blob: eca3b7aad4a8673f42ff65ce000b21ce245c2ab1 [file] [log] [blame]
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build linux
package unix_test
import (
"bufio"
"bytes"
"encoding/hex"
"errors"
"fmt"
"io"
"net"
"os"
"os/exec"
"path/filepath"
"runtime"
"runtime/debug"
"strconv"
"strings"
"syscall"
"testing"
"time"
"unsafe"
"golang.org/x/sys/unix"
)
func TestIoctlGetEthtoolDrvinfo(t *testing.T) {
if runtime.GOOS == "android" {
t.Skip("ethtool driver info is not available on android, skipping test")
}
s, err := unix.Socket(unix.AF_INET, unix.SOCK_STREAM, 0)
if err != nil {
t.Fatalf("failed to open socket: %v", err)
}
defer unix.Close(s)
ifis, err := net.Interfaces()
if err != nil {
t.Fatalf("failed to get network interfaces: %v", err)
}
// Print the interface name and associated driver information for each
// network interface supported by ethtool.
for _, ifi := range ifis {
drv, err := unix.IoctlGetEthtoolDrvinfo(s, ifi.Name)
if err != nil {
if err == unix.EOPNOTSUPP {
continue
}
if err == unix.EBUSY {
// See https://go.dev/issues/67350
t.Logf("%s: ethtool driver busy, possible kernel bug", ifi.Name)
continue
}
t.Fatalf("failed to get ethtool driver info for %q: %v", ifi.Name, err)
}
// Trim trailing NULLs.
t.Logf("%s: %q", ifi.Name, string(bytes.TrimRight(drv.Driver[:], "\x00")))
}
}
func TestIoctlGetEthtoolTsInfo(t *testing.T) {
if runtime.GOOS == "android" {
t.Skip("ethtool driver info is not available on android, skipping test")
}
s, err := unix.Socket(unix.AF_INET, unix.SOCK_STREAM, 0)
if err != nil {
t.Fatalf("failed to open socket: %v", err)
}
defer unix.Close(s)
ifis, err := net.Interfaces()
if err != nil {
t.Fatalf("failed to get network interfaces: %v", err)
}
// Print the interface name and associated PHC information for each
// network interface supported by ethtool.
for _, ifi := range ifis {
tsi, err := unix.IoctlGetEthtoolTsInfo(s, ifi.Name)
if err != nil {
if err == unix.EOPNOTSUPP {
continue
}
if err == unix.EBUSY {
// See https://go.dev/issues/67350
t.Logf("%s: ethtool driver busy, possible kernel bug", ifi.Name)
continue
}
t.Fatalf("failed to get ethtool PHC info for %q: %v", ifi.Name, err)
}
t.Logf("%s: ptp%d", ifi.Name, tsi.Phc_index)
}
}
func TestIoctlGetInt(t *testing.T) {
f, err := os.Open("/dev/random")
if err != nil {
t.Fatalf("failed to open device: %v", err)
}
defer f.Close()
v, err := unix.IoctlGetInt(int(f.Fd()), unix.RNDGETENTCNT)
if err != nil {
t.Fatalf("failed to perform ioctl: %v", err)
}
t.Logf("%d bits of entropy available", v)
}
func TestIoctlRetInt(t *testing.T) {
f, err := os.Open("/proc/self/ns/mnt")
if err != nil {
t.Skipf("skipping test, %v", err)
}
defer f.Close()
v, err := unix.IoctlRetInt(int(f.Fd()), unix.NS_GET_NSTYPE)
if err != nil {
if err == unix.ENOTTY {
t.Skipf("old kernel? (need Linux >= 4.11)")
}
t.Fatalf("failed to perform ioctl: %v", err)
}
if v != unix.CLONE_NEWNS {
t.Fatalf("unexpected return from ioctl; expected %v, got %v", v, unix.CLONE_NEWNS)
}
}
func TestIoctlGetRTCTime(t *testing.T) {
f, err := os.Open("/dev/rtc0")
if err != nil {
t.Skipf("skipping test, %v", err)
}
defer f.Close()
v, err := unix.IoctlGetRTCTime(int(f.Fd()))
if err != nil {
t.Fatalf("failed to perform ioctl: %v", err)
}
t.Logf("RTC time: %04d-%02d-%02d %02d:%02d:%02d", v.Year+1900, v.Mon+1, v.Mday, v.Hour, v.Min, v.Sec)
}
func TestIoctlGetRTCWkAlrm(t *testing.T) {
f, err := os.Open("/dev/rtc0")
if err != nil {
t.Skipf("skipping test, %v", err)
}
defer f.Close()
v, err := unix.IoctlGetRTCWkAlrm(int(f.Fd()))
// Not all RTC drivers support wakeup alarms, and will return EINVAL in such cases.
