blob: fe7cd37040a8e00c384a90c43c91b6b9070c98cd [file] [log] [blame]
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package impl
import (
"fmt"
"reflect"
"strconv"
"strings"
"sync"
"sync/atomic"
pvalue "google.golang.org/protobuf/internal/value"
pref "google.golang.org/protobuf/reflect/protoreflect"
piface "google.golang.org/protobuf/runtime/protoiface"
)
// MessageInfo provides protobuf related functionality for a given Go type
// that represents a message. A given instance of MessageInfo is tied to
// exactly one Go type, which must be a pointer to a struct type.
type MessageInfo struct {
// GoType is the underlying message Go type and must be populated.
// Once set, this field must never be mutated.
GoType reflect.Type // pointer to struct
// PBType is the underlying message descriptor type and must be populated.
// Once set, this field must never be mutated.
PBType pref.MessageType
// Exporter must be provided in a purego environment in order to provide
// access to unexported fields.
Exporter exporter
// OneofWrappers is list of pointers to oneof wrapper struct types.
OneofWrappers []interface{}
initMu sync.Mutex // protects all unexported fields
initDone uint32
fields map[pref.FieldNumber]*fieldInfo
oneofs map[pref.Name]*oneofInfo
getUnknown func(pointer) pref.RawFields
setUnknown func(pointer, pref.RawFields)
extensionMap func(pointer) *extensionMap
// Information used by the fast-path methods.
methods piface.Methods
coderMessageInfo
extensionFieldInfosMu sync.RWMutex
extensionFieldInfos map[pref.ExtensionType]*extensionFieldInfo
}
// exporter is a function that returns a reference to the ith field of v,
// where v is a pointer to a struct. It returns nil if it does not support
// exporting the requested field (e.g., already exported).
type exporter func(v interface{}, i int) interface{}
var prefMessageType = reflect.TypeOf((*pref.Message)(nil)).Elem()
// getMessageInfo returns the MessageInfo (if any) for a type.
//
// We find the MessageInfo by calling the ProtoReflect method on the type's
// zero value and looking at the returned type to see if it is a
// messageReflectWrapper. Note that the MessageInfo may still be uninitialized
// at this point.
func getMessageInfo(mt reflect.Type) (mi *MessageInfo, ok bool) {
method, ok := mt.MethodByName("ProtoReflect")
if !ok {
return nil, false
}
if method.Type.NumIn() != 1 || method.Type.NumOut() != 1 || method.Type.Out(0) != prefMessageType {
return nil, false
}
ret := reflect.Zero(mt).Method(method.Index).Call(nil)
m, ok := ret[0].Elem().Interface().(*messageReflectWrapper)
if !ok {
return nil, ok
}
return m.mi, true
}
func (mi *MessageInfo) init() {
// This function is called in the hot path. Inline the sync.Once
// logic, since allocating a closure for Once.Do is expensive.
// Keep init small to ensure that it can be inlined.
