blob: 1e686a4fd36e57e10b264f2f77e7f3cf9ffbbf60 [file] [log] [blame]
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package windows_test
import (
"bufio"
"bytes"
"debug/pe"
"errors"
"fmt"
"os"
"os/exec"
"path/filepath"
"runtime"
"strconv"
"strings"
"syscall"
"testing"
"time"
"unicode/utf8"
"unsafe"
"golang.org/x/sys/windows"
)
func TestWin32finddata(t *testing.T) {
path := filepath.Join(t.TempDir(), "long_name.and_extension")
f, err := os.Create(path)
if err != nil {
t.Fatalf("failed to create %v: %v", path, err)
}
f.Close()
type X struct {
fd windows.Win32finddata
got byte
pad [10]byte // to protect ourselves
}
var want byte = 2 // it is unlikely to have this character in the filename
x := X{got: want}
pathp, _ := windows.UTF16PtrFromString(path)
h, err := windows.FindFirstFile(pathp, &(x.fd))
if err != nil {
t.Fatalf("FindFirstFile failed: %v", err)
}
err = windows.FindClose(h)
if err != nil {
t.Fatalf("FindClose failed: %v", err)
}
if x.got != want {
t.Fatalf("memory corruption: want=%d got=%d", want, x.got)
}
}
func TestFormatMessage(t *testing.T) {
dll := windows.MustLoadDLL("netevent.dll")
const TITLE_SC_MESSAGE_BOX uint32 = 0xC0001B75
const flags uint32 = syscall.FORMAT_MESSAGE_FROM_HMODULE | syscall.FORMAT_MESSAGE_ARGUMENT_ARRAY | syscall.FORMAT_MESSAGE_IGNORE_INSERTS
buf := make([]uint16, 300)
_, err := windows.FormatMessage(flags, uintptr(dll.Handle), TITLE_SC_MESSAGE_BOX, 0, buf, nil)
if err != nil {
t.Fatalf("FormatMessage for handle=%x and errno=%x failed: %v", dll.Handle, TITLE_SC_MESSAGE_BOX, err)
}
}
func abort(funcname string, err error) {
panic(funcname + " failed: " + err.Error())
}
func ExampleLoadLibrary() {
h, err := windows.LoadLibrary("kernel32.dll")
if err != nil {
abort("LoadLibrary", err)
}
defer windows.FreeLibrary(h)
proc, err := windows.GetProcAddress(h, "GetVersion")
if err != nil {
abort("GetProcAddress", err)
}
r, _, _ := syscall.Syscall(uintptr(proc), 0, 0, 0, 0)
major := byte(r)
minor := uint8(r >> 8)
build := uint16(r >> 16)
print("windows version ", major, ".", minor, " (Build ", build, ")\n")
}
func TestTOKEN_ALL_ACCESS(t *testing.T) {
if windows.TOKEN_ALL_ACCESS != 0xF01FF {
t.Errorf("TOKEN_ALL_ACCESS = %x, want 0xF01FF", windows.TOKEN_ALL_ACCESS)
}
}
func TestCreateWellKnownSid(t *testing.T) {
sid, err := windows.CreateWellKnownSid(windows.WinBuiltinAdministratorsSid)
if err != nil {
t.Fatalf("Unable to create well known sid for administrators: %v", err)
}
if got, want := sid.String(), "S-1-5-32-544"; got != want {
t.Fatalf("Builtin Administrators SID = %s, want %s", got, want)
}
}
func TestPseudoTokens(t *testing.T) {
version, err := windows.GetVersion()
if err != nil {
t.Fatal(err)
}
if ((version&0xffff)>>8)|((version&0xff)<<8) < 0x0602 {
return
}
realProcessToken, err := windows.OpenCurrentProcessToken()
if err != nil {
t.Fatal(err)
}
defer realProcessToken.Close()
realProcessUser, err := realProcessToken.GetTokenUser()
if err != nil {
t.Fatal(err)
}
pseudoProcessToken := windows.GetCurrentProcessToken()
pseudoProcessUser, err := pseudoProcessToken.GetTokenUser()
if err != nil {
t.Fatal(err)
}
if !windows.EqualSid(realProcessUser.User.Sid, pseudoProcessUser.User.Sid) {
t.Fatal("The real process token does not have the same as the pseudo process token")
}
runtime.LockOSThread()
defer runtime.UnlockOSThread()
err = windows.RevertToSelf()
if err != nil {
t.Fatal(err)
}
pseudoThreadToken := windows.GetCurrentThreadToken()
_, err = pseudoThreadToken.GetTokenUser()
if err != windows.ERROR_NO_TOKEN {
t.Fatal("Expected an empty thread token")
}
pseudoThreadEffectiveToken := windows.GetCurrentThreadEffectiveToken()
pseudoThreadEffectiveUser, err := pseudoThreadEffectiveToken.GetTokenUser()
if err != nil {
t.Fatal(nil)
}
if !windows.EqualSid(realProcessUser.User.Sid, pseudoThreadEffectiveUser.User.Sid) {
t.Fatal("The real process token does not have the same as the pseudo thread effective token, even though we aren't impersonating")
}
err = windows.ImpersonateSelf(windows.SecurityImpersonation)
if err != nil {
t.Fatal(err)
}
defer windows.RevertToSelf()
pseudoThreadUser, err := pseudoThreadToken.GetTokenUser()
if err != nil {
t.Fatal(err)
}
if !windows.EqualSid(realProcessUser.User.Sid, pseudoThreadUser.User.Sid) {
t.Fatal("The real process token does not have the same as the pseudo thread token after impersonating self")
}
}
func TestGUID(t *testing.T) {
guid, err := windows.GenerateGUID()
if err != nil {
t.Fatal(err)
}
if guid.Data1 == 0 && guid.Data2 == 0 && guid.Data3 == 0 && guid.Data4 == [8]byte{} {
t.Fatal("Got an all zero GUID, which is overwhelmingly unlikely")
}
want := fmt.Sprintf("{%08X-%04X-%04X-%04X-%012X}", guid.Data1, guid.Data2, guid.Data3, guid.Data4[:2], guid.Data4[2:])
got := guid.String()
if got != want {
t.Fatalf("String = %q; want %q", got, want)
}
guid2, err := windows.GUIDFromString(got)
if err != nil {
t.Fatal(err)
}
if guid2 != guid {
t.Fatalf("Did not parse string back to original GUID = %q; want %q", guid2, guid)
}
_, err = windows.GUIDFromString("not-a-real-guid")
if err != syscall.Errno(windows.CO_E_CLASSSTRING) {
t.Fatalf("Bad GUID string error = %v; want CO_E_CLASSSTRING", err)
}
}
func TestKnownFolderPath(t *testing.T) {
token, err := windows.OpenCurrentProcessToken()
if err != nil {
t.Fatal(err)
}
defer token.Close()
profileDir, err := token.GetUserProfileDirectory()
if err != nil {
t.Fatal(err)
}
want := filepath.Join(profileDir, "Desktop")
got, err := windows.KnownFolderPath(windows.FOLDERID_Desktop, windows.KF_FLAG_DEFAULT)
if err != nil {
t.Fatal(err)
}
if want != got {
t.Fatalf("Path = %q; want %q", got, want)
}
}
func TestRtlGetVersion(t *testing.T) {
version := windows.RtlGetVersion()
major, minor, build := windows.RtlGetNtVersionNumbers()
// Go is not explicitly added to the application compatibility database, so
// these two functions should return the same thing.