if err == unix.EINVAL {
t.Skip("RTC_WKALM_RD ioctl not supported on this rtc, skipping test")
}
if err != nil {
t.Fatalf("failed to perform ioctl: %v", err)
}
t.Logf("RTC wake alarm enabled '%d'; time: %04d-%02d-%02d %02d:%02d:%02d",
v.Enabled, v.Time.Year+1900, v.Time.Mon+1, v.Time.Mday, v.Time.Hour, v.Time.Min, v.Time.Sec)
}
func TestIoctlIfreq(t *testing.T) {
s, err := unix.Socket(unix.AF_INET, unix.SOCK_STREAM, 0)
if err != nil {
t.Fatalf("failed to open socket: %v", err)
}
defer unix.Close(s)
ifis, err := net.Interfaces()
if err != nil {
t.Fatalf("failed to get network interfaces: %v", err)
}
// Compare the network interface fetched from rtnetlink with the data from
// the equivalent ioctl API.
for _, ifi := range ifis {
ifr, err := unix.NewIfreq(ifi.Name)
if err != nil {
t.Fatalf("failed to create ifreq for %q: %v", ifi.Name, err)
}
if err := unix.IoctlIfreq(s, unix.SIOCGIFINDEX, ifr); err != nil {
t.Fatalf("failed to get interface index for %q: %v", ifi.Name, err)
}
if want, got := ifi.Index, int(ifr.Uint32()); want != got {
t.Fatalf("unexpected interface index for %q: got: %d, want: %d",
ifi.Name, got, want)
}
if want, got := ifi.Name, ifr.Name(); want != got {
t.Fatalf("unexpected interface name for index %d: got: %q, want: %q",
ifi.Index, got, want)
}
wantIP, ok := firstIPv4(t, &ifi)
if err := unix.IoctlIfreq(s, unix.SIOCGIFADDR, ifr); err != nil {
// Interface may have no assigned IPv4 address.
if err != unix.EADDRNOTAVAIL {
t.Fatalf("failed to get IPv4 address for %q: %v", ifi.Name, err)
}
// But if we found an address via rtnetlink, we should expect the
// ioctl to return one.
if ok {
t.Fatalf("found IPv4 address %q for %q but ioctl returned none", wantIP, ifi.Name)
}
continue
}
// Found an address, compare it directly.
addr, err := ifr.Inet4Addr()
if err != nil {
t.Fatalf("failed to get ifreq IPv4 address: %v", err)
}
if want, got := wantIP, addr; !want.Equal(got) {
t.Fatalf("unexpected first IPv4 address for %q: got: %q, want: %q",
ifi.Name, got, want)
}
}
}
// firstIPv4 reports whether the interface has an IPv4 address assigned,
// returning the first discovered address.
func firstIPv4(t *testing.T, ifi *net.Interface) (net.IP, bool) {
t.Helper()
addrs, err := ifi.Addrs()
if err != nil {
t.Fatalf("failed to get interface %q addresses: %v", ifi.Name, err)
}
for _, a := range addrs {
// Only want valid IPv4 addresses.
ipn, ok := a.(*net.IPNet)
if !ok || ipn.IP.To4() == nil {
continue
}
return ipn.IP, true
}
return nil, false
}
func TestPidfd(t *testing.T) {
// Start a child process which will sleep for 1 hour; longer than the 10
// minute default Go test timeout.
cmd := exec.Command("sleep", "1h")
if err := cmd.Start(); err != nil {
t.Fatalf("failed to exec sleep: %v", err)
}
fd, err := unix.PidfdOpen(cmd.Process.Pid, 0)
if err != nil {
// GOARCH arm/arm64 and GOOS android builders do not support pidfds.
if errors.Is(err, unix.ENOSYS) {
t.Skipf("skipping, pidfd_open is not implemented: %v", err)
}
t.Fatalf("failed to open child pidfd: %v", err)
}
defer unix.Close(fd)
// Child is running but not terminated.
if err := unix.Waitid(unix.P_PIDFD, fd, nil, unix.WEXITED|unix.WNOHANG, nil); err != nil {
if errors.Is(err, unix.EINVAL) {
t.Skip("skipping due to waitid EINVAL, see https://go.dev/issues/52014")
}
t.Fatalf("failed to check for child exit: %v", err)
}
const want = unix.SIGHUP
if err := unix.PidfdSendSignal(fd, want, nil, 0); err != nil {
t.Fatalf("failed to signal child process: %v", err)
}
// Now verify that the child process received the expected signal.
