| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package vp8 |
| |
| // This file implements decoding DCT/WHT residual coefficients and |
| // reconstructing YCbCr data equal to predicted values plus residuals. |
| // |
| // There are 1*16*16 + 2*8*8 + 1*4*4 coefficients per macroblock: |
| // - 1*16*16 luma DCT coefficients, |
| // - 2*8*8 chroma DCT coefficients, and |
| // - 1*4*4 luma WHT coefficients. |
| // Coefficients are read in lots of 16, and the later coefficients in each lot |
| // are often zero. |
| // |
| // The YCbCr data consists of 1*16*16 luma values and 2*8*8 chroma values, |
| // plus previously decoded values along the top and left borders. The combined |
| // values are laid out as a [1+16+1+8][32]uint8 so that vertically adjacent |
| // samples are 32 bytes apart. In detail, the layout is: |
| // |
| // 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 |
| // . . . . . . . a b b b b b b b b b b b b b b b b c c c c . . . . 0 |
| // . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 1 |
| // . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 2 |
| // . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 3 |
| // . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y c c c c . . . . 4 |
| // . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 5 |
| // . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 6 |
| // . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 7 |
| // . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y c c c c . . . . 8 |
| // . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 9 |
| // . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 10 |
| // . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 11 |
| // . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y c c c c . . . . 12 |
| // . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 13 |
| // . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 14 |
| // . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 15 |
| // . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 16 |
| // . . . . . . . e f f f f f f f f . . . . . . . g h h h h h h h h 17 |
| // . . . . . . . i B B B B B B B B . . . . . . . j R R R R R R R R 18 |
| // . . . . . . . i B B B B B B B B . . . . . . . j R R R R R R R R 19 |
| // . . . . . . . i B B B B B B B B . . . . . . . j R R R R R R R R 20 |
| // . . . . . . . i B B B B B B B B . . . . . . . j R R R R R R R R 21 |
| // . . . . . . . i B B B B B B B B . . . . . . . j R R R R R R R R 22 |
| // . . . . . . . i B B B B B B B B . . . . . . . j R R R R R R R R 23 |
| // . . . . . . . i B B B B B B B B . . . . . . . j R R R R R R R R 24 |
| // . . . . . . . i B B B B B B B B . . . . . . . j R R R R R R R R 25 |
| // |
| // Y, B and R are the reconstructed luma (Y) and chroma (B, R) values. |
| // The Y values are predicted (either as one 16x16 region or 16 4x4 regions) |
| // based on the row above's Y values (some combination of {abc} or {dYC}) and |
| // the column left's Y values (either {ad} or {bY}). Similarly, B and R values |
| // are predicted on the row above and column left of their respective 8x8 |