if version.MajorVersion != major || version.MinorVersion != minor || version.BuildNumber != build {
t.Fatalf("%d.%d.%d != %d.%d.%d", version.MajorVersion, version.MinorVersion, version.BuildNumber, major, minor, build)
}
}
func TestGetNamedSecurityInfo(t *testing.T) {
path, err := windows.GetSystemDirectory()
if err != nil {
t.Fatal(err)
}
sd, err := windows.GetNamedSecurityInfo(path, windows.SE_FILE_OBJECT, windows.OWNER_SECURITY_INFORMATION)
if err != nil {
t.Fatal(err)
}
if !sd.IsValid() {
t.Fatal("Invalid security descriptor")
}
sdOwner, _, err := sd.Owner()
if err != nil {
t.Fatal(err)
}
if !sdOwner.IsValid() {
t.Fatal("Invalid security descriptor owner")
}
}
func TestGetSecurityInfo(t *testing.T) {
sd, err := windows.GetSecurityInfo(windows.CurrentProcess(), windows.SE_KERNEL_OBJECT, windows.DACL_SECURITY_INFORMATION)
if err != nil {
t.Fatal(err)
}
if !sd.IsValid() {
t.Fatal("Invalid security descriptor")
}
sdStr := sd.String()
if !strings.HasPrefix(sdStr, "D:(A;") {
t.Fatalf("DACL = %q; want D:(A;...", sdStr)
}
}
func TestSddlConversion(t *testing.T) {
sd, err := windows.SecurityDescriptorFromString("O:BA")
if err != nil {
t.Fatal(err)
}
if !sd.IsValid() {
t.Fatal("Invalid security descriptor")
}
sdOwner, _, err := sd.Owner()
if err != nil {
t.Fatal(err)
}
if !sdOwner.IsValid() {
t.Fatal("Invalid security descriptor owner")
}
if !sdOwner.IsWellKnown(windows.WinBuiltinAdministratorsSid) {
t.Fatalf("Owner = %q; want S-1-5-32-544", sdOwner)
}
}
func TestBuildSecurityDescriptor(t *testing.T) {
const want = "O:SYD:(A;;GA;;;BA)"
adminSid, err := windows.CreateWellKnownSid(windows.WinBuiltinAdministratorsSid)
if err != nil {
t.Fatal(err)
}
systemSid, err := windows.CreateWellKnownSid(windows.WinLocalSystemSid)
if err != nil {
t.Fatal(err)
}
access := []windows.EXPLICIT_ACCESS{{
AccessPermissions: windows.GENERIC_ALL,
AccessMode: windows.GRANT_ACCESS,
Trustee: windows.TRUSTEE{
TrusteeForm: windows.TRUSTEE_IS_SID,
TrusteeType: windows.TRUSTEE_IS_GROUP,
TrusteeValue: windows.TrusteeValueFromSID(adminSid),
},
}}
owner := &windows.TRUSTEE{
TrusteeForm: windows.TRUSTEE_IS_SID,
TrusteeType: windows.TRUSTEE_IS_USER,
TrusteeValue: windows.TrusteeValueFromSID(systemSid),
}
sd, err := windows.BuildSecurityDescriptor(owner, nil, access, nil, nil)
if err != nil {
t.Fatal(err)
}
sd, err = sd.ToAbsolute()
if err != nil {
t.Fatal(err)
}
err = sd.SetSACL(nil, false, false)
if err != nil {
t.Fatal(err)
}
if got := sd.String(); got != want {
t.Fatalf("SD = %q; want %q", got, want)
}
sd, err = sd.ToSelfRelative()
if err != nil {
t.Fatal(err)
}
if got := sd.String(); got != want {
t.Fatalf("SD = %q; want %q", got, want)
}
sd, err = windows.NewSecurityDescriptor()
if err != nil {
t.Fatal(err)
}
acl, err := windows.ACLFromEntries(access, nil)
if err != nil {
t.Fatal(err)
}
err = sd.SetDACL(acl, true, false)
if err != nil {
t.Fatal(err)
}
err = sd.SetOwner(systemSid, false)
if err != nil {
t.Fatal(err)
}
if got := sd.String(); got != want {
t.Fatalf("SD = %q; want %q", got, want)
}
sd, err = sd.ToSelfRelative()
if err != nil {
t.Fatal(err)
}
if got := sd.String(); got != want {
t.Fatalf("SD = %q; want %q", got, want)
}
}
// getEntriesFromACL returns a list of explicit access control entries associated with the given ACL.
func getEntriesFromACL(acl *windows.ACL) (aces []*windows.ACCESS_ALLOWED_ACE, err error) {
aces = make([]*windows.ACCESS_ALLOWED_ACE, acl.AceCount)
for i := uint16(0); i < acl.AceCount; i++ {
err = windows.GetAce(acl, uint32(i), &aces[i])
if err != nil {
return nil, err
}
}
return aces, nil
}
func TestGetACEsFromACL(t *testing.T) {
// Create a temporary file to set ACLs on and test getting the ACEs from the ACL.
f, err := os.CreateTemp("", "foo.lish")
defer os.Remove(f.Name())
if err = f.Close(); err != nil {
t.Fatal(err)
}
// Well-known SID Strings:
// https://support.microsoft.com/en-us/help/243330/well-known-security-identifiers-in-windows-operating-systems
ownerSid, err := windows.StringToSid("S-1-3-2")
if err != nil {
t.Fatal(err)
}
groupSid, err := windows.StringToSid("S-1-3-3")
if err != nil {
t.Fatal(err)
}
worldSid, err := windows.StringToSid("S-1-1-0")
if err != nil {
t.Fatal(err)
}
ownerPermissions := windows.ACCESS_MASK(windows.GENERIC_ALL)
groupPermissions := windows.ACCESS_MASK(windows.GENERIC_READ | windows.GENERIC_EXECUTE)
worldPermissions := windows.ACCESS_MASK(windows.GENERIC_READ)
access := []windows.EXPLICIT_ACCESS{
{
AccessPermissions: ownerPermissions,
AccessMode: windows.GRANT_ACCESS,
Trustee: windows.TRUSTEE{
TrusteeForm: windows.TRUSTEE_IS_SID,
TrusteeValue: windows.TrusteeValueFromSID(ownerSid),
},
},
{
AccessPermissions: groupPermissions,
AccessMode: windows.GRANT_ACCESS,
Trustee: windows.TRUSTEE{
TrusteeForm: windows.TRUSTEE_IS_SID,
TrusteeType: windows.TRUSTEE_IS_GROUP,
TrusteeValue: windows.TrusteeValueFromSID(groupSid),
},
},
{
AccessPermissions: worldPermissions,
AccessMode: windows.GRANT_ACCESS,
Trustee: windows.TRUSTEE{
TrusteeForm: windows.TRUSTEE_IS_SID,
TrusteeType: windows.TRUSTEE_IS_GROUP,
TrusteeValue: windows.TrusteeValueFromSID(worldSid),
},
},
}
acl, err := windows.ACLFromEntries(access, nil)
if err != nil {
t.Fatal(err)
}
// Set new ACL.