var eerr *exec.ExitError
if err := cmd.Wait(); !errors.As(err, &eerr) {
t.Fatalf("child process terminated but did not return an exit error: %v", err)
}
if err := unix.Waitid(unix.P_PIDFD, fd, nil, unix.WEXITED, nil); !errors.Is(err, unix.ECHILD) {
t.Fatalf("expected ECHILD for final waitid, but got: %v", err)
}
ws, ok := eerr.Sys().(syscall.WaitStatus)
if !ok {
t.Fatalf("expected syscall.WaitStatus value, but got: %#T", eerr.Sys())
}
if got := ws.Signal(); got != want {
t.Fatalf("unexpected child exit signal, got: %s, want: %s", got, want)
}
}
func TestPpoll(t *testing.T) {
if runtime.GOOS == "android" {
t.Skip("mkfifo syscall is not available on android, skipping test")
}
chtmpdir(t)
f := mktmpfifo(t)
const timeout = 100 * time.Millisecond
ok := make(chan bool, 1)
go func() {
select {
case <-time.After(10 * timeout):
t.Errorf("Ppoll: failed to timeout after %d", 10*timeout)
case <-ok:
}
}()
fds := []unix.PollFd{{Fd: int32(f.Fd()), Events: unix.POLLIN}}
timeoutTs := unix.NsecToTimespec(int64(timeout))
n, err := unix.Ppoll(fds, &timeoutTs, nil)
ok <- true
if err != nil {
t.Errorf("Ppoll: unexpected error: %v", err)
return
}
if n != 0 {
t.Errorf("Ppoll: wrong number of events: got %v, expected %v", n, 0)
return
}
}
func TestTime(t *testing.T) {
var ut unix.Time_t
ut2, err := unix.Time(&ut)
if err != nil {
t.Fatalf("Time: %v", err)
}
if ut != ut2 {
t.Errorf("Time: return value %v should be equal to argument %v", ut2, ut)
}
var now time.Time
for i := 0; i < 10; i++ {
ut, err = unix.Time(nil)
if err != nil {
t.Fatalf("Time: %v", err)
}
now = time.Now()
diff := int64(ut) - now.Unix()
if -1 <= diff && diff <= 1 {
return
}
}
t.Errorf("Time: return value %v should be nearly equal to time.Now().Unix() %v±1", ut, now.Unix())
}
func TestUtime(t *testing.T) {
chtmpdir(t)
touch(t, "file1")
buf := &unix.Utimbuf{
Modtime: 12345,
}
err := unix.Utime("file1", buf)
if err != nil {
t.Fatalf("Utime: %v", err)
}
fi, err := os.Stat("file1")
if err != nil {
t.Fatal(err)
}
if fi.ModTime().Unix() != 12345 {
t.Errorf("Utime: failed to change modtime: expected %v, got %v", 12345, fi.ModTime().Unix())
}
}
func TestRlimitAs(t *testing.T) {
// disable GC during to avoid flaky test
defer debug.SetGCPercent(debug.SetGCPercent(-1))
var rlim unix.Rlimit
err := unix.Getrlimit(unix.RLIMIT_AS, &rlim)
if err != nil {
t.Fatalf("Getrlimit: %v", err)
}
var zero unix.Rlimit
if zero == rlim {
t.Fatalf("Getrlimit: got zero value %#v", rlim)
}
set := rlim
set.Cur = uint64(unix.Getpagesize())
err = unix.Setrlimit(unix.RLIMIT_AS, &set)
if err != nil {
t.Fatalf("Setrlimit: set failed: %#v %v", set, err)
}
// RLIMIT_AS was set to the page size, so mmap()'ing twice the page size
// should fail. See 'man 2 getrlimit'.
_, err = unix.Mmap(-1, 0, 2*unix.Getpagesize(), unix.PROT_NONE, unix.MAP_ANON|unix.MAP_PRIVATE)
if err == nil {
t.Fatal("Mmap: unexpectedly succeeded after setting RLIMIT_AS")
}
err = unix.Setrlimit(unix.RLIMIT_AS, &rlim)
if err != nil {
t.Fatalf("Setrlimit: restore failed: %#v %v", rlim, err)
}
b, err := unix.Mmap(-1, 0, 2*unix.Getpagesize(), unix.PROT_NONE, unix.MAP_ANON|unix.MAP_PRIVATE)
if err != nil {
t.Fatalf("Mmap: %v", err)
}
err = unix.Munmap(b)
if err != nil {
t.Fatalf("Munmap: %v", err)
}
}
func TestPselect(t *testing.T) {
for {
n, err := unix.Pselect(0, nil, nil, nil, &unix.Timespec{Sec: 0, Nsec: 0}, nil)
if err == unix.EINTR {
t.Logf("Pselect interrupted")
continue
} else if err != nil {
t.Fatalf("Pselect: %v", err)
}
if n != 0 {
t.Fatalf("Pselect: got %v ready file descriptors, expected 0", n)
}
break
}
dur := 2500 * time.Microsecond
var took time.Duration
for {
// On some platforms (e.g. Linux), the passed-in timespec is
// updated by pselect(2). Make sure to reset to the full
// duration in case of an EINTR.
ts := unix.NsecToTimespec(int64(dur))
start := time.Now()
n, err := unix.Pselect(0, nil, nil, nil, &ts, nil)
took = time.Since(start)
if err == unix.EINTR {
t.Logf("Pselect interrupted after %v", took)
continue
} else if err != nil {
t.Fatalf("Pselect: %v", err)
}
if n != 0 {
t.Fatalf("Pselect: got %v ready file descriptors, expected 0", n)
}
break
}
// On some builder the actual timeout might also be slightly less than the requested.