if atomic.LoadUint32(&mi.initDone) == 1 {
return
}
mi.initOnce()
}
func (mi *MessageInfo) initOnce() {
mi.initMu.Lock()
defer mi.initMu.Unlock()
if mi.initDone == 1 {
return
}
t := mi.GoType
if t.Kind() != reflect.Ptr && t.Elem().Kind() != reflect.Struct {
panic(fmt.Sprintf("got %v, want *struct kind", t))
}
si := mi.makeStructInfo(t.Elem())
mi.makeKnownFieldsFunc(si)
mi.makeUnknownFieldsFunc(t.Elem(), si)
mi.makeExtensionFieldsFunc(t.Elem(), si)
mi.makeMethods(t.Elem(), si)
atomic.StoreUint32(&mi.initDone, 1)
}
type (
SizeCache = int32
UnknownFields = []byte
ExtensionFields = map[int32]ExtensionField
)
var (
sizecacheType = reflect.TypeOf(SizeCache(0))
unknownFieldsType = reflect.TypeOf(UnknownFields(nil))
extensionFieldsType = reflect.TypeOf(ExtensionFields(nil))
)
type structInfo struct {
sizecacheOffset offset
unknownOffset offset
extensionOffset offset
fieldsByNumber map[pref.FieldNumber]reflect.StructField
oneofsByName map[pref.Name]reflect.StructField
oneofWrappersByType map[reflect.Type]pref.FieldNumber
oneofWrappersByNumber map[pref.FieldNumber]reflect.Type
}
func (mi *MessageInfo) makeStructInfo(t reflect.Type) structInfo {
si := structInfo{
sizecacheOffset: invalidOffset,
unknownOffset: invalidOffset,
extensionOffset: invalidOffset,
fieldsByNumber: map[pref.FieldNumber]reflect.StructField{},
oneofsByName: map[pref.Name]reflect.StructField{},
oneofWrappersByType: map[reflect.Type]pref.FieldNumber{},
oneofWrappersByNumber: map[pref.FieldNumber]reflect.Type{},
}
if f, _ := t.FieldByName("sizeCache"); f.Type == sizecacheType {
si.sizecacheOffset = offsetOf(f, mi.Exporter)
}
if f, _ := t.FieldByName("XXX_sizecache"); f.Type == sizecacheType {
si.sizecacheOffset = offsetOf(f, mi.Exporter)
}
if f, _ := t.FieldByName("unknownFields"); f.Type == unknownFieldsType {
si.unknownOffset = offsetOf(f, mi.Exporter)
}
if f, _ := t.FieldByName("XXX_unrecognized"); f.Type == unknownFieldsType {
si.unknownOffset = offsetOf(f, mi.Exporter)
}
if f, _ := t.FieldByName("extensionFields"); f.Type == extensionFieldsType {
si.extensionOffset = offsetOf(f, mi.Exporter)
}
if f, _ := t.FieldByName("XXX_InternalExtensions"); f.Type == extensionFieldsType {
si.extensionOffset = offsetOf(f, mi.Exporter)
}
if f, _ := t.FieldByName("XXX_extensions"); f.Type == extensionFieldsType {
si.extensionOffset = offsetOf(f, mi.Exporter)
}
// Generate a mapping of field numbers and names to Go struct field or type.
fieldLoop:
for i := 0; i < t.NumField(); i++ {
f := t.Field(i)
for _, s := range strings.Split(f.Tag.Get("protobuf"), ",") {
if len(s) > 0 && strings.Trim(s, "0123456789") == "" {
n, _ := strconv.ParseUint(s, 10, 64)
si.fieldsByNumber[pref.FieldNumber(n)] = f
continue fieldLoop
}
}
if s := f.Tag.Get("protobuf_oneof"); len(s) > 0 {
si.oneofsByName[pref.Name(s)] = f
continue fieldLoop
}
}
// Derive a mapping of oneof wrappers to fields.
oneofWrappers := mi.OneofWrappers
if fn, ok := reflect.PtrTo(t).MethodByName("XXX_OneofFuncs"); ok {
oneofWrappers = fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[3].Interface().([]interface{})
}
if fn, ok := reflect.PtrTo(t).MethodByName("XXX_OneofWrappers"); ok {
oneofWrappers = fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[0].Interface().([]interface{})
}
for _, v := range oneofWrappers {
tf := reflect.TypeOf(v).Elem()
f := tf.Field(0)
for _, s := range strings.Split(f.Tag.Get("protobuf"), ",") {
if len(s) > 0 && strings.Trim(s, "0123456789") == "" {
n, _ := strconv.ParseUint(s, 10, 64)
si.oneofWrappersByType[tf] = pref.FieldNumber(n)
si.oneofWrappersByNumber[pref.FieldNumber(n)] = tf
break
}
}
}
return si
}
// makeKnownFieldsFunc generates functions for operations that can be performed
// on each protobuf message field. It takes in a reflect.Type representing the
// Go struct and matches message fields with struct fields.
