blob: d64ee7faf7a903d9b741a02a81bb043cb0940b0b [file] [log] [blame]
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package impl
import (
"fmt"
"reflect"
"sort"
"strconv"
"strings"
"sync"
"sync/atomic"
pvalue "google.golang.org/protobuf/internal/value"
pref "google.golang.org/protobuf/reflect/protoreflect"
piface "google.golang.org/protobuf/runtime/protoiface"
)
// MessageInfo provides protobuf related functionality for a given Go type
// that represents a message. A given instance of MessageInfo is tied to
// exactly one Go type, which must be a pointer to a struct type.
type MessageInfo struct {
// GoType is the underlying message Go type and must be populated.
// Once set, this field must never be mutated.
GoType reflect.Type // pointer to struct
// PBType is the underlying message descriptor type and must be populated.
// Once set, this field must never be mutated.
PBType pref.MessageType
initMu sync.Mutex // protects all unexported fields
initDone uint32
// Keep a separate slice of fields for efficient field encoding in tag order
// and because iterating over a slice is substantially faster than a map.
fields map[pref.FieldNumber]*fieldInfo
fieldsOrdered []*fieldInfo
oneofs map[pref.Name]*oneofInfo
unknownFields func(*messageDataType) pref.UnknownFields
extensionFields func(*messageDataType) pref.KnownFields
methods piface.Methods
extensionOffset offset
sizecacheOffset offset
unknownOffset offset
extensionFieldInfosMu sync.RWMutex
extensionFieldInfos map[*piface.ExtensionDescV1]*extensionFieldInfo
}
var prefMessageType = reflect.TypeOf((*pref.Message)(nil)).Elem()
// getMessageInfo returns the MessageInfo (if any) for a type.
//
// We find the MessageInfo by calling the ProtoReflect method on the type's
// zero value and looking at the returned type to see if it is a
// messageReflectWrapper. Note that the MessageInfo may still be uninitialized
// at this point.
func getMessageInfo(mt reflect.Type) (mi *MessageInfo, ok bool) {
method, ok := mt.MethodByName("ProtoReflect")
if !ok {
return nil, false
}
if method.Type.NumIn() != 1 || method.Type.NumOut() != 1 || method.Type.Out(0) != prefMessageType {
return nil, false
}
ret := reflect.Zero(mt).Method(method.Index).Call(nil)
m, ok := ret[0].Elem().Interface().(*messageReflectWrapper)
if !ok {
return nil, ok
}
return m.mi, true
}
func (mi *MessageInfo) init() {
// This function is called in the hot path. Inline the sync.Once
// logic, since allocating a closure for Once.Do is expensive.
// Keep init small to ensure that it can be inlined.
if atomic.LoadUint32(&mi.initDone) == 1 {
return
}
mi.initOnce()
}
func (mi *MessageInfo) initOnce() {
mi.initMu.Lock()
defer mi.initMu.Unlock()
if mi.initDone == 1 {
return
}
t := mi.GoType
if t.Kind() != reflect.Ptr && t.Elem().Kind() != reflect.Struct {
panic(fmt.Sprintf("got %v, want *struct kind", t))
}
si := mi.makeStructInfo(t.Elem())
mi.makeKnownFieldsFunc(si)
mi.makeUnknownFieldsFunc(t.Elem())
mi.makeExtensionFieldsFunc(t.Elem())
mi.makeMethods(t.Elem())
atomic.StoreUint32(&mi.initDone, 1)
}
var sizecacheType = reflect.TypeOf(int32(0))
func (mi *MessageInfo) makeMethods(t reflect.Type) {
mi.extensionOffset = invalidOffset
if fx, _ := t.FieldByName("XXX_InternalExtensions"); fx.Type == extType {
mi.extensionOffset = offsetOf(fx)
} else if fx, _ = t.FieldByName("XXX_extensions"); fx.Type == extType {
mi.extensionOffset = offsetOf(fx)
}
mi.sizecacheOffset = invalidOffset
if fx, _ := t.FieldByName("XXX_sizecache"); fx.Type == sizecacheType {
mi.sizecacheOffset = offsetOf(fx)
}
mi.unknownOffset = invalidOffset
if fx, _ := t.FieldByName("XXX_unrecognized"); fx.Type == bytesType {
mi.unknownOffset = offsetOf(fx)
}
mi.methods.Flags = piface.MethodFlagDeterministicMarshal
mi.methods.MarshalAppend = mi.marshalAppend
mi.methods.Size = mi.size
}
type structInfo struct {
fieldsByNumber map[pref.FieldNumber]reflect.StructField
oneofsByName map[pref.Name]reflect.StructField
oneofWrappersByType map[reflect.Type]pref.FieldNumber
oneofWrappersByNumber map[pref.FieldNumber]reflect.Type
}
func (mi *MessageInfo) makeStructInfo(t reflect.Type) structInfo {
// Generate a mapping of field numbers and names to Go struct field or type.