// Add an acceptable margin to avoid flaky tests.
if took < dur*2/3 {
t.Errorf("Pselect: got %v timeout, expected at least %v", took, dur)
}
}
func TestPselectWithSigmask(t *testing.T) {
var sigmask unix.Sigset_t
sigmask.Val[0] |= 1 << (uint(unix.SIGUSR1) - 1)
for {
n, err := unix.Pselect(0, nil, nil, nil, &unix.Timespec{Sec: 0, Nsec: 0}, &sigmask)
if err == unix.EINTR {
t.Logf("Pselect interrupted")
continue
} else if err != nil {
t.Fatalf("Pselect: %v", err)
}
if n != 0 {
t.Fatalf("Pselect: got %v ready file descriptors, expected 0", n)
}
break
}
}
func TestSchedSetaffinity(t *testing.T) {
var newMask unix.CPUSet
newMask.Zero()
if newMask.Count() != 0 {
t.Errorf("CpuZero: didn't zero CPU set: %v", newMask)
}
cpu := 1
newMask.Set(cpu)
if newMask.Count() != 1 || !newMask.IsSet(cpu) {
t.Errorf("CpuSet: didn't set CPU %d in set: %v", cpu, newMask)
}
cpu = 5
newMask.Set(cpu)
if newMask.Count() != 2 || !newMask.IsSet(cpu) {
t.Errorf("CpuSet: didn't set CPU %d in set: %v", cpu, newMask)
}
newMask.Clear(cpu)
if newMask.Count() != 1 || newMask.IsSet(cpu) {
t.Errorf("CpuClr: didn't clear CPU %d in set: %v", cpu, newMask)
}
runtime.LockOSThread()
defer runtime.UnlockOSThread()
var oldMask unix.CPUSet
err := unix.SchedGetaffinity(0, &oldMask)
if err != nil {
t.Fatalf("SchedGetaffinity: %v", err)
}
if runtime.NumCPU() < 2 {
t.Skip("skipping setaffinity tests on single CPU system")
}
if runtime.GOOS == "android" {
t.Skip("skipping setaffinity tests on android")
}
// On a system like ppc64x where some cores can be disabled using ppc64_cpu,
// setaffinity should only be called with enabled cores. The valid cores
// are found from the oldMask, but if none are found then the setaffinity
// tests are skipped. Issue #27875.
cpu = 1
if !oldMask.IsSet(cpu) {
newMask.Zero()
for i := 0; i < len(oldMask); i++ {
if oldMask.IsSet(i) {
newMask.Set(i)
break
}
}
if newMask.Count() == 0 {
t.Skip("skipping setaffinity tests if CPU not available")
}
}
err = unix.SchedSetaffinity(0, &newMask)
if err != nil {
t.Fatalf("SchedSetaffinity: %v", err)
}
var gotMask unix.CPUSet
err = unix.SchedGetaffinity(0, &gotMask)
if err != nil {
t.Fatalf("SchedGetaffinity: %v", err)
}
if gotMask != newMask {
t.Errorf("SchedSetaffinity: returned affinity mask does not match set affinity mask")
}
// Restore old mask so it doesn't affect successive tests
err = unix.SchedSetaffinity(0, &oldMask)
if err != nil {
t.Fatalf("SchedSetaffinity: %v", err)
}
}
func TestStatx(t *testing.T) {
var stx unix.Statx_t
err := unix.Statx(unix.AT_FDCWD, ".", 0, 0, &stx)
if err == unix.ENOSYS || err == unix.EPERM {
t.Skip("statx syscall is not available, skipping test")
} else if err != nil {
t.Fatalf("Statx: %v", err)
}
chtmpdir(t)
touch(t, "file1")
var st unix.Stat_t
err = unix.Stat("file1", &st)
if err != nil {
t.Fatalf("Stat: %v", err)
}
flags := unix.AT_STATX_SYNC_AS_STAT
err = unix.Statx(unix.AT_FDCWD, "file1", flags, unix.STATX_ALL, &stx)
if err != nil {
t.Fatalf("Statx: %v", err)
}
if uint32(stx.Mode) != st.Mode {
t.Errorf("Statx: returned stat mode does not match Stat")
}
ctime := unix.StatxTimestamp{Sec: int64(st.Ctim.Sec), Nsec: uint32(st.Ctim.Nsec)}
mtime := unix.StatxTimestamp{Sec: int64(st.Mtim.Sec), Nsec: uint32(st.Mtim.Nsec)}
if stx.Ctime != ctime {
t.Errorf("Statx: returned stat ctime does not match Stat")
}
if stx.Mtime != mtime {
t.Errorf("Statx: returned stat mtime does not match Stat")
}
err = os.Symlink("file1", "symlink1")
if err != nil {
t.Fatal(err)
}
err = unix.Lstat("symlink1", &st)
if err != nil {
t.Fatalf("Lstat: %v", err)
}
err = unix.Statx(unix.AT_FDCWD, "symlink1", flags, unix.STATX_BASIC_STATS, &stx)
if err != nil {
t.Fatalf("Statx: %v", err)
}
// follow symlink, expect a regulat file
if stx.Mode&unix.S_IFREG == 0 {
t.Errorf("Statx: didn't follow symlink")
}
err = unix.Statx(unix.AT_FDCWD, "symlink1", flags|unix.AT_SYMLINK_NOFOLLOW, unix.STATX_ALL, &stx)
if err != nil {
t.Fatalf("Statx: %v", err)
}
// follow symlink, expect a symlink
if stx.Mode&unix.S_IFLNK == 0 {
t.Errorf("Statx: unexpectedly followed symlink")
}
if uint32(stx.Mode) != st.Mode {
t.Errorf("Statx: returned stat mode does not match Lstat")
}
ctime = unix.StatxTimestamp{Sec: int64(st.Ctim.Sec), Nsec: uint32(st.Ctim.Nsec)}
mtime = unix.StatxTimestamp{Sec: int64(st.Mtim.Sec), Nsec: uint32(st.Mtim.Nsec)}
if stx.Ctime != ctime {
t.Errorf("Statx: returned stat ctime does not match Lstat")
}
if stx.Mtime != mtime {
t.Errorf("Statx: returned stat mtime does not match Lstat")
}
}
// stringsFromByteSlice converts a sequence of attributes to a []string.