| // region: {efi} for B, {ghj} for R. |
| // |
| // For uppermost macroblocks (i.e. those with mby == 0), the {abcefgh} values |
| // are initialized to 0x81. Otherwise, they are copied from the bottom row of |
| // the macroblock above. The {c} values are then duplicated from row 0 to rows |
| // 4, 8 and 12 of the ybr workspace. |
| // Similarly, for leftmost macroblocks (i.e. those with mbx == 0), the {adeigj} |
| // values are initialized to 0x7f. Otherwise, they are copied from the right |
| // column of the macroblock to the left. |
| // For the top-left macroblock (with mby == 0 && mbx == 0), {aeg} is 0x81. |
| // |
| // When moving from one macroblock to the next horizontally, the {adeigj} |
| // values can simply be copied from the workspace to itself, shifted by 8 or |
| // 16 columns. When moving from one macroblock to the next vertically, |
| // filtering can occur and hence the row values have to be copied from the |
| // post-filtered image instead of the pre-filtered workspace. |
| |
| const ( |
| bCoeffBase = 1*16*16 + 0*8*8 |
| rCoeffBase = 1*16*16 + 1*8*8 |
| whtCoeffBase = 1*16*16 + 2*8*8 |
| ) |
| |
| const ( |
| ybrYX = 8 |
| ybrYY = 1 |
| ybrBX = 8 |
| ybrBY = 18 |
| ybrRX = 24 |
| ybrRY = 18 |
| ) |
| |
| // prepareYBR prepares the {abcdefghij} elements of ybr. |
| func (d *Decoder) prepareYBR(mbx, mby int) { |
| if mbx == 0 { |
| for y := 0; y < 17; y++ { |
| d.ybr[y][7] = 0x81 |
| } |
| for y := 17; y < 26; y++ { |
| d.ybr[y][7] = 0x81 |
| d.ybr[y][23] = 0x81 |
| } |
| } else { |
| for y := 0; y < 17; y++ { |
| d.ybr[y][7] = d.ybr[y][7+16] |
| } |
| for y := 17; y < 26; y++ { |
| d.ybr[y][7] = d.ybr[y][15] |
| d.ybr[y][23] = d.ybr[y][31] |
| } |
| } |
| if mby == 0 { |
| for x := 7; x < 28; x++ { |
| d.ybr[0][x] = 0x7f |
| } |
| for x := 7; x < 16; x++ { |
| d.ybr[17][x] = 0x7f |
| } |
| for x := 23; x < 32; x++ { |
| d.ybr[17][x] = 0x7f |
| } |
| } else { |
| for i := 0; i < 16; i++ { |
| d.ybr[0][8+i] = d.img.Y[(16*mby-1)*d.img.YStride+16*mbx+i] |
| } |
| for i := 0; i < 8; i++ { |
| d.ybr[17][8+i] = d.img.Cb[(8*mby-1)*d.img.CStride+8*mbx+i] |
| } |
| for i := 0; i < 8; i++ { |
| d.ybr[17][24+i] = d.img.Cr[(8*mby-1)*d.img.CStride+8*mbx+i] |
| } |
| if mbx == d.mbw-1 { |
| for i := 16; i < 20; i++ { |
| d.ybr[0][8+i] = d.img.Y[(16*mby-1)*d.img.YStride+16*mbx+15] |
| } |
| } else { |
| for i := 16; i < 20; i++ { |
| d.ybr[0][8+i] = d.img.Y[(16*mby-1)*d.img.YStride+16*mbx+i] |
| } |
| } |
| } |
| for y := 4; y < 16; y += 4 { |
| d.ybr[y][24] = d.ybr[0][24] |
| d.ybr[y][25] = d.ybr[0][25] |
| d.ybr[y][26] = d.ybr[0][26] |
| d.ybr[y][27] = d.ybr[0][27] |
| } |
| } |
| |
| // btou converts a bool to a 0/1 value. |
| func btou(b bool) uint8 { |
| if b { |
| return 1 |
| } |
| return 0 |
| } |
| |
| // pack packs four 0/1 values into four bits of a uint32. |
| func pack(x [4]uint8, shift int) uint32 { |
| u := uint32(x[0])<<0 | uint32(x[1])<<1 | uint32(x[2])<<2 | uint32(x[3])<<3 |
| return u << uint(shift) |
| } |
| |
| // unpack unpacks four 0/1 values from a four-bit value. |
| var unpack = [16][4]uint8{ |
