| // Copyright 2015 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package stats |
| |
| import ( |
| "math" |
| "math/rand" |
| ) |
| |
| // NormalDist is a normal (Gaussian) distribution with mean Mu and |
| // standard deviation Sigma. |
| type NormalDist struct { |
| Mu, Sigma float64 |
| } |
| |
| // StdNormal is the standard normal distribution (Mu = 0, Sigma = 1) |
| var StdNormal = NormalDist{0, 1} |
| |
| // 1/sqrt(2 * pi) |
| const invSqrt2Pi = 0.39894228040143267793994605993438186847585863116493465766592583 |
| |
| func (n NormalDist) PDF(x float64) float64 { |
| z := x - n.Mu |
| return math.Exp(-z*z/(2*n.Sigma*n.Sigma)) * invSqrt2Pi / n.Sigma |
| } |
| |
| func (n NormalDist) pdfEach(xs []float64) []float64 { |
| res := make([]float64, len(xs)) |
| if n.Mu == 0 && n.Sigma == 1 { |
| // Standard normal fast path |
| for i, x := range xs { |
| res[i] = math.Exp(-x*x/2) * invSqrt2Pi |
| } |
| } else { |
| a := -1 / (2 * n.Sigma * n.Sigma) |
| b := invSqrt2Pi / n.Sigma |
| for i, x := range xs { |
| z := x - n.Mu |
| res[i] = math.Exp(z*z*a) * b |
| } |
| } |
| return res |
| } |
| |
| func (n NormalDist) CDF(x float64) float64 { |
| return math.Erfc(-(x-n.Mu)/(n.Sigma*math.Sqrt2)) / 2 |
| } |
| |
| func (n NormalDist) cdfEach(xs []float64) []float64 { |
| res := make([]float64, len(xs)) |
| a := 1 / (n.Sigma * math.Sqrt2) |
| for i, x := range xs { |
| res[i] = math.Erfc(-(x-n.Mu)*a) / 2 |
| } |
| return res |
| } |
| |
| func (n NormalDist) InvCDF(p float64) (x float64) { |
| // This is based on Peter John Acklam's inverse normal CDF |
| // algorithm: http://home.online.no/~pjacklam/notes/invnorm/ |
| const ( |
| a1 = -3.969683028665376e+01 |
| a2 = 2.209460984245205e+02 |
| a3 = -2.759285104469687e+02 |
| a4 = 1.383577518672690e+02 |
| a5 = -3.066479806614716e+01 |
| a6 = 2.506628277459239e+00 |
| |
| b1 = -5.447609879822406e+01 |
| b2 = 1.615858368580409e+02 |
| b3 = -1.556989798598866e+02 |
| b4 = 6.680131188771972e+01 |
| b5 = -1.328068155288572e+01 |
| |
| c1 = -7.784894002430293e-03 |
| c2 = -3.223964580411365e-01 |
| c3 = -2.400758277161838e+00 |
| c4 = -2.549732539343734e+00 |
| c5 = 4.374664141464968e+00 |
| c6 = 2.938163982698783e+00 |
| |
| d1 = 7.784695709041462e-03 |
| d2 = 3.224671290700398e-01 |
| d3 = 2.445134137142996e+00 |
| d4 = 3.754408661907416e+00 |
| |
| plow = 0.02425 |
| phigh = 1 - plow |
| ) |
| |
| if p < 0 || p > 1 { |
| return nan |
| } else if p == 0 { |
| return -inf |
| } else if p == 1 { |
| return inf |
| } |
| |
| if p < plow { |
| // Rational approximation for lower region. |
| q := math.Sqrt(-2 * math.Log(p)) |
| x = (((((c1*q+c2)*q+c3)*q+c4)*q+c5)*q + c6) / |
| ((((d1*q+d2)*q+d3)*q+d4)*q + 1) |
| } else if phigh < p { |
| // Rational approximation for upper region. |
| q := math.Sqrt(-2 * math.Log(1-p)) |
| x = -(((((c1*q+c2)*q+c3)*q+c4)*q+c5)*q + c6) / |
| ((((d1*q+d2)*q+d3)*q+d4)*q + 1) |
| } else { |
| // Rational approximation for central region. |
| q := p - 0.5 |
| r := q * q |
| x = (((((a1*r+a2)*r+a3)*r+a4)*r+a5)*r + a6) * q / |
| (((((b1*r+b2)*r+b3)*r+b4)*r+b5)*r + 1) |
| } |
| |
| // Refine approximation. |
| e := 0.5*math.Erfc(-x/math.Sqrt2) - p |
| u := e * math.Sqrt(2*math.Pi) * math.Exp(x*x/2) |
| x = x - u/(1+x*u/2) |
| |
| // Adjust from standard normal. |
| return x*n.Sigma + n.Mu |
| } |
| |
| func (n NormalDist) Rand(r *rand.Rand) float64 { |
| var x float64 |
| if r == nil { |
| x = rand.NormFloat64() |
| } else { |
| x = r.NormFloat64() |
| } |
| return x*n.Sigma + n.Mu |
| } |
| |
| func (n NormalDist) Bounds() (float64, float64) { |
| const stddevs = 3 |
| return n.Mu - stddevs*n.Sigma, n.Mu + stddevs*n.Sigma |
| } |