// On Linux, each entry is a NULL-terminated string.
func stringsFromByteSlice(buf []byte) []string {
var result []string
off := 0
for i, b := range buf {
if b == 0 {
result = append(result, string(buf[off:i]))
off = i + 1
}
}
return result
}
func TestFaccessat(t *testing.T) {
chtmpdir(t)
touch(t, "file1")
err := unix.Faccessat(unix.AT_FDCWD, "file1", unix.R_OK, 0)
if err != nil {
t.Errorf("Faccessat: unexpected error: %v", err)
}
err = unix.Faccessat(unix.AT_FDCWD, "file1", unix.R_OK, 2)
if err != unix.EINVAL {
t.Errorf("Faccessat: unexpected error: %v, want EINVAL", err)
}
err = unix.Faccessat(unix.AT_FDCWD, "file1", unix.R_OK, unix.AT_EACCESS)
if err != nil {
t.Errorf("Faccessat: unexpected error: %v", err)
}
err = os.Symlink("file1", "symlink1")
if err != nil {
t.Fatal(err)
}
err = unix.Faccessat(unix.AT_FDCWD, "symlink1", unix.R_OK, unix.AT_SYMLINK_NOFOLLOW)
if err != nil {
t.Errorf("Faccessat SYMLINK_NOFOLLOW: unexpected error %v", err)
}
// We can't really test AT_SYMLINK_NOFOLLOW, because there
// doesn't seem to be any way to change the mode of a symlink.
// We don't test AT_EACCESS because such tests are only
// meaningful if run as root.
err = unix.Fchmodat(unix.AT_FDCWD, "file1", 0, 0)
if err != nil {
t.Errorf("Fchmodat: unexpected error %v", err)
}
err = unix.Faccessat(unix.AT_FDCWD, "file1", unix.F_OK, unix.AT_SYMLINK_NOFOLLOW)
if err != nil {
t.Errorf("Faccessat: unexpected error: %v", err)
}
err = unix.Faccessat(unix.AT_FDCWD, "file1", unix.R_OK, unix.AT_SYMLINK_NOFOLLOW)
if err != unix.EACCES {
if unix.Getuid() != 0 {
t.Errorf("Faccessat: unexpected error: %v, want EACCES", err)
}
}
}
func TestSyncFileRange(t *testing.T) {
file, err := os.Create(filepath.Join(t.TempDir(), t.Name()))
if err != nil {
t.Fatal(err)
}
defer file.Close()
err = unix.SyncFileRange(int(file.Fd()), 0, 0, 0)
if err == unix.ENOSYS || err == unix.EPERM {
t.Skip("sync_file_range syscall is not available, skipping test")
} else if err != nil {
t.Fatalf("SyncFileRange: %v", err)
}
// invalid flags
flags := 0xf00
err = unix.SyncFileRange(int(file.Fd()), 0, 0, flags)
if err != unix.EINVAL {
t.Fatalf("SyncFileRange: unexpected error: %v, want EINVAL", err)
}
}
func TestClockNanosleep(t *testing.T) {
delay := 50 * time.Millisecond
// Relative timespec.
start := time.Now()
rel := unix.NsecToTimespec(delay.Nanoseconds())
remain := unix.Timespec{}
for {
err := unix.ClockNanosleep(unix.CLOCK_MONOTONIC, 0, &rel, &remain)
if err == unix.ENOSYS || err == unix.EPERM {
t.Skip("clock_nanosleep syscall is not available, skipping test")
} else if err == unix.EINTR {
t.Logf("ClockNanosleep interrupted after %v", time.Since(start))
rel = remain
continue
} else if err != nil {
t.Errorf("ClockNanosleep(CLOCK_MONOTONIC, 0, %#v, nil) = %v", &rel, err)
} else if slept := time.Since(start); slept < delay {
t.Errorf("ClockNanosleep(CLOCK_MONOTONIC, 0, %#v, nil) slept only %v", &rel, slept)
}
break
}
// Absolute timespec.
for {
start = time.Now()
until := start.Add(delay)
abs := unix.NsecToTimespec(until.UnixNano())
err := unix.ClockNanosleep(unix.CLOCK_REALTIME, unix.TIMER_ABSTIME, &abs, nil)
if err == unix.EINTR {
t.Logf("ClockNanosleep interrupted after %v", time.Since(start))
continue
} else if err != nil {
t.Errorf("ClockNanosleep(CLOCK_REALTIME, TIMER_ABSTIME, %#v (=%v), nil) = %v", &abs, until, err)
} else {
// We asked for CLOCK_REALTIME, but we have no way to know whether it
// jumped backward after ClockNanosleep returned. Compare both ways,
// and only fail if both the monotonic and wall clocks agree that
// the elapsed sleep was too short.
