| // Copyright 2015 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package fixed implements fixed-point integer types. |
| package fixed // import "golang.org/x/image/math/fixed" |
| |
| import ( |
| "fmt" |
| ) |
| |
| // TODO: implement fmt.Formatter for %f and %g. |
| |
| // I returns the integer value i as an Int26_6. |
| // |
| // For example, passing the integer value 2 yields Int26_6(128). |
| func I(i int) Int26_6 { |
| return Int26_6(i << 6) |
| } |
| |
| // Int26_6 is a signed 26.6 fixed-point number. |
| // |
| // The integer part ranges from -33554432 to 33554431, inclusive. The |
| // fractional part has 6 bits of precision. |
| // |
| // For example, the number one-and-a-quarter is Int26_6(1<<6 + 1<<4). |
| type Int26_6 int32 |
| |
| // String returns a human-readable representation of a 26.6 fixed-point number. |
| // |
| // For example, the number one-and-a-quarter becomes "1:16". |
| func (x Int26_6) String() string { |
| const shift, mask = 6, 1<<6 - 1 |
| if x >= 0 { |
| return fmt.Sprintf("%d:%02d", int32(x>>shift), int32(x&mask)) |
| } |
| x = -x |
| if x >= 0 { |
| return fmt.Sprintf("-%d:%02d", int32(x>>shift), int32(x&mask)) |
| } |
| return "-33554432:00" // The minimum value is -(1<<25). |
| } |
| |
| // Floor returns the greatest integer value less than or equal to x. |
| // |
| // Its return type is int, not Int26_6. |
| func (x Int26_6) Floor() int { return int((x + 0x00) >> 6) } |
| |
| // Round returns the nearest integer value to x. Ties are rounded up. |
| // |
| // Its return type is int, not Int26_6. |
| func (x Int26_6) Round() int { return int((x + 0x20) >> 6) } |
| |
| // Ceil returns the least integer value greater than or equal to x. |
| // |
| // Its return type is int, not Int26_6. |
| func (x Int26_6) Ceil() int { return int((x + 0x3f) >> 6) } |
| |
| // Mul returns x*y in 26.6 fixed-point arithmetic. |
| func (x Int26_6) Mul(y Int26_6) Int26_6 { |
| return Int26_6((int64(x)*int64(y) + 1<<5) >> 6) |
| } |
| |
| // Int52_12 is a signed 52.12 fixed-point number. |
| // |
| // The integer part ranges from -2251799813685248 to 2251799813685247, |
| // inclusive. The fractional part has 12 bits of precision. |
| // |
| // For example, the number one-and-a-quarter is Int52_12(1<<12 + 1<<10). |
| type Int52_12 int64 |
| |
| // String returns a human-readable representation of a 52.12 fixed-point |
| // number. |
| // |
| // For example, the number one-and-a-quarter becomes "1:1024". |
| func (x Int52_12) String() string { |
| const shift, mask = 12, 1<<12 - 1 |
| if x >= 0 { |
| return fmt.Sprintf("%d:%04d", int64(x>>shift), int64(x&mask)) |
| } |
| x = -x |
| if x >= 0 { |
| return fmt.Sprintf("-%d:%04d", int64(x>>shift), int64(x&mask)) |
| } |
| return "-2251799813685248:0000" // The minimum value is -(1<<51). |
| } |
| |
| // Floor returns the greatest integer value less than or equal to x. |
| // |
| // Its return type is int, not Int52_12. |
| func (x Int52_12) Floor() int { return int((x + 0x000) >> 12) } |
| |
| // Round returns the nearest integer value to x. Ties are rounded up. |
| // |