err = windows.SetNamedSecurityInfo(
f.Name(),
windows.SE_FILE_OBJECT,
windows.DACL_SECURITY_INFORMATION|windows.PROTECTED_DACL_SECURITY_INFORMATION,
nil,
nil,
acl,
nil,
)
if err != nil {
t.Fatal(err)
}
descriptor, err := windows.GetNamedSecurityInfo(
f.Name(),
windows.SE_FILE_OBJECT,
windows.DACL_SECURITY_INFORMATION|windows.PROTECTED_DACL_SECURITY_INFORMATION|windows.OWNER_SECURITY_INFORMATION|windows.GROUP_SECURITY_INFORMATION,
)
if err != nil {
t.Fatal(err)
}
dacl, _, err := descriptor.DACL()
if err != nil {
t.Fatal(err)
}
owner, _, err := descriptor.Owner()
if err != nil {
t.Fatal(err)
}
group, _, err := descriptor.Group()
if err != nil {
t.Fatal(err)
}
entries, err := getEntriesFromACL(dacl)
if err != nil {
t.Fatal(err)
}
if len(entries) != 3 {
t.Fatalf("Expected newly set ACL to only have 3 entries.")
}
// https://docs.microsoft.com/en-us/windows/win32/fileio/file-access-rights-constants
read := uint32(windows.FILE_READ_DATA | windows.FILE_READ_ATTRIBUTES)
write := uint32(windows.FILE_WRITE_DATA | windows.FILE_APPEND_DATA | windows.FILE_WRITE_ATTRIBUTES | windows.FILE_WRITE_EA)
execute := uint32(windows.FILE_READ_DATA | windows.FILE_EXECUTE)
// Check the set ACEs. We should have the equivalent of 754.
for _, entry := range entries {
mask := uint32(entry.Mask)
actual := 0
if mask&read == read {
actual |= 4
}
if mask&write == write {
actual |= 2
}
if mask&execute == execute {
actual |= 1
}
entrySid := (*windows.SID)(unsafe.Pointer(&entry.SidStart))
if owner.Equals(entrySid) {
if actual != 7 {
t.Fatalf("Expected owner to have FullAccess permissions.")
}
} else if group.Equals(entrySid) {
if actual != 5 {
t.Fatalf("Expected group to have only Read and Execute permissions.")
}
} else if worldSid.Equals(entrySid) {
if actual != 4 {
t.Fatalf("Expected the World to have only Read permissions.")
}
} else {
t.Fatalf("Unexpected SID in ACEs: %s", entrySid.String())
}
}
}
func TestGetDiskFreeSpaceEx(t *testing.T) {
cwd, err := windows.UTF16PtrFromString(".")
if err != nil {
t.Fatalf(`failed to call UTF16PtrFromString("."): %v`, err)
}
var freeBytesAvailableToCaller, totalNumberOfBytes, totalNumberOfFreeBytes uint64
if err := windows.GetDiskFreeSpaceEx(cwd, &freeBytesAvailableToCaller, &totalNumberOfBytes, &totalNumberOfFreeBytes); err != nil {
t.Fatalf("failed to call GetDiskFreeSpaceEx: %v", err)
}
if freeBytesAvailableToCaller == 0 {
t.Errorf("freeBytesAvailableToCaller: got 0; want > 0")
}
if totalNumberOfBytes == 0 {
t.Errorf("totalNumberOfBytes: got 0; want > 0")
}
if totalNumberOfFreeBytes == 0 {
t.Errorf("totalNumberOfFreeBytes: got 0; want > 0")
}
}
func TestGetPreferredUILanguages(t *testing.T) {
tab := map[string]func(flags uint32) ([]string, error){
"GetProcessPreferredUILanguages": windows.GetProcessPreferredUILanguages,
"GetThreadPreferredUILanguages": windows.GetThreadPreferredUILanguages,
"GetUserPreferredUILanguages": windows.GetUserPreferredUILanguages,
"GetSystemPreferredUILanguages": windows.GetSystemPreferredUILanguages,
}
for fName, f := range tab {
lang, err := f(windows.MUI_LANGUAGE_ID)
if err != nil {
t.Errorf(`failed to call %v(MUI_LANGUAGE_ID): %v`, fName, err)
}
for _, l := range lang {
_, err := strconv.ParseUint(l, 16, 16)
if err != nil {
t.Errorf(`%v(MUI_LANGUAGE_ID) returned unexpected LANGID: %v`, fName, l)
}
}
lang, err = f(windows.MUI_LANGUAGE_NAME)
if err != nil {
t.Errorf(`failed to call %v(MUI_LANGUAGE_NAME): %v`, fName, err)
}
}
}
func TestProcessWorkingSetSizeEx(t *testing.T) {
// Grab a handle to the current process
hProcess := windows.CurrentProcess()
// Allocate memory to store the result of the query
var minimumWorkingSetSize, maximumWorkingSetSize uintptr
// Make the system-call
var flag uint32
windows.GetProcessWorkingSetSizeEx(hProcess, &minimumWorkingSetSize, &maximumWorkingSetSize, &flag)
// Set the new limits to the current ones
if err := windows.SetProcessWorkingSetSizeEx(hProcess, minimumWorkingSetSize, maximumWorkingSetSize, flag); err != nil {
t.Error(err)
}
}
func TestJobObjectInfo(t *testing.T) {
jo, err := windows.CreateJobObject(nil, nil)
if err != nil {
t.Fatalf("CreateJobObject failed: %v", err)
}
defer windows.CloseHandle(jo)
var info windows.JOBOBJECT_EXTENDED_LIMIT_INFORMATION
err = windows.QueryInformationJobObject(jo, windows.JobObjectExtendedLimitInformation,
uintptr(unsafe.Pointer(&info)), uint32(unsafe.Sizeof(info)), nil)
if err != nil {
t.Fatalf("QueryInformationJobObject failed: %v", err)
}
const wantMemLimit = 4 * 1024
info.BasicLimitInformation.LimitFlags |= windows.JOB_OBJECT_LIMIT_PROCESS_MEMORY
info.ProcessMemoryLimit = wantMemLimit
_, err = windows.SetInformationJobObject(jo, windows.JobObjectExtendedLimitInformation,
uintptr(unsafe.Pointer(&info)), uint32(unsafe.Sizeof(info)))
if err != nil {
t.Fatalf("SetInformationJobObject failed: %v", err)
}
err = windows.QueryInformationJobObject(jo, windows.JobObjectExtendedLimitInformation,
uintptr(unsafe.Pointer(&info)), uint32(unsafe.Sizeof(info)), nil)
if err != nil {
t.Fatalf("QueryInformationJobObject failed: %v", err)
}
if have := info.ProcessMemoryLimit; wantMemLimit != have {
t.Errorf("ProcessMemoryLimit is wrong: want %v have %v", wantMemLimit, have)
}
}
func TestIsWow64Process2(t *testing.T) {
var processMachine, nativeMachine uint16
err := windows.IsWow64Process2(windows.CurrentProcess(), &processMachine, &nativeMachine)
if errors.Is(err, windows.ERROR_PROC_NOT_FOUND) {
maj, min, build := windows.RtlGetNtVersionNumbers()
if maj < 10 || (maj == 10 && min == 0 && build < 17763) {
t.Skip("not available on older versions of Windows")
return
}
}
if err != nil {
t.Fatalf("IsWow64Process2 failed: %v", err)
}
if processMachine == pe.IMAGE_FILE_MACHINE_UNKNOWN {
processMachine = nativeMachine
}
switch {
case processMachine == pe.IMAGE_FILE_MACHINE_AMD64 && runtime.GOARCH == "amd64":
case processMachine == pe.IMAGE_FILE_MACHINE_I386 && runtime.GOARCH == "386":
case processMachine == pe.IMAGE_FILE_MACHINE_ARMNT && runtime.GOARCH == "arm":
case processMachine == pe.IMAGE_FILE_MACHINE_ARM64 && runtime.GOARCH == "arm64":
default:
t.Errorf("IsWow64Process2 is wrong: want %v have %v", runtime.GOARCH, processMachine)
}
}
func TestNTStatusString(t *testing.T) {
want := "The name limit for the local computer network adapter card was exceeded."