//
// This can still theoretically fail spuriously: if the clock jumps
// forward during ClockNanosleep and then backward again before we can
// call time.Now, then we could end up with a time that is too short on
// both the monotonic scale (because of the forward jump) and the
// real-time scale (because of the backward jump. However, it seems
// unlikely that two such contrary jumps will ever occur in the time it
// takes to execute this test.
if now := time.Now(); now.Before(until) && now.Round(0).Before(until) {
t.Errorf("ClockNanosleep(CLOCK_REALTIME, TIMER_ABSTIME, %#v (=%v), nil) slept only until %v", &abs, until, now)
}
}
break
}
// Invalid clock. clock_nanosleep(2) says EINVAL, but it’s actually EOPNOTSUPP.
err := unix.ClockNanosleep(unix.CLOCK_THREAD_CPUTIME_ID, 0, &rel, nil)
if err != unix.EINVAL && err != unix.EOPNOTSUPP {
t.Errorf("ClockNanosleep(CLOCK_THREAD_CPUTIME_ID, 0, %#v, nil) = %v, want EINVAL or EOPNOTSUPP", &rel, err)
}
}
func TestOpenByHandleAt(t *testing.T) {
skipIfNotSupported := func(t *testing.T, name string, err error) {
if err == unix.EPERM {
t.Skipf("skipping %s test without CAP_DAC_READ_SEARCH", name)
}
if err == unix.ENOSYS {
t.Skipf("%s system call not available", name)
}
if err == unix.EOPNOTSUPP {
t.Skipf("%s not supported on this filesystem", name)
}
}
h, mountID, err := unix.NameToHandleAt(unix.AT_FDCWD, "syscall_linux_test.go", 0)
if err != nil {
skipIfNotSupported(t, "name_to_handle_at", err)
t.Fatalf("NameToHandleAt: %v", err)
}
t.Logf("mountID: %v, handle: size=%d, type=%d, bytes=%q", mountID,
h.Size(), h.Type(), h.Bytes())
mount, err := openMountByID(mountID)
if err != nil {
t.Fatalf("openMountByID: %v", err)
}
defer mount.Close()
for _, clone := range []bool{false, true} {
t.Run("clone="+strconv.FormatBool(clone), func(t *testing.T) {
if clone {
h = unix.NewFileHandle(h.Type(), h.Bytes())
}
fd, err := unix.OpenByHandleAt(int(mount.Fd()), h, unix.O_RDONLY)
skipIfNotSupported(t, "open_by_handle_at", err)
if err != nil {
t.Fatalf("OpenByHandleAt: %v", err)
}
t.Logf("opened fd %v", fd)
f := os.NewFile(uintptr(fd), "")
defer f.Close()
slurp, err := io.ReadAll(f)
if err != nil {
t.Fatal(err)
}
const substr = "Some substring for a test."
if !strings.Contains(string(slurp), substr) {
t.Errorf("didn't find substring %q in opened file; read %d bytes", substr, len(slurp))
}
})
}
}
func openMountByID(mountID int) (f *os.File, err error) {
mi, err := os.Open("/proc/self/mountinfo")
if err != nil {
return nil, err
}
defer mi.Close()
bs := bufio.NewScanner(mi)
wantPrefix := []byte(fmt.Sprintf("%v ", mountID))
for bs.Scan() {
if !bytes.HasPrefix(bs.Bytes(), wantPrefix) {
continue
}
fields := strings.Fields(bs.Text())
dev := fields[4]
return os.Open(dev)
}
if err := bs.Err(); err != nil {
return nil, err
}
return nil, errors.New("mountID not found")
}
func TestEpoll(t *testing.T) {
efd, err := unix.EpollCreate1(unix.EPOLL_CLOEXEC)
if err != nil {
t.Fatalf("EpollCreate1: %v", err)
}
defer unix.Close(efd)
r, w, err := os.Pipe()
if err != nil {
t.Fatal(err)
}
defer r.Close()
defer w.Close()
fd := int(r.Fd())
ev := unix.EpollEvent{Events: unix.EPOLLIN, Fd: int32(fd)}
err = unix.EpollCtl(efd, unix.EPOLL_CTL_ADD, fd, &ev)
if err != nil {
t.Fatalf("EpollCtl: %v", err)
}
if _, err := w.Write([]byte("HELLO GOPHER")); err != nil {
t.Fatal(err)
}
events := make([]unix.EpollEvent, 128)
n, err := unix.EpollWait(efd, events, 1)
if err != nil {
t.Fatalf("EpollWait: %v", err)
}
if n != 1 {
t.Errorf("EpollWait: wrong number of events: got %v, expected 1", n)
}
got := int(events[0].Fd)
if got != fd {
t.Errorf("EpollWait: wrong Fd in event: got %v, expected %v", got, fd)
}
}
func TestPrctlRetInt(t *testing.T) {
skipc := make(chan bool, 1)
skip := func() {
skipc <- true
runtime.Goexit()
}
go func() {
// This test uses prctl to modify the calling thread, so run it on its own
// throwaway thread and do not unlock it when the goroutine exits.
