| // Copyright 2022 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package benchmath |
| |
| import ( |
| "fmt" |
| "math" |
| "testing" |
| |
| "github.com/aclements/go-moremath/stats" |
| ) |
| |
| func TestMedianSamples(t *testing.T) { |
| if false { |
| for n := 2; n <= 50; n++ { |
| d := stats.BinomialDist{N: n, P: 0.5} |
| t.Log(n, 1-(d.PMF(0)+d.PMF(float64(d.N))), d.PMF(0)) |
| } |
| } |
| |
| check := func(confidence float64, wantOp string, wantN int) { |
| t.Helper() |
| gotOp, gotN := medianSamples(confidence) |
| if gotOp != wantOp || gotN != wantN { |
| t.Errorf("for confidence %v, want %s %d, got %s %d", confidence, wantOp, wantN, gotOp, gotN) |
| } |
| } |
| |
| // At n=6, the tails are 0.015625 * 2 => 0.03125 |
| check(0.95, ">=", 6) |
| // At n=8, the tails are 0.00390625 * 2 => 0.0078125 |
| check(0.99, ">=", 8) |
| // The hard-coded threshold is 50. |
| check(1, ">", 50) |
| // Check the other extreme. We always need at least two |
| // samples to have an interval. |
| check(0, ">=", 2) |
| } |
| |
| func TestUTestSamples(t *testing.T) { |
| check := func(alpha float64, wantOp string, wantN int) { |
| t.Helper() |
| gotOp, gotN := uTestSamples(alpha) |
| if gotOp != wantOp || gotN != wantN { |
| t.Errorf("for alpha %v, want %s %d, got %s %d", alpha, wantOp, wantN, gotOp, gotN) |
| } |
| } |
| check(1, ">=", 1) |
| check(0.05, ">=", 4) |
| check(0.01, ">=", 5) |
| check(1e-50, ">", 10) |
| check(0, ">", 10) |
| } |
| |
| func TestSummaryNone(t *testing.T) { |
| // The following tests correspond to the tests in |
| // TestMedianSamples. |
| a := AssumeNothing |
| var sample *Sample |
| inf := math.Inf(1) |
| sample = NewSample([]float64{-10, 2, 3, 4, 5, 6}, &DefaultThresholds) |
| checkSummary(t, a.Summary(sample, 0.95), |
| Summary{Center: 3.5, Lo: -10, Hi: 6, Confidence: 1 - 0.03125}) |
| checkSummary(t, a.Summary(sample, 0.99), |
| Summary{Center: 3.5, Lo: -inf, Hi: inf, Confidence: 1}, |
| "need >= 8 samples for confidence interval at level 0.99") |
| checkSummary(t, a.Summary(sample, 1), |
| Summary{Center: 3.5, Lo: -inf, Hi: inf, Confidence: 1}, |
| "need > 50 samples for confidence interval at level 1") |
| sample = NewSample([]float64{1, 2}, &DefaultThresholds) |
| checkSummary(t, a.Summary(sample, 0), |
| Summary{Center: 1.5, Lo: 1, Hi: 2, Confidence: 0.5}) |
| |
| // And test very small samples. |
| sample = NewSample([]float64{1}, &DefaultThresholds) |
| checkSummary(t, a.Summary(sample, 0.95), |
| Summary{Center: 1, Lo: -inf, Hi: inf, Confidence: 1}, |
| "need >= 6 samples for confidence interval at level 0.95") |
| } |
| |
| func TestCompareNone(t *testing.T) { |
| // Most of the complexity is in the sample size warning. |
| a := AssumeNothing |
| thr := DefaultThresholds |
| thr.CompareAlpha = 0.05 |
| // Too-small samples. |
| s1 := NewSample([]float64{-1, -1, -1}, &thr) |
| s2 := NewSample([]float64{1, 1, 1}, &thr) |
| checkComparison(t, a.Compare(s1, s2), |
| Comparison{P: 0.1, N1: 3, N2: 3, Alpha: 0.05}, |
| "need >= 4 samples to detect a difference at alpha level 0.05") |