si := structInfo{
fieldsByNumber: map[pref.FieldNumber]reflect.StructField{},
oneofsByName: map[pref.Name]reflect.StructField{},
oneofWrappersByType: map[reflect.Type]pref.FieldNumber{},
oneofWrappersByNumber: map[pref.FieldNumber]reflect.Type{},
}
fieldLoop:
for i := 0; i < t.NumField(); i++ {
f := t.Field(i)
for _, s := range strings.Split(f.Tag.Get("protobuf"), ",") {
if len(s) > 0 && strings.Trim(s, "0123456789") == "" {
n, _ := strconv.ParseUint(s, 10, 64)
si.fieldsByNumber[pref.FieldNumber(n)] = f
continue fieldLoop
}
}
if s := f.Tag.Get("protobuf_oneof"); len(s) > 0 {
si.oneofsByName[pref.Name(s)] = f
continue fieldLoop
}
}
var oneofWrappers []interface{}
if fn, ok := reflect.PtrTo(t).MethodByName("XXX_OneofFuncs"); ok {
oneofWrappers = fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[3].Interface().([]interface{})
}
if fn, ok := reflect.PtrTo(t).MethodByName("XXX_OneofWrappers"); ok {
oneofWrappers = fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[0].Interface().([]interface{})
}
for _, v := range oneofWrappers {
tf := reflect.TypeOf(v).Elem()
f := tf.Field(0)
for _, s := range strings.Split(f.Tag.Get("protobuf"), ",") {
if len(s) > 0 && strings.Trim(s, "0123456789") == "" {
n, _ := strconv.ParseUint(s, 10, 64)
si.oneofWrappersByType[tf] = pref.FieldNumber(n)
si.oneofWrappersByNumber[pref.FieldNumber(n)] = tf
break
}
}
}
return si
}
// makeKnownFieldsFunc generates functions for operations that can be performed
// on each protobuf message field. It takes in a reflect.Type representing the
// Go struct and matches message fields with struct fields.
//
// This code assumes that the struct is well-formed and panics if there are
// any discrepancies.
func (mi *MessageInfo) makeKnownFieldsFunc(si structInfo) {
mi.fields = map[pref.FieldNumber]*fieldInfo{}
mi.fieldsOrdered = make([]*fieldInfo, 0, mi.PBType.Fields().Len())
for i := 0; i < mi.PBType.Descriptor().Fields().Len(); i++ {
fd := mi.PBType.Descriptor().Fields().Get(i)
fs := si.fieldsByNumber[fd.Number()]
var fi fieldInfo
switch {
case fd.ContainingOneof() != nil:
fi = fieldInfoForOneof(fd, si.oneofsByName[fd.ContainingOneof().Name()], si.oneofWrappersByNumber[fd.Number()])
// There is one fieldInfo for each proto message field, but only one struct
// field for all message fields in a oneof. We install the encoder functions
// on the fieldInfo for the first field in the oneof.
//
// A slightly simpler approach would be to have each fieldInfo's encoder
// handle the case where that field is set, but this would require more
// checks against the current oneof type than a single map lookup.