runtime.LockOSThread()
defer close(skipc)
err := unix.Prctl(unix.PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)
if err != nil {
t.Logf("Prctl: %v, skipping test", err)
skip()
}
v, err := unix.PrctlRetInt(unix.PR_GET_NO_NEW_PRIVS, 0, 0, 0, 0)
if err != nil {
t.Errorf("failed to perform prctl: %v", err)
}
if v != 1 {
t.Errorf("unexpected return from prctl; got %v, expected %v", v, 1)
}
}()
if <-skipc {
t.SkipNow()
}
}
func TestTimerfd(t *testing.T) {
var now unix.Timespec
if err := unix.ClockGettime(unix.CLOCK_REALTIME, &now); err != nil {
t.Fatalf("ClockGettime: %v", err)
}
tfd, err := unix.TimerfdCreate(unix.CLOCK_REALTIME, 0)
if err == unix.ENOSYS {
t.Skip("timerfd_create system call not implemented")
} else if err != nil {
t.Fatalf("TimerfdCreate: %v", err)
}
defer unix.Close(tfd)
var timeSpec unix.ItimerSpec
if err := unix.TimerfdGettime(tfd, &timeSpec); err != nil {
t.Fatalf("TimerfdGettime: %v", err)
}
if timeSpec.Value.Nsec != 0 || timeSpec.Value.Sec != 0 {
t.Fatalf("TimerfdGettime: timer is already set, but shouldn't be")
}
timeSpec = unix.ItimerSpec{
Interval: unix.NsecToTimespec(int64(time.Millisecond)),
Value: now,
}
if err := unix.TimerfdSettime(tfd, unix.TFD_TIMER_ABSTIME, &timeSpec, nil); err != nil {
t.Fatalf("TimerfdSettime: %v", err)
}
const totalTicks = 10
const bufferLength = 8
buffer := make([]byte, bufferLength)
var count uint64 = 0
for count < totalTicks {
n, err := unix.Read(tfd, buffer)
if err != nil {
t.Fatalf("Timerfd: %v", err)
} else if n != bufferLength {
t.Fatalf("Timerfd: got %d bytes from timerfd, expected %d bytes", n, bufferLength)
}
count += *(*uint64)(unsafe.Pointer(&buffer))
}
}
func TestOpenat2(t *testing.T) {
how := &unix.OpenHow{
Flags: unix.O_RDONLY,
}
fd, err := unix.Openat2(unix.AT_FDCWD, ".", how)
if err != nil {
if err == unix.ENOSYS || err == unix.EPERM {
t.Skipf("openat2: %v (old kernel? need Linux >= 5.6)", err)
}
t.Fatalf("openat2: %v", err)
}
if err := unix.Close(fd); err != nil {
t.Fatalf("close: %v", err)
}
// prepare
subdir := filepath.Join(t.TempDir(), "dir")
if err := os.Mkdir(subdir, 0755); err != nil {
t.Fatal(err)
}
symlink := filepath.Join(subdir, "symlink")
if err := os.Symlink("../", symlink); err != nil {
t.Fatal(err)
}
dirfd, err := unix.Open(subdir, unix.O_RDONLY, 0)
if err != nil {
t.Fatalf("open(%q): %v", subdir, err)
}
defer unix.Close(dirfd)
// openat2 with no extra flags -- should succeed
fd, err = unix.Openat2(dirfd, "symlink", how)
if err != nil {
t.Errorf("Openat2 should succeed, got %v", err)
}
if err := unix.Close(fd); err != nil {
t.Fatalf("close: %v", err)
}
// open with RESOLVE_BENEATH, should result in EXDEV
how.Resolve = unix.RESOLVE_BENEATH
fd, err = unix.Openat2(dirfd, "symlink", how)
if err == nil {
if err := unix.Close(fd); err != nil {
t.Fatalf("close: %v", err)
}
}
if err != unix.EXDEV {
t.Errorf("Openat2 should fail with EXDEV, got %v", err)
}
}
func TestIoctlFileDedupeRange(t *testing.T) {
dir := t.TempDir()
f1, err := os.Create(filepath.Join(dir, "f1"))
if err != nil {
t.Fatal(err)
}
defer f1.Close()
// Test deduplication with two blocks of zeros
data := make([]byte, 4096)
for i := 0; i < 2; i += 1 {
_, err = f1.Write(data)
if err != nil {
t.Fatal(err)
}
}
f2, err := os.Create(filepath.Join(dir, "f2"))
if err != nil {
t.Fatal(err)
}
defer f2.Close()
for i := 0; i < 2; i += 1 {
// Make the 2nd block different
if i == 1 {
data[1] = 1
}
_, err = f2.Write(data)
if err != nil {
t.Fatal(err)
}
}
dedupe := unix.FileDedupeRange{
Src_offset: uint64(0),
Src_length: uint64(4096),
Info: []unix.FileDedupeRangeInfo{
unix.FileDedupeRangeInfo{
Dest_fd: int64(f2.Fd()),
Dest_offset: uint64(0),
},
unix.FileDedupeRangeInfo{
Dest_fd: int64(f2.Fd()),
Dest_offset: uint64(4096),
},
}}