| // Big enough samples with a difference. |
| s1 = NewSample([]float64{-1, -1, -1, -1}, &thr) |
| s2 = NewSample([]float64{1, 1, 1, 1}, &thr) |
| checkComparison(t, a.Compare(s1, s2), |
| Comparison{P: 0.02857142857142857, N1: 4, N2: 4, Alpha: 0.05}) |
| // Big enough samples, but not enough difference. |
| s1 = NewSample([]float64{1, -1, -1, -1}, &thr) |
| s2 = NewSample([]float64{-1, 1, 1, 1}, &thr) |
| checkComparison(t, a.Compare(s1, s2), |
| Comparison{P: 0.4857142857142857, N1: 4, N2: 4, Alpha: 0.05}) |
| |
| // All samples equal, so the U-test is meaningless. |
| s1 = NewSample([]float64{1, 1, 1, 1}, &thr) |
| s2 = NewSample([]float64{1, 1, 1, 1}, &thr) |
| checkComparison(t, a.Compare(s1, s2), |
| Comparison{P: 1, N1: 4, N2: 4, Alpha: 0.05}, |
| "all samples are equal") |
| |
| } |
| |
| func TestSummaryNormal(t *testing.T) { |
| // This is a thin wrapper around sample.MeanCI, so just do a |
| // smoke test. |
| a := AssumeNormal |
| sample := NewSample([]float64{-8, 2, 3, 4, 5, 6}, &DefaultThresholds) |
| checkSummary(t, a.Summary(sample, 0.95), |
| Summary{Center: 2, Lo: -3.351092806089359, Hi: 7.351092806089359, Confidence: 0.95}) |
| } |
| |
| func TestSummaryExact(t *testing.T) { |
| a := AssumeExact |
| sample := NewSample([]float64{1, 1, 1, 1}, &DefaultThresholds) |
| checkSummary(t, a.Summary(sample, 0.95), |
| Summary{Center: 1, Lo: 1, Hi: 1, Confidence: 1}) |
| |
| sample = NewSample([]float64{1}, &DefaultThresholds) |
| checkSummary(t, a.Summary(sample, 0.95), |
| Summary{Center: 1, Lo: 1, Hi: 1, Confidence: 1}) |
| |
| sample = NewSample([]float64{1, 2, 2, 3}, &DefaultThresholds) |
| checkSummary(t, a.Summary(sample, 0.95), |
| Summary{Center: 2, Lo: 1, Hi: 3, Confidence: 1}, |
| "exact distribution expected, but values range from 1 to 3") |
| } |
| |
| func aeq(x, y float64) bool { |
| if x < 0 && y < 0 { |
| x, y = -x, -y |
| } |
| // Check that x and y are equal to 8 digits. |
| const factor = 1 - 1e-7 |
| return x*factor <= y && y*factor <= x |
| } |
| |
| func checkSummary(t *testing.T, got, want Summary, warnings ...string) { |
| t.Helper() |
| for _, w := range warnings { |
| want.Warnings = append(want.Warnings, fmt.Errorf("%s", w)) |
| } |
| if !aeq(got.Center, want.Center) || !aeq(got.Lo, want.Lo) || !aeq(got.Hi, got.Hi) || got.Confidence != want.Confidence || !errorsEq(got.Warnings, want.Warnings) { |
| t.Errorf("got %v, want %v", got, want) |
| } |
| } |
| |
| func checkComparison(t *testing.T, got, want Comparison, warnings ...string) { |
| t.Helper() |
| for _, w := range warnings { |
| want.Warnings = append(want.Warnings, fmt.Errorf("%s", w)) |
| } |
| if !aeq(got.P, want.P) || got.N1 != want.N1 || got.N2 != want.N2 || got.Alpha != want.Alpha || !errorsEq(got.Warnings, want.Warnings) { |
| t.Errorf("got %#v, want %#v", got, want) |
| } |
| } |
| |
| func errorsEq(a, b []error) bool { |
| if len(a) != len(b) { |
| return false |
| } |
| for i := range a { |
| if a[i].Error() != b[i].Error() { |
| return false |
| } |
| } |
| return true |
| } |