blob: 68a9a0a33ebe1df07853dc534ccd23fb3b7c8305 [file] [log] [blame]
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package stats
import "math"
// mathSign returns the sign of x: -1 if x < 0, 0 if x == 0, 1 if x > 0.
// If x is NaN, it returns NaN.
func mathSign(x float64) float64 {
if x == 0 {
return 0
} else if x < 0 {
return -1
} else if x > 0 {
return 1
}
return nan
}
const smallFactLimit = 20 // 20! => 62 bits
var smallFact [smallFactLimit + 1]int64
func init() {
smallFact[0] = 1
fact := int64(1)
for n := int64(1); n <= smallFactLimit; n++ {
fact *= n
smallFact[n] = fact
}
}
// mathChoose returns the binomial coefficient of n and k.
func mathChoose(n, k int) float64 {
if k == 0 || k == n {
return 1
}
if k < 0 || n < k {
return 0
}
if n <= smallFactLimit { // Implies k <= smallFactLimit
// It's faster to do several integer multiplications
// than it is to do an extra integer division.
// Remarkably, this is also faster than pre-computing
// Pascal's triangle (presumably because this is very
// cache efficient).
numer := int64(1)
for n1 := int64(n - (k - 1)); n1 <= int64(n); n1++ {
numer *= n1
}
denom := smallFact[k]
return float64(numer / denom)
}
return math.Exp(lchoose(n, k))
}
// mathLchoose returns math.Log(mathChoose(n, k)).
func mathLchoose(n, k int) float64 {
if k == 0 || k == n {
return 0
}
if k < 0 || n < k {
return math.NaN()
}
return lchoose(n, k)
}
func lchoose(n, k int) float64 {
a, _ := math.Lgamma(float64(n + 1))
b, _ := math.Lgamma(float64(k + 1))
c, _ := math.Lgamma(float64(n - k + 1))
return a - b - c
}