err = unix.IoctlFileDedupeRange(int(f1.Fd()), &dedupe)
if err == unix.EOPNOTSUPP || err == unix.EINVAL || err == unix.ENOTTY {
t.Skip("deduplication not supported on this filesystem")
} else if err != nil {
t.Fatal(err)
}
// The first Info should be equal
if dedupe.Info[0].Status < 0 {
errno := unix.Errno(-dedupe.Info[0].Status)
if errno == unix.EINVAL || errno == unix.EOPNOTSUPP {
t.Skip("deduplication not supported on this filesystem")
}
t.Errorf("Unexpected error in FileDedupeRange: %s", unix.ErrnoName(errno))
} else if dedupe.Info[0].Status == unix.FILE_DEDUPE_RANGE_DIFFERS {
t.Errorf("Unexpected different bytes in FileDedupeRange")
}
if dedupe.Info[0].Bytes_deduped != 4096 {
t.Errorf("Unexpected amount of bytes deduped %v != %v",
dedupe.Info[0].Bytes_deduped, 4096)
}
// The second Info should be different
if dedupe.Info[1].Status < 0 {
errno := unix.Errno(-dedupe.Info[1].Status)
if errno == unix.EINVAL || errno == unix.EOPNOTSUPP {
t.Skip("deduplication not supported on this filesystem")
}
t.Errorf("Unexpected error in FileDedupeRange: %s", unix.ErrnoName(errno))
} else if dedupe.Info[1].Status == unix.FILE_DEDUPE_RANGE_SAME {
t.Errorf("Unexpected equal bytes in FileDedupeRange")
}
if dedupe.Info[1].Bytes_deduped != 0 {
t.Errorf("Unexpected amount of bytes deduped %v != %v",
dedupe.Info[1].Bytes_deduped, 0)
}
}
// TestPwritevOffsets tests golang.org/issues/57291 where
// offs2lohi was shifting by the size of long in bytes, not bits.
func TestPwritevOffsets(t *testing.T) {
path := filepath.Join(t.TempDir(), "x.txt")
f, err := os.Create(path)
if err != nil {
t.Fatal(err)
}
t.Cleanup(func() { f.Close() })
const (
off = 20
)
b := [][]byte{{byte(0)}}
n, err := unix.Pwritev(int(f.Fd()), b, off)
if err != nil {
t.Fatal(err)
}
if n != len(b) {
t.Fatalf("expected to write %d, wrote %d", len(b), n)
}
info, err := f.Stat()
if err != nil {
t.Fatal(err)
}
want := off + int64(len(b))
if info.Size() != want {
t.Fatalf("expected size to be %d, got %d", want, info.Size())
}
}
func TestReadvAllocate(t *testing.T) {
f, err := os.Create(filepath.Join(t.TempDir(), "test"))
if err != nil {
t.Fatal(err)
}
t.Cleanup(func() { f.Close() })
test := func(name string, fn func(fd int)) {
n := int(testing.AllocsPerRun(100, func() {
fn(int(f.Fd()))
}))
if n != 0 {
t.Errorf("%q got %d allocations, want 0", name, n)
}
}
iovs := make([][]byte, 8)
for i := range iovs {
iovs[i] = []byte{'A'}
}
test("Writev", func(fd int) {
unix.Writev(fd, iovs)
})
test("Pwritev", func(fd int) {
unix.Pwritev(fd, iovs, 0)
})
test("Pwritev2", func(fd int) {
unix.Pwritev2(fd, iovs, 0, 0)
})
test("Readv", func(fd int) {
unix.Readv(fd, iovs)
})
test("Preadv", func(fd int) {
unix.Preadv(fd, iovs, 0)
})
test("Preadv2", func(fd int) {
unix.Preadv2(fd, iovs, 0, 0)
})
}
func TestSockaddrALG(t *testing.T) {
// Open a socket to perform SHA1 hashing.
fd, err := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
if err != nil {
t.Skip("socket(AF_ALG):", err)
}
defer unix.Close(fd)
addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
if err := unix.Bind(fd, addr); err != nil {
t.Fatal("bind:", err)
}
// Need to call accept(2) with the second and third arguments as 0,
// which is not possible via unix.Accept, thus the use of unix.Syscall.
hashfd, _, errno := unix.Syscall6(unix.SYS_ACCEPT4, uintptr(fd), 0, 0, 0, 0, 0)
if errno != 0 {
t.Fatal("accept:", errno)
}
hash := os.NewFile(hashfd, "sha1")
defer hash.Close()
// Hash an input string and read the results.
const (
input = "Hello, world."
exp = "2ae01472317d1935a84797ec1983ae243fc6aa28"
)
if _, err := hash.WriteString(input); err != nil {
t.Fatal(err)
}
b := make([]byte, 20)
if _, err := hash.Read(b); err != nil {
t.Fatal(err)
}
got := hex.EncodeToString(b)
if got != exp {
t.Fatalf("got: %q, want: %q", got, exp)
}
}