//
// This code assumes that the struct is well-formed and panics if there are
// any discrepancies.
func (mi *MessageInfo) makeKnownFieldsFunc(si structInfo) {
mi.fields = map[pref.FieldNumber]*fieldInfo{}
for i := 0; i < mi.PBType.Descriptor().Fields().Len(); i++ {
fd := mi.PBType.Descriptor().Fields().Get(i)
fs := si.fieldsByNumber[fd.Number()]
var fi fieldInfo
switch {
case fd.ContainingOneof() != nil:
fi = fieldInfoForOneof(fd, si.oneofsByName[fd.ContainingOneof().Name()], mi.Exporter, si.oneofWrappersByNumber[fd.Number()])
case fd.IsMap():
fi = fieldInfoForMap(fd, fs, mi.Exporter)
case fd.IsList():
fi = fieldInfoForList(fd, fs, mi.Exporter)
case fd.Kind() == pref.MessageKind || fd.Kind() == pref.GroupKind:
fi = fieldInfoForMessage(fd, fs, mi.Exporter)
default:
fi = fieldInfoForScalar(fd, fs, mi.Exporter)
}
mi.fields[fd.Number()] = &fi
}
mi.oneofs = map[pref.Name]*oneofInfo{}
for i := 0; i < mi.PBType.Descriptor().Oneofs().Len(); i++ {
od := mi.PBType.Descriptor().Oneofs().Get(i)
mi.oneofs[od.Name()] = makeOneofInfo(od, si.oneofsByName[od.Name()], mi.Exporter, si.oneofWrappersByType)
}
}
func (mi *MessageInfo) makeUnknownFieldsFunc(t reflect.Type, si structInfo) {
mi.getUnknown = func(pointer) pref.RawFields { return nil }
mi.setUnknown = func(pointer, pref.RawFields) { return }
if si.unknownOffset.IsValid() {
mi.getUnknown = func(p pointer) pref.RawFields {
if p.IsNil() {
return nil
}
rv := p.Apply(si.unknownOffset).AsValueOf(unknownFieldsType)
return pref.RawFields(*rv.Interface().(*[]byte))
}
mi.setUnknown = func(p pointer, b pref.RawFields) {
if p.IsNil() {
panic("invalid SetUnknown on nil Message")
}
rv := p.Apply(si.unknownOffset).AsValueOf(unknownFieldsType)
*rv.Interface().(*[]byte) = []byte(b)
}
} else {
mi.getUnknown = func(pointer) pref.RawFields {
return nil
}
mi.setUnknown = func(p pointer, _ pref.RawFields) {
if p.IsNil() {
panic("invalid SetUnknown on nil Message")
}
}
}
}
func (mi *MessageInfo) makeExtensionFieldsFunc(t reflect.Type, si structInfo) {
if si.extensionOffset.IsValid() {
mi.extensionMap = func(p pointer) *extensionMap {
if p.IsNil() {
return (*extensionMap)(nil)
}
v := p.Apply(si.extensionOffset).AsValueOf(extensionFieldsType)
return (*extensionMap)(v.Interface().(*map[int32]ExtensionField))
}
} else {
mi.extensionMap = func(pointer) *extensionMap {
return (*extensionMap)(nil)
}
}
}
func (mi *MessageInfo) MessageOf(p interface{}) pref.Message {
return (*messageReflectWrapper)(mi.dataTypeOf(p))
}
func (mi *MessageInfo) Methods() *piface.Methods {
mi.init()
return &mi.methods
}
func (mi *MessageInfo) dataTypeOf(p interface{}) *messageDataType {
// TODO: Remove this check? This API is primarily used by generated code,
// and should not violate this assumption. Leave this check in for now to
// provide some sanity checks during development. This can be removed if
// it proves to be detrimental to performance.
if reflect.TypeOf(p) != mi.GoType {
panic(fmt.Sprintf("type mismatch: got %T, want %v", p, mi.GoType))
}
return &messageDataType{pointerOfIface(p), mi}
}
// messageDataType is a tuple of a pointer to the message data and
// a pointer to the message type.