| // Its return type is int, not Int52_12. |
| func (x Int52_12) Round() int { return int((x + 0x800) >> 12) } |
| |
| // Ceil returns the least integer value greater than or equal to x. |
| // |
| // Its return type is int, not Int52_12. |
| func (x Int52_12) Ceil() int { return int((x + 0xfff) >> 12) } |
| |
| // Mul returns x*y in 52.12 fixed-point arithmetic. |
| func (x Int52_12) Mul(y Int52_12) Int52_12 { |
| const M, N = 52, 12 |
| lo, hi := muli64(int64(x), int64(y)) |
| ret := Int52_12(hi<<M | lo>>N) |
| ret += Int52_12((lo >> (N - 1)) & 1) // Round to nearest, instead of rounding down. |
| return ret |
| } |
| |
| // muli64 multiplies two int64 values, returning the 128-bit signed integer |
| // result as two uint64 values. |
| // |
| // This implementation is similar to $GOROOT/src/runtime/softfloat64.go's mullu |
| // function, which is in turn adapted from Hacker's Delight. |
| func muli64(u, v int64) (lo, hi uint64) { |
| const ( |
| s = 32 |
| mask = 1<<s - 1 |
| ) |
| |
| u1 := uint64(u >> s) |
| u0 := uint64(u & mask) |
| v1 := uint64(v >> s) |
| v0 := uint64(v & mask) |
| |
| w0 := u0 * v0 |
| t := u1*v0 + w0>>s |
| w1 := t & mask |
| w2 := uint64(int64(t) >> s) |
| w1 += u0 * v1 |
| return uint64(u) * uint64(v), u1*v1 + w2 + uint64(int64(w1)>>s) |
| } |
| |
| // P returns the integer values x and y as a Point26_6. |
| // |
| // For example, passing the integer values (2, -3) yields Point26_6{128, -192}. |
| func P(x, y int) Point26_6 { |
| return Point26_6{Int26_6(x << 6), Int26_6(y << 6)} |
| } |
| |
| // Point26_6 is a 26.6 fixed-point coordinate pair. |
| // |
| // It is analogous to the image.Point type in the standard library. |
| type Point26_6 struct { |
| X, Y Int26_6 |
| } |
| |
| // Add returns the vector p+q. |
| func (p Point26_6) Add(q Point26_6) Point26_6 { |
| return Point26_6{p.X + q.X, p.Y + q.Y} |
| } |
| |
| // Sub returns the vector p-q. |
| func (p Point26_6) Sub(q Point26_6) Point26_6 { |
| return Point26_6{p.X - q.X, p.Y - q.Y} |
| } |
| |
| // Mul returns the vector p*k. |
| func (p Point26_6) Mul(k Int26_6) Point26_6 { |
| return Point26_6{p.X * k / 64, p.Y * k / 64} |
| } |
| |
| // Div returns the vector p/k. |
| func (p Point26_6) Div(k Int26_6) Point26_6 { |
| return Point26_6{p.X * 64 / k, p.Y * 64 / k} |
| } |
| |
| // In returns whether p is in r. |
| func (p Point26_6) In(r Rectangle26_6) bool { |
| return r.Min.X <= p.X && p.X < r.Max.X && r.Min.Y <= p.Y && p.Y < r.Max.Y |
| } |
| |
| // Point52_12 is a 52.12 fixed-point coordinate pair. |
| // |
| // It is analogous to the image.Point type in the standard library. |
| type Point52_12 struct { |
| X, Y Int52_12 |
| } |
| |
| // Add returns the vector p+q. |
| func (p Point52_12) Add(q Point52_12) Point52_12 { |
| return Point52_12{p.X + q.X, p.Y + q.Y} |
| } |
| |
| // Sub returns the vector p-q. |
| func (p Point52_12) Sub(q Point52_12) Point52_12 { |
| return Point52_12{p.X - q.X, p.Y - q.Y} |
| } |
| |
| // Mul returns the vector p*k. |
| func (p Point52_12) Mul(k Int52_12) Point52_12 { |
| return Point52_12{p.X * k / 4096, p.Y * k / 4096} |
| } |
| |