| {0, 0, 0, 0}, |
| {1, 0, 0, 0}, |
| {0, 1, 0, 0}, |
| {1, 1, 0, 0}, |
| {0, 0, 1, 0}, |
| {1, 0, 1, 0}, |
| {0, 1, 1, 0}, |
| {1, 1, 1, 0}, |
| {0, 0, 0, 1}, |
| {1, 0, 0, 1}, |
| {0, 1, 0, 1}, |
| {1, 1, 0, 1}, |
| {0, 0, 1, 1}, |
| {1, 0, 1, 1}, |
| {0, 1, 1, 1}, |
| {1, 1, 1, 1}, |
| } |
| |
| var ( |
| // The mapping from 4x4 region position to band is specified in section 13.3. |
| bands = [17]uint8{0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 0} |
| // Category probabilties are specified in section 13.2. |
| // Decoding categories 1 and 2 are done inline. |
| cat3456 = [4][12]uint8{ |
| {173, 148, 140, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
| {176, 155, 140, 135, 0, 0, 0, 0, 0, 0, 0, 0}, |
| {180, 157, 141, 134, 130, 0, 0, 0, 0, 0, 0, 0}, |
| {254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129, 0}, |
| } |
| // The zigzag order is: |
| // 0 1 5 6 |
| // 2 4 7 12 |
| // 3 8 11 13 |
| // 9 10 14 15 |
| zigzag = [16]uint8{0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15} |
| ) |
| |
| // parseResiduals4 parses a 4x4 region of residual coefficients, as specified |
| // in section 13.3, and returns a 0/1 value indicating whether there was at |
| // least one non-zero coefficient. |
| // r is the partition to read bits from. |
| // plane and context describe which token probability table to use. context is |
| // either 0, 1 or 2, and equals how many of the macroblock left and macroblock |
| // above have non-zero coefficients. |
| // quant are the DC/AC quantization factors. |
| // skipFirstCoeff is whether the DC coefficient has already been parsed. |
| // coeffBase is the base index of d.coeff to write to. |
| func (d *Decoder) parseResiduals4(r *partition, plane int, context uint8, quant [2]uint16, skipFirstCoeff bool, coeffBase int) uint8 { |
| prob, n := &d.tokenProb[plane], 0 |
| if skipFirstCoeff { |
| n = 1 |
| } |
| p := prob[bands[n]][context] |
| if !r.readBit(p[0]) { |
| return 0 |
| } |
| for n != 16 { |
| n++ |
| if !r.readBit(p[1]) { |
| p = prob[bands[n]][0] |
| continue |
| } |
| var v uint32 |
| if !r.readBit(p[2]) { |
| v = 1 |
| p = prob[bands[n]][1] |
| } else { |
| if !r.readBit(p[3]) { |
| if !r.readBit(p[4]) { |
| v = 2 |
| } else { |
| v = 3 + r.readUint(p[5], 1) |
| } |
| } else if !r.readBit(p[6]) { |
| if !r.readBit(p[7]) { |
| // Category 1. |
| v = 5 + r.readUint(159, 1) |
| } else { |
| // Category 2. |
| v = 7 + 2*r.readUint(165, 1) + r.readUint(145, 1) |
| } |
| } else { |
| // Categories 3, 4, 5 or 6. |
| b1 := r.readUint(p[8], 1) |
| b0 := r.readUint(p[9+b1], 1) |
| cat := 2*b1 + b0 |
| tab := &cat3456[cat] |
| v = 0 |
| for i := 0; tab[i] != 0; i++ { |
| v *= 2 |
| v += r.readUint(tab[i], 1) |
| } |
| v += 3 + (8 << cat) |
| } |
| p = prob[bands[n]][2] |
| } |
| z := zigzag[n-1] |
| c := int32(v) * int32(quant[btou(z > 0)]) |
| if r.readBit(uniformProb) { |
| c = -c |
| } |
| d.coeff[coeffBase+int(z)] = int16(c) |
| if n == 16 || !r.readBit(p[0]) { |
| return 1 |
| } |
| } |
| return 1 |
| } |
| |
| // parseResiduals parses the residuals and returns whether inner loop filtering |