got := windows.STATUS_TOO_MANY_NAMES.Error()
if want != got {
t.Errorf("NTStatus.Error did not return an expected error string - want %q; got %q", want, got)
}
}
func TestNTStatusConversion(t *testing.T) {
want := windows.ERROR_TOO_MANY_NAMES
got := windows.STATUS_TOO_MANY_NAMES.Errno()
if want != got {
t.Errorf("NTStatus.Errno = %q (0x%x); want %q (0x%x)", got.Error(), got, want.Error(), want)
}
}
func TestPEBFilePath(t *testing.T) {
peb := windows.RtlGetCurrentPeb()
if peb == nil || peb.Ldr == nil {
t.Error("unable to retrieve PEB with valid Ldr")
}
var entry *windows.LDR_DATA_TABLE_ENTRY
for cur := peb.Ldr.InMemoryOrderModuleList.Flink; cur != &peb.Ldr.InMemoryOrderModuleList; cur = cur.Flink {
e := (*windows.LDR_DATA_TABLE_ENTRY)(unsafe.Pointer(uintptr(unsafe.Pointer(cur)) - unsafe.Offsetof(windows.LDR_DATA_TABLE_ENTRY{}.InMemoryOrderLinks)))
if e.DllBase == peb.ImageBaseAddress {
entry = e
break
}
}
if entry == nil {
t.Error("unable to find Ldr entry for current process")
}
osPath, err := os.Executable()
if err != nil {
t.Errorf("unable to get path to current executable: %v", err)
}
pebPath := entry.FullDllName.String()
if osPath != pebPath {
t.Errorf("peb.Ldr.{entry}.FullDllName = %#q; want %#q", pebPath, osPath)
}
paramPath := peb.ProcessParameters.ImagePathName.String()
if osPath != paramPath {
t.Errorf("peb.ProcessParameters.ImagePathName.{entry}.ImagePathName = %#q; want %#q", paramPath, osPath)
}
osCwd, err := os.Getwd()
if err != nil {
t.Errorf("unable to get working directory: %v", err)
}
osCwd = filepath.Clean(osCwd)
paramCwd := filepath.Clean(peb.ProcessParameters.CurrentDirectory.DosPath.String())
if paramCwd != osCwd {
t.Errorf("peb.ProcessParameters.CurrentDirectory.DosPath = %#q; want %#q", paramCwd, osCwd)
}
}
func TestResourceExtraction(t *testing.T) {
system32, err := windows.GetSystemDirectory()
if err != nil {
t.Errorf("unable to find system32 directory: %v", err)
}
cmd, err := windows.LoadLibrary(filepath.Join(system32, "cmd.exe"))
if err != nil {
t.Errorf("unable to load cmd.exe: %v", err)
}
defer windows.FreeLibrary(cmd)
rsrc, err := windows.FindResource(cmd, windows.CREATEPROCESS_MANIFEST_RESOURCE_ID, windows.RT_MANIFEST)
if err != nil {
t.Errorf("unable to find cmd.exe manifest resource: %v", err)
}
manifest, err := windows.LoadResourceData(cmd, rsrc)
if err != nil {
t.Errorf("unable to load cmd.exe manifest resource data: %v", err)
}
if !bytes.Contains(manifest, []byte("</assembly>")) {
t.Errorf("did not find </assembly> in manifest")
}
}
func FuzzComposeCommandLine(f *testing.F) {
f.Add(`C:\foo.exe /bar /baz "-bag qux"`)
f.Add(`"C:\Program Files\Go\bin\go.exe" env`)
f.Add(`C:\"Program Files"\Go\bin\go.exe env`)
f.Add(`C:\"Program Files"\Go\bin\go.exe env`)
f.Add(`C:\"Pro"gram Files\Go\bin\go.exe env`)
f.Add(``)
f.Add(` `)
f.Add(`W\"0`)
f.Add("\"\f")
f.Add("\f")
f.Add("\x16")
f.Add(`"" ` + strings.Repeat("a", 8193))
f.Add(strings.Repeat(`"" `, 8193))
f.Add("\x00abcd")
f.Add("ab\x00cd")
f.Add("abcd\x00")
f.Add("\x00abcd\x00")
f.Add("\x00ab\x00cd\x00")
f.Add("\x00\x00\x00")
f.Add("\x16\x00\x16")
f.Add(`C:\Program Files\Go\bin\go.exe` + "\x00env")
f.Add(`"C:\Program Files\Go\bin\go.exe"` + "\x00env")
f.Add(`C:\"Program Files"\Go\bin\go.exe` + "\x00env")
f.Add(`C:\"Pro"gram Files\Go\bin\go.exe` + "\x00env")
f.Add("\x00" + strings.Repeat("a", 8192))
f.Add("\x00" + strings.Repeat("a", 8193))
f.Add(strings.Repeat("\x00"+strings.Repeat("a", 8192), 4))
f.Fuzz(func(t *testing.T, s string) {
// DecomposeCommandLine is the “control” for our experiment:
// if it returns a particular list of arguments, then we know
// it must be possible to create an input string that produces
// exactly those arguments.
//
// However, DecomposeCommandLine returns an error if the string
// contains a NUL byte. In that case, we will fall back to
// strings.Split, and be a bit more permissive about the results.
args, err := windows.DecomposeCommandLine(s)
argsFromSplit := false
if err == nil {
if testing.Verbose() {
t.Logf("DecomposeCommandLine(%#q) = %#q", s, args)
}
} else {
t.Logf("DecomposeCommandLine: %v", err)
if !strings.Contains(s, "\x00") {
// The documentation for CommandLineToArgv takes for granted that
// the first argument is a valid file path, and doesn't describe any
// specific behavior for malformed arguments. Empirically it seems to
// tolerate anything we throw at it, but if we discover cases where it
// actually returns an error we might need to relax this check.
t.Fatal("(error unexpected)")
}
// Since DecomposeCommandLine can't handle this string,
// interpret it as the raw arguments to ComposeCommandLine.
args = strings.Split(s, "\x00")
argsFromSplit = true
for i, arg := range args {
if !utf8.ValidString(arg) {
// We need to encode the arguments as UTF-16 to pass them to
// CommandLineToArgvW, so skip inputs that are not valid: they might
// have one or more runes converted to replacement characters.
t.Skipf("skipping: input %d is not valid UTF-8", i)
}
}
if testing.Verbose() {
t.Logf("using input: %#q", args)
}
}
// It's ok if we compose a different command line than what was read.