//
// TODO: Unfortunately, we need to close over a pointer and MessageInfo,
// which incurs an an allocation. This pair is similar to a Go interface,
// which is essentially a tuple of the same thing. We can make this efficient
// with reflect.NamedOf (see https://golang.org/issues/16522).
//
// With that hypothetical API, we could dynamically create a new named type
// that has the same underlying type as MessageInfo.GoType, and
// dynamically create methods that close over MessageInfo.
// Since the new type would have the same underlying type, we could directly
// convert between pointers of those types, giving us an efficient way to swap
// out the method set.
//
// Barring the ability to dynamically create named types, the workaround is
// 1. either to accept the cost of an allocation for this wrapper struct or
// 2. generate more types and methods, at the expense of binary size increase.
type messageDataType struct {
p pointer
mi *MessageInfo
}
type messageReflectWrapper messageDataType
func (m *messageReflectWrapper) Descriptor() pref.MessageDescriptor {
return m.mi.PBType.Descriptor()
}
func (m *messageReflectWrapper) New() pref.Message {
return m.mi.PBType.New()
}
func (m *messageReflectWrapper) Interface() pref.ProtoMessage {
if m, ok := m.ProtoUnwrap().(pref.ProtoMessage); ok {
return m
}
return (*messageIfaceWrapper)(m)
}
func (m *messageReflectWrapper) ProtoUnwrap() interface{} {
return m.p.AsIfaceOf(m.mi.GoType.Elem())
}
func (m *messageReflectWrapper) Range(f func(pref.FieldDescriptor, pref.Value) bool) {
m.mi.init()
for _, fi := range m.mi.fields {
if fi.has(m.p) {
if !f(fi.fieldDesc, fi.get(m.p)) {
return
}
}
}
m.mi.extensionMap(m.p).Range(f)
}
func (m *messageReflectWrapper) Has(fd pref.FieldDescriptor) bool {
if fi, xt := m.checkField(fd); fi != nil {
return fi.has(m.p)
} else {
return m.mi.extensionMap(m.p).Has(xt)
}
}
func (m *messageReflectWrapper) Clear(fd pref.FieldDescriptor) {
if fi, xt := m.checkField(fd); fi != nil {
fi.clear(m.p)
} else {
m.mi.extensionMap(m.p).Clear(xt)
}
}
func (m *messageReflectWrapper) Get(fd pref.FieldDescriptor) pref.Value {
if fi, xt := m.checkField(fd); fi != nil {
return fi.get(m.p)
} else {
return m.mi.extensionMap(m.p).Get(xt)
}
}
func (m *messageReflectWrapper) Set(fd pref.FieldDescriptor, v pref.Value) {
if fi, xt := m.checkField(fd); fi != nil {
fi.set(m.p, v)
} else {
m.mi.extensionMap(m.p).Set(xt, v)
}
}
func (m *messageReflectWrapper) Mutable(fd pref.FieldDescriptor) pref.Value {
if fi, xt := m.checkField(fd); fi != nil {
return fi.mutable(m.p)
} else {
return m.mi.extensionMap(m.p).Mutable(xt)
}
}
func (m *messageReflectWrapper) NewMessage(fd pref.FieldDescriptor) pref.Message {
if fi, xt := m.checkField(fd); fi != nil {
return fi.newMessage()
} else {
return xt.New().Message()
}
}
func (m *messageReflectWrapper) WhichOneof(od pref.OneofDescriptor) pref.FieldDescriptor {
m.mi.init()
if oi := m.mi.oneofs[od.Name()]; oi != nil && oi.oneofDesc == od {
return od.Fields().ByNumber(oi.which(m.p))
}
panic("invalid oneof descriptor")
}
func (m *messageReflectWrapper) GetUnknown() pref.RawFields {
m.mi.init()
return m.mi.getUnknown(m.p)
}
func (m *messageReflectWrapper) SetUnknown(b pref.RawFields) {
m.mi.init()
m.mi.setUnknown(m.p, b)
}
// checkField verifies that the provided field descriptor is valid.