| // Div returns the vector p/k. |
| func (p Point52_12) Div(k Int52_12) Point52_12 { |
| return Point52_12{p.X * 4096 / k, p.Y * 4096 / k} |
| } |
| |
| // In returns whether p is in r. |
| func (p Point52_12) In(r Rectangle52_12) bool { |
| return r.Min.X <= p.X && p.X < r.Max.X && r.Min.Y <= p.Y && p.Y < r.Max.Y |
| } |
| |
| // R returns the integer values minX, minY, maxX, maxY as a Rectangle26_6. |
| // |
| // For example, passing the integer values (0, 1, 2, 3) yields |
| // Rectangle26_6{Point26_6{0, 64}, Point26_6{128, 192}}. |
| // |
| // Like the image.Rect function in the standard library, the returned rectangle |
| // has minimum and maximum coordinates swapped if necessary so that it is |
| // well-formed. |
| func R(minX, minY, maxX, maxY int) Rectangle26_6 { |
| if minX > maxX { |
| minX, maxX = maxX, minX |
| } |
| if minY > maxY { |
| minY, maxY = maxY, minY |
| } |
| return Rectangle26_6{ |
| Point26_6{ |
| Int26_6(minX << 6), |
| Int26_6(minY << 6), |
| }, |
| Point26_6{ |
| Int26_6(maxX << 6), |
| Int26_6(maxY << 6), |
| }, |
| } |
| } |
| |
| // Rectangle26_6 is a 26.6 fixed-point coordinate rectangle. The Min bound is |
| // inclusive and the Max bound is exclusive. It is well-formed if Min.X <= |
| // Max.X and likewise for Y. |
| // |
| // It is analogous to the image.Rectangle type in the standard library. |
| type Rectangle26_6 struct { |
| Min, Max Point26_6 |
| } |
| |
| // Add returns the rectangle r translated by p. |
| func (r Rectangle26_6) Add(p Point26_6) Rectangle26_6 { |
| return Rectangle26_6{ |
| Point26_6{r.Min.X + p.X, r.Min.Y + p.Y}, |
| Point26_6{r.Max.X + p.X, r.Max.Y + p.Y}, |
| } |
| } |
| |
| // Sub returns the rectangle r translated by -p. |
| func (r Rectangle26_6) Sub(p Point26_6) Rectangle26_6 { |
| return Rectangle26_6{ |
| Point26_6{r.Min.X - p.X, r.Min.Y - p.Y}, |
| Point26_6{r.Max.X - p.X, r.Max.Y - p.Y}, |
| } |
| } |
| |
| // Intersect returns the largest rectangle contained by both r and s. If the |
| // two rectangles do not overlap then the zero rectangle will be returned. |
| func (r Rectangle26_6) Intersect(s Rectangle26_6) Rectangle26_6 { |
| if r.Min.X < s.Min.X { |
| r.Min.X = s.Min.X |
| } |
| if r.Min.Y < s.Min.Y { |
| r.Min.Y = s.Min.Y |
| } |
| if r.Max.X > s.Max.X { |
| r.Max.X = s.Max.X |
| } |
| if r.Max.Y > s.Max.Y { |
| r.Max.Y = s.Max.Y |
| } |
| // Letting r0 and s0 be the values of r and s at the time that the method |
| // is called, this next line is equivalent to: |
| // |
| // if max(r0.Min.X, s0.Min.X) >= min(r0.Max.X, s0.Max.X) || likewiseForY { etc } |
| if r.Empty() { |
| return Rectangle26_6{} |
| } |
| return r |
| } |
| |
| // Union returns the smallest rectangle that contains both r and s. |
| func (r Rectangle26_6) Union(s Rectangle26_6) Rectangle26_6 { |
| if r.Empty() { |
| return s |
| } |
| if s.Empty() { |
| return r |
| } |
| if r.Min.X > s.Min.X { |
| r.Min.X = s.Min.X |
| } |
| if r.Min.Y > s.Min.Y { |
| r.Min.Y = s.Min.Y |
| } |
| if r.Max.X < s.Max.X { |
| r.Max.X = s.Max.X |
| } |
| if r.Max.Y < s.Max.Y { |
| r.Max.Y = s.Max.Y |
| } |
| return r |
| } |
| |