// Just check that we are able to compose something that round-trips
// to the same results as the original.
commandLine := windows.ComposeCommandLine(args)
t.Logf("ComposeCommandLine(_) = %#q", commandLine)
got, err := windows.DecomposeCommandLine(commandLine)
if err != nil {
t.Fatalf("DecomposeCommandLine: unexpected error: %v", err)
}
if testing.Verbose() {
t.Logf("DecomposeCommandLine(_) = %#q", got)
}
var badMatches []int
for i := range args {
if i >= len(got) {
badMatches = append(badMatches, i)
continue
}
want := args[i]
if got[i] != want {
if i == 0 && argsFromSplit {
// It is possible that args[0] cannot be encoded exactly, because
// CommandLineToArgvW doesn't unescape that argument in the same way
// as the others: since the first argument is assumed to be the name
// of the program itself, we only have the option of quoted or not.
//
// If args[0] contains a space or control character, we must quote it
// to avoid it being split into multiple arguments.
// If args[0] already starts with a quote character, we have no way
// to indicate that character is part of the literal argument.
// In either case, if the string already contains a quote character
// we must avoid misinterpreting that character as the end of the
// quoted argument string.
//
// Unfortunately, ComposeCommandLine does not return an error, so we
// can't report existing quote characters as errors.
// Instead, we strip out the problematic quote characters from the
// argument, and quote the remainder.
// For paths like C:\"Program Files"\Go\bin\go.exe that is arguably
// what the caller intended anyway, and for other strings it seems
// less harmful than corrupting the subsequent arguments.
if got[i] == strings.ReplaceAll(want, `"`, ``) {
continue
}
}
badMatches = append(badMatches, i)
}
}
if len(badMatches) != 0 {
t.Errorf("Incorrect decomposition at indices: %v", badMatches)
}
})
}
func TestWinVerifyTrust(t *testing.T) {
evsignedfile := `.\testdata\ev-signed-file.exe`
evsignedfile16, err := windows.UTF16PtrFromString(evsignedfile)
if err != nil {
t.Fatalf("unable to get utf16 of %s: %v", evsignedfile, err)
}
data := &windows.WinTrustData{
Size: uint32(unsafe.Sizeof(windows.WinTrustData{})),
UIChoice: windows.WTD_UI_NONE,
RevocationChecks: windows.WTD_REVOKE_NONE, // No revocation checking, in case the tests don't have network connectivity.
UnionChoice: windows.WTD_CHOICE_FILE,
StateAction: windows.WTD_STATEACTION_VERIFY,
FileOrCatalogOrBlobOrSgnrOrCert: unsafe.Pointer(&windows.WinTrustFileInfo{
Size: uint32(unsafe.Sizeof(windows.WinTrustFileInfo{})),
FilePath: evsignedfile16,
}),
}
verifyErr := windows.WinVerifyTrustEx(windows.InvalidHWND, &windows.WINTRUST_ACTION_GENERIC_VERIFY_V2, data)
data.StateAction = windows.WTD_STATEACTION_CLOSE
closeErr := windows.WinVerifyTrustEx(windows.InvalidHWND, &windows.WINTRUST_ACTION_GENERIC_VERIFY_V2, data)
if verifyErr != nil {
t.Errorf("%s did not verify: %v", evsignedfile, verifyErr)
}
if closeErr != nil {
t.Errorf("unable to free verification resources: %v", closeErr)
}
// Now that we've verified the legitimate file verifies, let's corrupt it and see if it correctly fails.
corruptedEvsignedfile := filepath.Join(t.TempDir(), "corrupted-file")
evsignedfileBytes, err := os.ReadFile(evsignedfile)
if err != nil {
t.Fatalf("unable to read %s bytes: %v", evsignedfile, err)
}
if len(evsignedfileBytes) > 0 {
evsignedfileBytes[len(evsignedfileBytes)/2-1]++
}
err = os.WriteFile(corruptedEvsignedfile, evsignedfileBytes, 0755)
if err != nil {
t.Fatalf("unable to write corrupted ntoskrnl.exe bytes: %v", err)
}
evsignedfile16, err = windows.UTF16PtrFromString(corruptedEvsignedfile)
if err != nil {
t.Fatalf("unable to get utf16 of ntoskrnl.exe: %v", err)
}
data = &windows.WinTrustData{
Size: uint32(unsafe.Sizeof(windows.WinTrustData{})),
UIChoice: windows.WTD_UI_NONE,
RevocationChecks: windows.WTD_REVOKE_NONE, // No revocation checking, in case the tests don't have network connectivity.
UnionChoice: windows.WTD_CHOICE_FILE,
StateAction: windows.WTD_STATEACTION_VERIFY,
FileOrCatalogOrBlobOrSgnrOrCert: unsafe.Pointer(&windows.WinTrustFileInfo{
Size: uint32(unsafe.Sizeof(windows.WinTrustFileInfo{})),
FilePath: evsignedfile16,
}),
}
verifyErr = windows.WinVerifyTrustEx(windows.InvalidHWND, &windows.WINTRUST_ACTION_GENERIC_VERIFY_V2, data)
data.StateAction = windows.WTD_STATEACTION_CLOSE
closeErr = windows.WinVerifyTrustEx(windows.InvalidHWND, &windows.WINTRUST_ACTION_GENERIC_VERIFY_V2, data)
if verifyErr != windows.Errno(windows.TRUST_E_BAD_DIGEST) {
t.Errorf("%s did not fail to verify as expected: %v", corruptedEvsignedfile, verifyErr)
}
if closeErr != nil {
t.Errorf("unable to free verification resources: %v", closeErr)
}
}
func TestEnumProcesses(t *testing.T) {
var (
pids [2]uint32
outSize uint32
)
err := windows.EnumProcesses(pids[:], &outSize)
if err != nil {
t.Fatalf("unable to enumerate processes: %v", err)
}
// Regression check for go.dev/issue/60223
if outSize != 8 {
t.Errorf("unexpected bytes returned: %d", outSize)
}
// Most likely, this should be [0, 4].
// 0 is the system idle pseudo-process. 4 is the initial system process ID.
