind() == reflect.String |
| // Add a space between two non-string arguments. |
| if argNum > 0 && !isString && !prevString { |
| p.WriteByte(' ') |
| } |
| p.printArg(arg, 'v') |
| prevString = isString |
| } |
| } |
| |
| // doPrintln is like doPrint but always adds a space between arguments |
| // and a newline after the last argument. |
| func (p *printer) doPrintln(a []interface{}) { |
| for argNum, arg := range a { |
| if argNum > 0 { |
| p.WriteByte(' ') |
| } |
| p.printArg(arg, 'v') |
| } |
| p.WriteByte('\n') |
| } |