| // Empty returns whether the rectangle contains no points. |
| func (r Rectangle26_6) Empty() bool { |
| return r.Min.X >= r.Max.X || r.Min.Y >= r.Max.Y |
| } |
| |
| // In returns whether every point in r is in s. |
| func (r Rectangle26_6) In(s Rectangle26_6) bool { |
| if r.Empty() { |
| return true |
| } |
| // Note that r.Max is an exclusive bound for r, so that r.In(s) |
| // does not require that r.Max.In(s). |
| return s.Min.X <= r.Min.X && r.Max.X <= s.Max.X && |
| s.Min.Y <= r.Min.Y && r.Max.Y <= s.Max.Y |
| } |
| |
| // Rectangle52_12 is a 52.12 fixed-point coordinate rectangle. The Min bound is |
| // inclusive and the Max bound is exclusive. It is well-formed if Min.X <= |
| // Max.X and likewise for Y. |
| // |
| // It is analogous to the image.Rectangle type in the standard library. |
| type Rectangle52_12 struct { |
| Min, Max Point52_12 |
| } |
| |
| // Add returns the rectangle r translated by p. |
| func (r Rectangle52_12) Add(p Point52_12) Rectangle52_12 { |
| return Rectangle52_12{ |
| Point52_12{r.Min.X + p.X, r.Min.Y + p.Y}, |
| Point52_12{r.Max.X + p.X, r.Max.Y + p.Y}, |
| } |
| } |
| |
| // Sub returns the rectangle r translated by -p. |
| func (r Rectangle52_12) Sub(p Point52_12) Rectangle52_12 { |
| return Rectangle52_12{ |
| Point52_12{r.Min.X - p.X, r.Min.Y - p.Y}, |
| Point52_12{r.Max.X - p.X, r.Max.Y - p.Y}, |
| } |
| } |
| |
| // Intersect returns the largest rectangle contained by both r and s. If the |
| // two rectangles do not overlap then the zero rectangle will be returned. |
| func (r Rectangle52_12) Intersect(s Rectangle52_12) Rectangle52_12 { |
| if r.Min.X < s.Min.X { |
| r.Min.X = s.Min.X |
| } |
| if r.Min.Y < s.Min.Y { |
| r.Min.Y = s.Min.Y |
| } |
| if r.Max.X > s.Max.X { |
| r.Max.X = s.Max.X |
| } |
| if r.Max.Y > s.Max.Y { |
| r.Max.Y = s.Max.Y |
| } |
| // Letting r0 and s0 be the values of r and s at the time that the method |
| // is called, this next line is equivalent to: |
| // |
| // if max(r0.Min.X, s0.Min.X) >= min(r0.Max.X, s0.Max.X) || likewiseForY { etc } |
| if r.Empty() { |
| return Rectangle52_12{} |
| } |
| return r |
| } |
| |
| // Union returns the smallest rectangle that contains both r and s. |
| func (r Rectangle52_12) Union(s Rectangle52_12) Rectangle52_12 { |
| if r.Empty() { |
| return s |
| } |
| if s.Empty() { |
| return r |
| } |
| if r.Min.X > s.Min.X { |
| r.Min.X = s.Min.X |
| } |
| if r.Min.Y > s.Min.Y { |
| r.Min.Y = s.Min.Y |
| } |
| if r.Max.X < s.Max.X { |
| r.Max.X = s.Max.X |
| } |
| if r.Max.Y < s.Max.Y { |
| r.Max.Y = s.Max.Y |
| } |
| return r |
| } |
| |
| // Empty returns whether the rectangle contains no points. |
| func (r Rectangle52_12) Empty() bool { |
| return r.Min.X >= r.Max.X || r.Min.Y >= r.Max.Y |
| } |
| |
| // In returns whether every point in r is in s. |
| func (r Rectangle52_12) In(s Rectangle52_12) bool { |
| if r.Empty() { |
| return true |
| } |
| // Note that r.Max is an exclusive bound for r, so that r.In(s) |
| // does not require that r.Max.In(s). |
| return s.Min.X <= r.Min.X && r.Max.X <= s.Max.X && |
| s.Min.Y <= r.Min.Y && r.Max.Y <= s.Max.Y |
| } |