// This test expects that at least one of the PIDs is not 0.
if pids[0] == 0 && pids[1] == 0 {
t.Errorf("all PIDs are 0")
}
}
func TestProcessModules(t *testing.T) {
process, err := windows.GetCurrentProcess()
if err != nil {
t.Fatalf("unable to get current process: %v", err)
}
// NB: Assume that we're always the first module. This technically isn't documented anywhere (that I could find), but seems to always hold.
var module windows.Handle
var cbNeeded uint32
err = windows.EnumProcessModules(process, &module, uint32(unsafe.Sizeof(module)), &cbNeeded)
if err != nil {
t.Fatalf("EnumProcessModules failed: %v", err)
}
var moduleEx windows.Handle
err = windows.EnumProcessModulesEx(process, &moduleEx, uint32(unsafe.Sizeof(moduleEx)), &cbNeeded, windows.LIST_MODULES_DEFAULT)
if err != nil {
t.Fatalf("EnumProcessModulesEx failed: %v", err)
}
if module != moduleEx {
t.Fatalf("module from EnumProcessModules does not match EnumProcessModulesEx: %v != %v", module, moduleEx)
}
exePath, err := os.Executable()
if err != nil {
t.Fatalf("unable to get current executable path: %v", err)
}
modulePathUTF16 := make([]uint16, len(exePath)+1)
err = windows.GetModuleFileNameEx(process, module, &modulePathUTF16[0], uint32(len(modulePathUTF16)))
if err != nil {
t.Fatalf("GetModuleFileNameEx failed: %v", err)
}
modulePath := windows.UTF16ToString(modulePathUTF16)
if modulePath != exePath {
t.Fatalf("module does not match executable for GetModuleFileNameEx: %s != %s", modulePath, exePath)
}
err = windows.GetModuleBaseName(process, module, &modulePathUTF16[0], uint32(len(modulePathUTF16)))
if err != nil {
t.Fatalf("GetModuleBaseName failed: %v", err)
}
modulePath = windows.UTF16ToString(modulePathUTF16)
baseExePath := filepath.Base(exePath)
if modulePath != baseExePath {
t.Fatalf("module does not match executable for GetModuleBaseName: %s != %s", modulePath, baseExePath)
}
var moduleInfo windows.ModuleInfo
err = windows.GetModuleInformation(process, module, &moduleInfo, uint32(unsafe.Sizeof(moduleInfo)))
if err != nil {
t.Fatalf("GetModuleInformation failed: %v", err)
}
peFile, err := pe.Open(exePath)
if err != nil {
t.Fatalf("unable to open current executable: %v", err)
}
defer peFile.Close()
var peSizeOfImage uint32
switch runtime.GOARCH {
case "amd64", "arm64":
peSizeOfImage = peFile.OptionalHeader.(*pe.OptionalHeader64).SizeOfImage
case "386", "arm":
peSizeOfImage = peFile.OptionalHeader.(*pe.OptionalHeader32).SizeOfImage
default:
t.Fatalf("unable to test GetModuleInformation on arch %v", runtime.GOARCH)
}
if moduleInfo.SizeOfImage != peSizeOfImage {
t.Fatalf("module size does not match executable: %v != %v", moduleInfo.SizeOfImage, peSizeOfImage)
}
}
func TestQueryWorkingSetEx(t *testing.T) {
var a int
process := windows.CurrentProcess()
information := windows.PSAPI_WORKING_SET_EX_INFORMATION{
VirtualAddress: windows.Pointer(unsafe.Pointer(&a)),
}
infos := []windows.PSAPI_WORKING_SET_EX_INFORMATION{information}
cb := uint32(uintptr(len(infos)) * unsafe.Sizeof(infos[0]))
if err := windows.QueryWorkingSetEx(process, uintptr(unsafe.Pointer(&infos[0])), cb); err != nil {
t.Fatalf("%+v", err)
}
if !infos[0].VirtualAttributes.Valid() {
t.Errorf("memory location not valid")
}
}
func TestReadWriteProcessMemory(t *testing.T) {
testBuffer := []byte{0xBA, 0xAD, 0xF0, 0x0D}
process, err := windows.GetCurrentProcess()
if err != nil {
t.Fatalf("unable to get current process: %v", err)
}
buffer := make([]byte, len(testBuffer))
err = windows.ReadProcessMemory(process, uintptr(unsafe.Pointer(&testBuffer[0])), &buffer[0], uintptr(len(buffer)), nil)
if err != nil {
t.Errorf("ReadProcessMemory failed: %v", err)
}
if !bytes.Equal(testBuffer, buffer) {
t.Errorf("bytes read does not match buffer: 0x%X != 0x%X", testBuffer, buffer)
}
buffer = []byte{0xDE, 0xAD, 0xBE, 0xEF}
err = windows.WriteProcessMemory(process, uintptr(unsafe.Pointer(&testBuffer[0])), &buffer[0], uintptr(len(buffer)), nil)
if err != nil {
t.Errorf("WriteProcessMemory failed: %v", err)
}
if !bytes.Equal(testBuffer, buffer) {
t.Errorf("bytes written does not match buffer: 0x%X != 0x%X", testBuffer, buffer)
}
}
func TestSystemModuleVersions(t *testing.T) {
var modules []windows.RTL_PROCESS_MODULE_INFORMATION
for bufferSize := uint32(128 * 1024); ; {
moduleBuffer := make([]byte, bufferSize)
err := windows.NtQuerySystemInformation(windows.SystemModuleInformation, unsafe.Pointer(&moduleBuffer[0]), bufferSize, &bufferSize)
switch err {
case windows.STATUS_INFO_LENGTH_MISMATCH:
continue
case nil:
break
default:
t.Error(err)
return
}
mods := (*windows.RTL_PROCESS_MODULES)(unsafe.Pointer(&moduleBuffer[0]))
modules = unsafe.Slice(&mods.Modules[0], int(mods.NumberOfModules))
break
}
for i := range modules {
moduleName := windows.ByteSliceToString(modules[i].FullPathName[modules[i].OffsetToFileName:])
driverPath := `\\?\GLOBALROOT` + windows.ByteSliceToString(modules[i].FullPathName[:])
var zero windows.Handle
infoSize, err := windows.GetFileVersionInfoSize(driverPath, &zero)
if err != nil {
if err != windows.ERROR_FILE_NOT_FOUND && err != windows.ERROR_RESOURCE_TYPE_NOT_FOUND {
t.Errorf("%v: %v", moduleName, err)
}
continue
}
versionInfo := make([]byte, infoSize)
if err = windows.GetFileVersionInfo(driverPath, 0, infoSize, unsafe.Pointer(&versionInfo[0])); err != nil {
t.Errorf("%v: %v", moduleName, err)
continue
}
var fixedInfo *windows.VS_FIXEDFILEINFO
fixedInfoLen := uint32(unsafe.Sizeof(*fixedInfo))
err = windows.VerQueryValue(unsafe.Pointer(&versionInfo[0]), `\`, (unsafe.Pointer)(&fixedInfo), &fixedInfoLen)
if err != nil {
t.Errorf("%v: %v", moduleName, err)
continue
}
t.Logf("%s: v%d.%d.%d.%d", moduleName,
(fixedInfo.FileVersionMS>>16)&0xff,
(fixedInfo.FileVersionMS>>0)&0xff,
(fixedInfo.FileVersionLS>>16)&0xff,
(fixedInfo.FileVersionLS>>0)&0xff)
}
}
type fileRenameInformation struct {
ReplaceIfExists uint32
RootDirectory windows.Handle
FileNameLength uint32
FileName [1]uint16
}
func TestNtCreateFileAndNtSetInformationFile(t *testing.T) {
var iosb windows.IO_STATUS_BLOCK
var allocSize int64 = 0
// Open test directory with NtCreateFile.