// Exactly one of the returned values is populated.
func (m *messageReflectWrapper) checkField(fd pref.FieldDescriptor) (*fieldInfo, pref.ExtensionType) {
m.mi.init()
if fi := m.mi.fields[fd.Number()]; fi != nil {
if fi.fieldDesc != fd {
panic("mismatching field descriptor")
}
return fi, nil
}
if fd.IsExtension() {
if fd.ContainingMessage().FullName() != m.mi.PBType.FullName() {
// TODO: Should this be exact containing message descriptor match?
panic("mismatching containing message")
}
if !m.mi.PBType.ExtensionRanges().Has(fd.Number()) {
panic("invalid extension field")
}
return nil, fd.(pref.ExtensionType)
}
panic("invalid field descriptor")
}
type extensionMap map[int32]ExtensionField
func (m *extensionMap) Range(f func(pref.FieldDescriptor, pref.Value) bool) {
if m != nil {
for _, x := range *m {
xt := x.GetType()
if !f(xt, xt.ValueOf(x.GetValue())) {
return
}
}
}
}
func (m *extensionMap) Has(xt pref.ExtensionType) (ok bool) {
if m != nil {
_, ok = (*m)[int32(xt.Number())]
}
return ok
}
func (m *extensionMap) Clear(xt pref.ExtensionType) {
delete(*m, int32(xt.Number()))
}
func (m *extensionMap) Get(xt pref.ExtensionType) pref.Value {
if m != nil {
if x, ok := (*m)[int32(xt.Number())]; ok {
return xt.ValueOf(x.GetValue())
}
}
if !isComposite(xt) {
return defaultValueOf(xt)
}
return frozenValueOf(xt.New())
}
func (m *extensionMap) Set(xt pref.ExtensionType, v pref.Value) {
if *m == nil {
*m = make(map[int32]ExtensionField)
}
var x ExtensionField
x.SetType(xt)
x.SetEagerValue(xt.InterfaceOf(v))
(*m)[int32(xt.Number())] = x
}
func (m *extensionMap) Mutable(xt pref.ExtensionType) pref.Value {
if !isComposite(xt) {
panic("invalid Mutable on field with non-composite type")
}
if x, ok := (*m)[int32(xt.Number())]; ok {
return xt.ValueOf(x.GetValue())
}
v := xt.New()
m.Set(xt, v)
return v
}
func isComposite(fd pref.FieldDescriptor) bool {
return fd.Kind() == pref.MessageKind || fd.Kind() == pref.GroupKind || fd.IsList() || fd.IsMap()
}
var _ pvalue.Unwrapper = (*messageReflectWrapper)(nil)
type messageIfaceWrapper messageDataType
func (m *messageIfaceWrapper) ProtoReflect() pref.Message {
return (*messageReflectWrapper)(m)
}
func (m *messageIfaceWrapper) XXX_Methods() *piface.Methods {
// TODO: Consider not recreating this on every call.
m.mi.init()
return &piface.Methods{
Flags: piface.MethodFlagDeterministicMarshal,
MarshalAppend: m.marshalAppend,
Unmarshal: m.unmarshal,
Size: m.size,
IsInitialized: m.isInitialized,
}
}
func (m *messageIfaceWrapper) ProtoUnwrap() interface{} {
return m.p.AsIfaceOf(m.mi.GoType.Elem())
}
func (m *messageIfaceWrapper) marshalAppend(b []byte, _ pref.ProtoMessage, opts piface.MarshalOptions) ([]byte, error) {
return m.mi.marshalAppendPointer(b, m.p, newMarshalOptions(opts))
}
func (m *messageIfaceWrapper) unmarshal(b []byte, _ pref.ProtoMessage, opts piface.UnmarshalOptions) error {
_, err := m.mi.unmarshalPointer(b, m.p, 0, newUnmarshalOptions(opts))
return err
}
func (m *messageIfaceWrapper) size(msg pref.ProtoMessage) (size int) {
return m.mi.sizePointer(m.p, 0)
}
func (m *messageIfaceWrapper) isInitialized(_ pref.ProtoMessage) error {
return m.mi.isInitializedPointer(m.p)
}