if fd.ContainingOneof().Fields().Get(0).Name() == fd.Name() {
fi.funcs = makeOneofFieldCoder(si.oneofsByName[fd.ContainingOneof().Name()], fd.ContainingOneof(), si.fieldsByNumber, si.oneofWrappersByNumber)
}
case fd.IsMap():
fi = fieldInfoForMap(fd, fs)
case fd.IsList():
fi = fieldInfoForList(fd, fs)
case fd.Kind() == pref.MessageKind || fd.Kind() == pref.GroupKind:
fi = fieldInfoForMessage(fd, fs)
default:
fi = fieldInfoForScalar(fd, fs)
}
fi.num = fd.Number()
mi.fields[fd.Number()] = &fi
mi.fieldsOrdered = append(mi.fieldsOrdered, &fi)
}
sort.Slice(mi.fieldsOrdered, func(i, j int) bool {
return mi.fieldsOrdered[i].num < mi.fieldsOrdered[j].num
})
mi.oneofs = map[pref.Name]*oneofInfo{}
for i := 0; i < mi.PBType.Descriptor().Oneofs().Len(); i++ {
od := mi.PBType.Descriptor().Oneofs().Get(i)
mi.oneofs[od.Name()] = makeOneofInfo(od, si.oneofsByName[od.Name()], si.oneofWrappersByType)
}
}
func (mi *MessageInfo) makeUnknownFieldsFunc(t reflect.Type) {
if f := makeLegacyUnknownFieldsFunc(t); f != nil {
mi.unknownFields = f
return
}
mi.unknownFields = func(*messageDataType) pref.UnknownFields {
return emptyUnknownFields{}
}
}
func (mi *MessageInfo) makeExtensionFieldsFunc(t reflect.Type) {
if f := makeLegacyExtensionFieldsFunc(t); f != nil {
mi.extensionFields = f
return
}
mi.extensionFields = func(*messageDataType) pref.KnownFields {
return emptyExtensionFields{}
}
}
func (mi *MessageInfo) MessageOf(p interface{}) pref.Message {
return (*messageReflectWrapper)(mi.dataTypeOf(p))
}
func (mi *MessageInfo) Methods() *piface.Methods {
mi.init()
return &mi.methods
}
func (mi *MessageInfo) dataTypeOf(p interface{}) *messageDataType {
// TODO: Remove this check? This API is primarily used by generated code,
// and should not violate this assumption. Leave this check in for now to
// provide some sanity checks during development. This can be removed if
// it proves to be detrimental to performance.
if reflect.TypeOf(p) != mi.GoType {
panic(fmt.Sprintf("type mismatch: got %T, want %v", p, mi.GoType))
}
return &messageDataType{pointerOfIface(p), mi}
}
// messageDataType is a tuple of a pointer to the message data and
// a pointer to the message type.
//
// TODO: Unfortunately, we need to close over a pointer and MessageInfo,
// which incurs an an allocation. This pair is similar to a Go interface,
// which is essentially a tuple of the same thing. We can make this efficient
// with reflect.NamedOf (see https://golang.org/issues/16522).
//
// With that hypothetical API, we could dynamically create a new named type
// that has the same underlying type as MessageInfo.GoType, and
// dynamically create methods that close over MessageInfo.
// Since the new type would have the same underlying type, we could directly
// convert between pointers of those types, giving us an efficient way to swap
// out the method set.
//
// Barring the ability to dynamically create named types, the workaround is
// 1. either to accept the cost of an allocation for this wrapper struct or
// 2. generate more types and methods, at the expense of binary size increase.
type messageDataType struct {
p pointer
mi *MessageInfo
}
type messageReflectWrapper messageDataType
// TODO: Remove this.
func (m *messageReflectWrapper) Type() pref.MessageType {
return m.mi.PBType
}
func (m *messageReflectWrapper) Descriptor() pref.MessageDescriptor {
return m.mi.PBType.Descriptor()
}
func (m *messageReflectWrapper) KnownFields() pref.KnownFields {
m.mi.init()
return (*knownFields)(m)
}
func (m *messageReflectWrapper) UnknownFields() pref.UnknownFields {
m.mi.init()
return m.mi.unknownFields((*messageDataType)(m))
}
func (m *messageReflectWrapper) New() pref.Message {
return m.mi.PBType.New()
}
func (m *messageReflectWrapper) Interface() pref.ProtoMessage {
if m, ok := m.ProtoUnwrap().(pref.ProtoMessage); ok {
return m
}
return (*messageIfaceWrapper)(m)
}
func (m *messageReflectWrapper) ProtoUnwrap() interface{} {
return m.p.AsIfaceOf(m.mi.GoType.Elem())
}
var _ pvalue.Unwrapper = (*messageReflectWrapper)(nil)
type messageIfaceWrapper messageDataType
func (m *messageIfaceWrapper) ProtoReflect() pref.Message {
return (*messageReflectWrapper)(m)
}
func (m *messageIfaceWrapper) XXX_Methods() *piface.Methods {
// TODO: Consider not recreating this on every call.