testDirPath := t.TempDir()
objectName, err := windows.NewNTUnicodeString("\\??\\" + testDirPath)
if err != nil {
t.Fatal(err)
}
oa := &windows.OBJECT_ATTRIBUTES{
ObjectName: objectName,
}
oa.Length = uint32(unsafe.Sizeof(*oa))
var testDirHandle windows.Handle
err = windows.NtCreateFile(&testDirHandle, windows.FILE_GENERIC_READ|windows.FILE_GENERIC_WRITE, oa, &iosb,
&allocSize, 0, windows.FILE_SHARE_READ|windows.FILE_SHARE_WRITE|windows.FILE_SHARE_DELETE, windows.FILE_OPEN,
windows.FILE_DIRECTORY_FILE, 0, 0)
if err != nil {
t.Fatalf("NtCreateFile(%v) failed: %v", testDirPath, err)
}
defer windows.CloseHandle(testDirHandle)
// Create a file in test directory with NtCreateFile.
fileName := "filename"
filePath := filepath.Join(testDirPath, fileName)
objectName, err = windows.NewNTUnicodeString(fileName)
if err != nil {
t.Fatal(err)
}
oa.RootDirectory = testDirHandle
oa.ObjectName = objectName
var fileHandle windows.Handle
err = windows.NtCreateFile(&fileHandle, windows.FILE_GENERIC_READ|windows.FILE_GENERIC_WRITE|windows.DELETE, oa, &iosb,
&allocSize, 0, windows.FILE_SHARE_READ|windows.FILE_SHARE_WRITE|windows.FILE_SHARE_DELETE, windows.FILE_CREATE,
0, 0, 0)
if err != nil {
t.Fatalf("NtCreateFile(%v) failed: %v", filePath, err)
}
defer windows.CloseHandle(fileHandle)
_, err = os.Stat(filePath)
if err != nil {
t.Fatalf("cannot stat file created with NtCreatefile: %v", err)
}
// Rename file with NtSetInformationFile.
newName := "newname"
newPath := filepath.Join(testDirPath, newName)
newNameUTF16, err := windows.UTF16FromString(newName)
if err != nil {
t.Fatal(err)
}
fileNameLen := len(newNameUTF16)*2 - 2
var dummyFileRenameInfo fileRenameInformation
bufferSize := int(unsafe.Offsetof(dummyFileRenameInfo.FileName)) + fileNameLen
buffer := make([]byte, bufferSize)
typedBufferPtr := (*fileRenameInformation)(unsafe.Pointer(&buffer[0]))
typedBufferPtr.ReplaceIfExists = windows.FILE_RENAME_REPLACE_IF_EXISTS | windows.FILE_RENAME_POSIX_SEMANTICS
typedBufferPtr.FileNameLength = uint32(fileNameLen)
copy((*[windows.MAX_LONG_PATH]uint16)(unsafe.Pointer(&typedBufferPtr.FileName[0]))[:fileNameLen/2:fileNameLen/2], newNameUTF16)
err = windows.NtSetInformationFile(fileHandle, &iosb, &buffer[0], uint32(bufferSize), windows.FileRenameInformation)
if err != nil {
t.Fatalf("NtSetInformationFile(%v) failed: %v", newPath, err)
}
_, err = os.Stat(newPath)
if err != nil {
t.Fatalf("cannot stat rename target %v: %v", newPath, err)
}
}
var deviceClassNetGUID = &windows.GUID{0x4d36e972, 0xe325, 0x11ce, [8]byte{0xbf, 0xc1, 0x08, 0x00, 0x2b, 0xe1, 0x03, 0x18}}
var deviceInterfaceNetGUID = &windows.GUID{0xcac88484, 0x7515, 0x4c03, [8]byte{0x82, 0xe6, 0x71, 0xa8, 0x7a, 0xba, 0xc3, 0x61}}
func TestListLoadedNetworkDevices(t *testing.T) {
devInfo, err := windows.SetupDiGetClassDevsEx(deviceClassNetGUID, "", 0, windows.DIGCF_PRESENT, 0, "")
if err != nil {
t.Fatal(err)
}
defer devInfo.Close()
for i := 0; ; i++ {
devInfoData, err := devInfo.EnumDeviceInfo(i)
if err != nil {
if err == windows.ERROR_NO_MORE_ITEMS {
break
}
continue
}
friendlyName, err := devInfo.DeviceRegistryProperty(devInfoData, windows.SPDRP_DEVICEDESC)
if err != nil {
t.Fatal(err)
}
var status, problemCode uint32
err = windows.CM_Get_DevNode_Status(&status, &problemCode, devInfoData.DevInst, 0)
if err != nil || (status&windows.DN_DRIVER_LOADED|windows.DN_STARTED) != windows.DN_DRIVER_LOADED|windows.DN_STARTED {
continue
}
instanceId, err := devInfo.DeviceInstanceID(devInfoData)
if err != nil {
t.Fatal(err)
}
interfaces, err := windows.CM_Get_Device_Interface_List(instanceId, deviceInterfaceNetGUID, windows.CM_GET_DEVICE_INTERFACE_LIST_PRESENT)
if err != nil || len(interfaces) == 0 {
continue
}
t.Logf("%s - %s", friendlyName, interfaces[0])
}
}
func TestListWireGuardDrivers(t *testing.T) {
devInfo, err := windows.SetupDiCreateDeviceInfoListEx(deviceClassNetGUID, 0, "")
if err != nil {
t.Fatal(err)
}
defer devInfo.Close()
devInfoData, err := devInfo.CreateDeviceInfo("WireGuard", deviceClassNetGUID, "", 0, windows.DICD_GENERATE_ID)
if err != nil {
t.Fatal(err)
}
err = devInfo.SetDeviceRegistryProperty(devInfoData, windows.SPDRP_HARDWAREID, []byte("W\x00i\x00r\x00e\x00G\x00u\x00a\x00r\x00d\x00\x00\x00\x00\x00"))
if err != nil {
t.Fatal(err)
}
err = devInfo.BuildDriverInfoList(devInfoData, windows.SPDIT_COMPATDRIVER)
if err != nil {
t.Fatal(err)
}
defer devInfo.DestroyDriverInfoList(devInfoData, windows.SPDIT_COMPATDRIVER)
for i := 0; ; i++ {
drvInfoData, err := devInfo.EnumDriverInfo(devInfoData, windows.SPDIT_COMPATDRIVER, i)
if err != nil {
if err == windows.ERROR_NO_MORE_ITEMS {
break
}
continue
}
drvInfoDetailData, err := devInfo.DriverInfoDetail(devInfoData, drvInfoData)
if err != nil {
t.Error(err)
continue
}
t.Logf("%s - %s", drvInfoData.Description(), drvInfoDetailData.InfFileName())
}
}
func TestProcThreadAttributeHandleList(t *testing.T) {
const sentinel = "the gopher dance"
system32, err := windows.GetSystemDirectory()
if err != nil {
t.Fatal(err)
}
executable16, err := windows.UTF16PtrFromString(filepath.Join(system32, "cmd.exe"))
if err != nil {
t.Fatal(err)
}
args16, err := windows.UTF16PtrFromString(windows.ComposeCommandLine([]string{"/c", "echo " + sentinel}))
if err != nil {
t.Fatal(err)
}
attributeList, err := windows.NewProcThreadAttributeList(1)
if err != nil {
t.Fatal(err)
}
defer attributeList.Delete()
si := &windows.StartupInfoEx{
StartupInfo: windows.StartupInfo{Cb: uint32(unsafe.Sizeof(windows.StartupInfoEx{}))},
ProcThreadAttributeList: attributeList.List(),
}
pipeR, pipeW, err := os.Pipe()
if err != nil {
t.Fatal(err)
}
defer pipeR.Close()
defer pipeW.Close()
func() {
// We allocate handles in a closure to provoke a UaF in the case of attributeList.Update being buggy.
