| // Copyright 2016 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package vector |
| |
| // This file contains a floating point math implementation of the vector |
| // graphics rasterizer. |
| |
| import ( |
| "math" |
| ) |
| |
| func floatingMax(x, y float32) float32 { |
| if x > y { |
| return x |
| } |
| return y |
| } |
| |
| func floatingMin(x, y float32) float32 { |
| if x < y { |
| return x |
| } |
| return y |
| } |
| |
| func floatingFloor(x float32) int32 { return int32(math.Floor(float64(x))) } |
| func floatingCeil(x float32) int32 { return int32(math.Ceil(float64(x))) } |
| |
| func (z *Rasterizer) floatingLineTo(bx, by float32) { |
| ax, ay := z.penX, z.penY |
| z.penX, z.penY = bx, by |
| dir := float32(1) |
| if ay > by { |
| dir, ax, ay, bx, by = -1, bx, by, ax, ay |
| } |
| // Horizontal line segments yield no change in coverage. Almost horizontal |
| // segments would yield some change, in ideal math, but the computation |
| // further below, involving 1 / (by - ay), is unstable in floating point |
| // math, so we treat the segment as if it was perfectly horizontal. |
| if by-ay <= 0.000001 { |
| return |
| } |
| dxdy := (bx - ax) / (by - ay) |
| |
| x := ax |
| y := floatingFloor(ay) |
| yMax := floatingCeil(by) |
| if yMax > int32(z.size.Y) { |
| yMax = int32(z.size.Y) |
| } |
| width := int32(z.size.X) |
| |
| for ; y < yMax; y++ { |
| dy := floatingMin(float32(y+1), by) - floatingMax(float32(y), ay) |
| xNext := x + dy*dxdy |
| if y < 0 { |
| x = xNext |
| continue |
| } |
| buf := z.bufF32[y*width:] |
| d := dy * dir |
| x0, x1 := x, xNext |
| if x > xNext { |
| x0, x1 = x1, x0 |
| } |
| x0i := floatingFloor(x0) |
| x0Floor := float32(x0i) |
| x1i := floatingCeil(x1) |
| x1Ceil := float32(x1i) |
| |
| if x1i <= x0i+1 { |
| xmf := 0.5*(x+xNext) - x0Floor |
| if i := clamp(x0i+0, width); i < uint(len(buf)) { |
| buf[i] += d - d*xmf |
| } |
| if i := clamp(x0i+1, width); i < uint(len(buf)) { |
| buf[i] += d * xmf |
| } |
| } else { |
| s := 1 / (x1 - x0) |
| x0f := x0 - x0Floor |
| oneMinusX0f := 1 - x0f |
| a0 := 0.5 * s * oneMinusX0f * oneMinusX0f |
| x1f := x1 - x1Ceil + 1 |
| am := 0.5 * s * x1f * x1f |
| |
| if i := clamp(x0i, width); i < uint(len(buf)) { |
| buf[i] += d * a0 |
| } |
| |
| if x1i == x0i+2 { |
| if i := clamp(x0i+1, width); i < uint(len(buf)) { |
| buf[i] += d * (1 - a0 - am) |
| } |
| } else { |
| a1 := s * (1.5 - x0f) |
| if i := clamp(x0i+1, width); i < uint(len(buf)) { |
| buf[i] += d * (a1 - a0) |
| } |
| dTimesS := d * s |
| for xi := x0i + 2; xi < x1i-1; xi++ { |
| if i := clamp(xi, width); i < uint(len(buf)) { |
| buf[i] += dTimesS |
| } |
| } |
| a2 := a1 + s*float32(x1i-x0i-3) |
| if i := clamp(x1i-1, width); i < uint(len(buf)) { |
| buf[i] += d * (1 - a2 - am) |
| } |
| } |
| |
| if i := clamp(x1i, width); i < uint(len(buf)) { |
| buf[i] += d * am |
| } |
| } |
| |
| x = xNext |
| } |
| } |
| |
| const ( |
| // almost256 scales a floating point value in the range [0, 1] to a uint8 |
| // value in the range [0x00, 0xff]. |
| // |
| // 255 is too small. Floating point math accumulates rounding errors, so a |
| // fully covered src value that would in ideal math be float32(1) might be |
| // float32(1-ε), and uint8(255 * (1-ε)) would be 0xfe instead of 0xff. The |
| // uint8 conversion rounds to zero, not to nearest. |
| // |
| // 256 is too big. If we multiplied by 256, below, then a fully covered src |
| // value of float32(1) would translate to uint8(256 * 1), which can be 0x00 |
| // instead of the maximal value 0xff. |
| // |
| // math.Float32bits(almost256) is 0x437fffff. |
| almost256 = 255.99998 |
| |
| // almost65536 scales a floating point value in the range [0, 1] to a |
| // uint16 value in the range [0x0000, 0xffff]. |
| // |
| // math.Float32bits(almost65536) is 0x477fffff. |
| almost65536 = almost256 * 256 |
| ) |
| |
| func floatingAccumulateOpOver(dst []uint8, src []float32) { |
| // Sanity check that len(dst) >= len(src). |
| if len(dst) < len(src) { |
| return |
| } |
| |
| acc := float32(0) |
| for i, v := range src { |
| acc += v |
| a := acc |
| if a < 0 { |
| a = -a |
| } |
| if a > 1 { |
| a = 1 |
| } |
| // This algorithm comes from the standard library's image/draw package. |
| dstA := uint32(dst[i]) * 0x101 |
| maskA := uint32(almost65536 * a) |
| outA := dstA*(0xffff-maskA)/0xffff + maskA |
| dst[i] = uint8(outA >> 8) |
| } |
| } |
| |
| func floatingAccumulateOpSrc(dst []uint8, src []float32) { |
| // Sanity check that len(dst) >= len(src). |
| if len(dst) < len(src) { |
| return |
| } |
| |
| acc := float32(0) |
| for i, v := range src { |
| acc += v |
| a := acc |
| if a < 0 { |
| a = -a |
| } |
| if a > 1 { |
| a = 1 |
| } |
| dst[i] = uint8(almost256 * a) |
| } |
| } |
| |
| func floatingAccumulateMask(dst []uint32, src []float32) { |
| // Sanity check that len(dst) >= len(src). |
| if len(dst) < len(src) { |
| return |
| } |
| |
| acc := float32(0) |
| for i, v := range src { |
| acc += v |
| a := acc |
| if a < 0 { |
| a = -a |
| } |
| if a > 1 { |
| a = 1 |
| } |
| dst[i] = uint32(almost65536 * a) |
| } |
| } |