m.mi.init()
return &piface.Methods{
Flags: piface.MethodFlagDeterministicMarshal,
MarshalAppend: m.marshalAppend,
Size: m.size,
}
}
func (m *messageIfaceWrapper) ProtoUnwrap() interface{} {
return m.p.AsIfaceOf(m.mi.GoType.Elem())
}
func (m *messageIfaceWrapper) marshalAppend(b []byte, _ pref.ProtoMessage, opts piface.MarshalOptions) ([]byte, error) {
return m.mi.marshalAppendPointer(b, m.p, newMarshalOptions(opts))
}
func (m *messageIfaceWrapper) size(msg pref.ProtoMessage) (size int) {
return m.mi.sizePointer(m.p, 0)
}
type knownFields messageDataType
func (fs *knownFields) Len() (cnt int) {
for _, fi := range fs.mi.fields {
if fi.has(fs.p) {
cnt++
}
}
return cnt + fs.extensionFields().Len()
}
func (fs *knownFields) Has(n pref.FieldNumber) bool {
if fi := fs.mi.fields[n]; fi != nil {
return fi.has(fs.p)
}
return fs.extensionFields().Has(n)
}
func (fs *knownFields) Get(n pref.FieldNumber) pref.Value {
if fi := fs.mi.fields[n]; fi != nil {
return fi.get(fs.p)
}
return fs.extensionFields().Get(n)
}
func (fs *knownFields) Set(n pref.FieldNumber, v pref.Value) {
if fi := fs.mi.fields[n]; fi != nil {
fi.set(fs.p, v)
return
}
if fs.mi.PBType.Descriptor().ExtensionRanges().Has(n) {
fs.extensionFields().Set(n, v)
return
}
panic(fmt.Sprintf("invalid field: %d", n))
}
func (fs *knownFields) Clear(n pref.FieldNumber) {
if fi := fs.mi.fields[n]; fi != nil {
fi.clear(fs.p)
return
}
if fs.mi.PBType.Descriptor().ExtensionRanges().Has(n) {
fs.extensionFields().Clear(n)
return
}
}
func (fs *knownFields) WhichOneof(s pref.Name) pref.FieldNumber {
if oi := fs.mi.oneofs[s]; oi != nil {
return oi.which(fs.p)
}
return 0
}
func (fs *knownFields) Range(f func(pref.FieldNumber, pref.Value) bool) {
for n, fi := range fs.mi.fields {
if fi.has(fs.p) {
if !f(n, fi.get(fs.p)) {
return
}
}
}
fs.extensionFields().Range(f)
}
func (fs *knownFields) NewMessage(n pref.FieldNumber) pref.Message {
if fi := fs.mi.fields[n]; fi != nil {
return fi.newMessage()
}
if fs.mi.PBType.Descriptor().ExtensionRanges().Has(n) {
return fs.extensionFields().NewMessage(n)
}
panic(fmt.Sprintf("invalid field: %d", n))
}
func (fs *knownFields) ExtensionTypes() pref.ExtensionFieldTypes {
return fs.extensionFields().ExtensionTypes()
}
func (fs *knownFields) extensionFields() pref.KnownFields {
return fs.mi.extensionFields((*messageDataType)(fs))
}
type emptyUnknownFields struct{}
func (emptyUnknownFields) Len() int { return 0 }
func (emptyUnknownFields) Get(pref.FieldNumber) pref.RawFields { return nil }
func (emptyUnknownFields) Set(pref.FieldNumber, pref.RawFields) { return } // noop
func (emptyUnknownFields) Range(func(pref.FieldNumber, pref.RawFields) bool) { return }
func (emptyUnknownFields) IsSupported() bool { return false }
type emptyExtensionFields struct{}
func (emptyExtensionFields) Len() int { return 0 }
func (emptyExtensionFields) Has(pref.FieldNumber) bool { return false }
func (emptyExtensionFields) Get(pref.FieldNumber) pref.Value { return pref.Value{} }
func (emptyExtensionFields) Set(pref.FieldNumber, pref.Value) { panic("extensions not supported") }
func (emptyExtensionFields) Clear(pref.FieldNumber) { return } // noop
func (emptyExtensionFields) WhichOneof(pref.Name) pref.FieldNumber { return 0 }
func (emptyExtensionFields) Range(func(pref.FieldNumber, pref.Value) bool) { return }
func (emptyExtensionFields) NewMessage(pref.FieldNumber) pref.Message {
panic("extensions not supported")
}
func (emptyExtensionFields) ExtensionTypes() pref.ExtensionFieldTypes { return emptyExtensionTypes{} }
type emptyExtensionTypes struct{}
func (emptyExtensionTypes) Len() int { return 0 }
func (emptyExtensionTypes) Register(pref.ExtensionType) { panic("extensions not supported") }
func (emptyExtensionTypes) Remove(pref.ExtensionType) { return } // noop
func (emptyExtensionTypes) ByNumber(pref.FieldNumber) pref.ExtensionType { return nil }
func (emptyExtensionTypes) ByName(pref.FullName) pref.ExtensionType { return nil }
func (emptyExtensionTypes) Range(func(pref.ExtensionType) bool) { return }