handles := []windows.Handle{windows.Handle(pipeW.Fd())}
attributeList.Update(windows.PROC_THREAD_ATTRIBUTE_HANDLE_LIST, unsafe.Pointer(&handles[0]), uintptr(len(handles))*unsafe.Sizeof(handles[0]))
si.Flags |= windows.STARTF_USESTDHANDLES
si.StdOutput = handles[0]
// Go 1.16's pipe handles aren't inheritable, so mark it explicitly as such here.
windows.SetHandleInformation(handles[0], windows.HANDLE_FLAG_INHERIT, windows.HANDLE_FLAG_INHERIT)
}()
pi := new(windows.ProcessInformation)
err = windows.CreateProcess(executable16, args16, nil, nil, true, windows.CREATE_DEFAULT_ERROR_MODE|windows.CREATE_UNICODE_ENVIRONMENT|windows.EXTENDED_STARTUPINFO_PRESENT, nil, nil, &si.StartupInfo, pi)
if err != nil {
t.Fatal(err)
}
defer windows.CloseHandle(pi.Thread)
defer windows.CloseHandle(pi.Process)
pipeR.SetReadDeadline(time.Now().Add(time.Minute))
out, _, err := bufio.NewReader(pipeR).ReadLine()
if err != nil {
t.Fatal(err)
}
if string(out) != sentinel {
t.Fatalf("got %q; want %q", out, sentinel)
}
}
func TestWSALookupService(t *testing.T) {
var flags uint32 = windows.LUP_CONTAINERS
flags |= windows.LUP_RETURN_NAME
flags |= windows.LUP_RETURN_ADDR
var querySet windows.WSAQUERYSET
querySet.NameSpace = windows.NS_BTH
querySet.Size = uint32(unsafe.Sizeof(windows.WSAQUERYSET{}))
var handle windows.Handle
err := windows.WSALookupServiceBegin(&querySet, flags, &handle)
if err != nil {
if errors.Is(err, windows.WSASERVICE_NOT_FOUND) {
t.Skip("WSA Service not found, so skip this test")
}
t.Fatal(err)
}
defer windows.WSALookupServiceEnd(handle)
n := int32(unsafe.Sizeof(windows.WSAQUERYSET{}))
buf := make([]byte, n)
items_loop:
for {
q := (*windows.WSAQUERYSET)(unsafe.Pointer(&buf[0]))
err := windows.WSALookupServiceNext(handle, flags, &n, q)
switch err {
case windows.WSA_E_NO_MORE, windows.WSAENOMORE:
// no more data available - break the loop
break items_loop
case windows.WSAEFAULT:
// buffer is too small - reallocate and try again
buf = make([]byte, n)
case nil:
// found a record - display the item and fetch next item
var addr string
for _, e := range q.SaBuffer.RemoteAddr.Sockaddr.Addr.Data {
if e != 0 {
addr += fmt.Sprintf("%x", e)
}
}
t.Logf("%s -> %s\n", windows.UTF16PtrToString(q.ServiceInstanceName), addr)
default:
t.Fatal(err)
}
}
}
func TestTimePeriod(t *testing.T) {
if err := windows.TimeBeginPeriod(1); err != nil {
t.Fatal(err)
}
if err := windows.TimeEndPeriod(1); err != nil {
t.Fatal(err)
}
}
func TestGetStartupInfo(t *testing.T) {
var si windows.StartupInfo
err := windows.GetStartupInfo(&si)
if err != nil {
// see https://go.dev/issue/31316
t.Fatalf("GetStartupInfo: got error %v, want nil", err)
}
}
func TestAddRemoveDllDirectory(t *testing.T) {
if _, err := exec.LookPath("gcc"); err != nil {
t.Skip("skipping test: gcc is missing")
}
dllSrc := `#include <stdint.h>
#include <windows.h>
uintptr_t beep(void) {
return 5;
}`
tmpdir := t.TempDir()
srcname := "beep.c"
err := os.WriteFile(filepath.Join(tmpdir, srcname), []byte(dllSrc), 0)
if err != nil {
t.Fatal(err)
}
name := "beep.dll"
cmd := exec.Command("gcc", "-shared", "-s", "-Werror", "-o", name, srcname)
cmd.Dir = tmpdir
out, err := cmd.CombinedOutput()
if err != nil {
t.Fatalf("failed to build dll: %v - %v", err, string(out))
}
if _, err := windows.LoadLibraryEx("beep.dll", 0, windows.LOAD_LIBRARY_SEARCH_USER_DIRS); err == nil {
t.Fatal("LoadLibraryEx unexpectedly found beep.dll")
}
dllCookie, err := windows.AddDllDirectory(windows.StringToUTF16Ptr(tmpdir))
if err != nil {
t.Fatalf("AddDllDirectory failed: %s", err)
}
handle, err := windows.LoadLibraryEx("beep.dll", 0, windows.LOAD_LIBRARY_SEARCH_USER_DIRS)
if err != nil {
t.Fatalf("LoadLibraryEx failed: %s", err)
}
if err := windows.FreeLibrary(handle); err != nil {
t.Fatalf("FreeLibrary failed: %s", err)
}
if err := windows.RemoveDllDirectory(dllCookie); err != nil {
t.Fatalf("RemoveDllDirectory failed: %s", err)
}
_, err = windows.LoadLibraryEx("beep.dll", 0, windows.LOAD_LIBRARY_SEARCH_USER_DIRS)
if err == nil {
t.Fatal("LoadLibraryEx unexpectedly found beep.dll")
}
}
func TestToUnicodeEx(t *testing.T) {
var utf16Buf [16]uint16
// Arabic (101) Keyboard Identifier
// See https://learn.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-language-pack-default-values
ara, err := windows.UTF16PtrFromString("00000401")
if err != nil {
t.Fatalf("UTF16PtrFromString failed: %v", err)
}
araLayout, err := windows.LoadKeyboardLayout(ara, windows.KLF_ACTIVATE)
if err != nil {
t.Fatalf("LoadKeyboardLayout failed: %v", err)
}
var keyState [256]byte
ret := windows.ToUnicodeEx(
0x41, // 'A' vkCode
0x1e, // 'A' scanCode
&keyState[0],
&utf16Buf[0],
int32(len(utf16Buf)),
0x4, // don't change keyboard state
araLayout,
)
if ret != 1 {
t.Errorf("ToUnicodeEx failed, wanted 1, got %d", ret)
}
if utf16Buf[0] != 'ش' {
t.Errorf("ToUnicodeEx failed, wanted 'ش', got %q", utf16Buf[0])
}
if err := windows.UnloadKeyboardLayout(araLayout); err != nil {
t.Errorf("UnloadKeyboardLayout failed: %v", err)
}
}