| // should be skipped for this macroblock. |
| func (d *Decoder) parseResiduals(mbx, mby int) (skip bool) { |
| partition := &d.op[mby&(d.nOP-1)] |
| plane := planeY1SansY2 |
| quant := &d.quant[d.segment] |
| |
| // Parse the DC coefficient of each 4x4 luma region. |
| if d.usePredY16 { |
| nz := d.parseResiduals4(partition, planeY2, d.leftMB.nzY16+d.upMB[mbx].nzY16, quant.y2, false, whtCoeffBase) |
| d.leftMB.nzY16 = nz |
| d.upMB[mbx].nzY16 = nz |
| d.inverseWHT16() |
| plane = planeY1WithY2 |
| } |
| |
| var ( |
| nzDC, nzAC [4]uint8 |
| nzDCMask, nzACMask uint32 |
| coeffBase int |
| ) |
| |
| // Parse the luma coefficients. |
| lnz := unpack[d.leftMB.nzMask&0x0f] |
| unz := unpack[d.upMB[mbx].nzMask&0x0f] |
| for y := 0; y < 4; y++ { |
| nz := lnz[y] |
| for x := 0; x < 4; x++ { |
| nz = d.parseResiduals4(partition, plane, nz+unz[x], quant.y1, d.usePredY16, coeffBase) |
| unz[x] = nz |
| nzAC[x] = nz |
| nzDC[x] = btou(d.coeff[coeffBase] != 0) |
| coeffBase += 16 |
| } |
| lnz[y] = nz |
| nzDCMask |= pack(nzDC, y*4) |
| nzACMask |= pack(nzAC, y*4) |
| } |
| lnzMask := pack(lnz, 0) |
| unzMask := pack(unz, 0) |
| |
| // Parse the chroma coefficients. |
| lnz = unpack[d.leftMB.nzMask>>4] |
| unz = unpack[d.upMB[mbx].nzMask>>4] |
| for c := 0; c < 4; c += 2 { |
| for y := 0; y < 2; y++ { |
| nz := lnz[y+c] |
| for x := 0; x < 2; x++ { |
| nz = d.parseResiduals4(partition, planeUV, nz+unz[x+c], quant.uv, false, coeffBase) |
| unz[x+c] = nz |
| nzAC[y*2+x] = nz |
| nzDC[y*2+x] = btou(d.coeff[coeffBase] != 0) |
| coeffBase += 16 |
| } |
| lnz[y+c] = nz |
| } |
| nzDCMask |= pack(nzDC, 16+c*2) |
| nzACMask |= pack(nzAC, 16+c*2) |
| } |
| lnzMask |= pack(lnz, 4) |
| unzMask |= pack(unz, 4) |
| |
| // Save decoder state. |
| d.leftMB.nzMask = uint8(lnzMask) |
| d.upMB[mbx].nzMask = uint8(unzMask) |
| d.nzDCMask = nzDCMask |
| d.nzACMask = nzACMask |
| |
| // Section 15.1 of the spec says that "Steps 2 and 4 [of the loop filter] |
| // are skipped... [if] there is no DCT coefficient coded for the whole |
| // macroblock." |
| return nzDCMask == 0 && nzACMask == 0 |
| } |
| |
| // reconstructMacroblock applies the predictor functions and adds the inverse- |
| // DCT transformed residuals to recover the YCbCr data. |
| func (d *Decoder) reconstructMacroblock(mbx, mby int) { |
| if d.usePredY16 { |
| p := checkTopLeftPred(mbx, mby, d.predY16) |
| predFunc16[p](d, 1, 8) |
| for j := 0; j < 4; j++ { |
| for i := 0; i < 4; i++ { |
| n := 4*j + i |
| y := 4*j + 1 |
| x := 4*i + 8 |
| mask := uint32(1) << uint(n) |
| if d.nzACMask&mask != 0 { |
| d.inverseDCT4(y, x, 16*n) |
| } else if d.nzDCMask&mask != 0 { |
| d.inverseDCT4DCOnly(y, x, 16*n) |
| } |
| } |
| } |
| } else { |
| for j := 0; j < 4; j++ { |
| for i := 0; i < 4; i++ { |
| n := 4*j + i |
| y := 4*j + 1 |
| x := 4*i + 8 |
| predFunc4[d.predY4[j][i]](d, y, x) |
| mask := uint32(1) << uint(n) |
| if d.nzACMask&mask != 0 { |
| d.inverseDCT4(y, x, 16*n) |
| } else if d.nzDCMask&mask != 0 { |
| d.inverseDCT4DCOnly(y, x, 16*n) |
| } |
| } |
| } |
| } |
| p := checkTopLeftPred(mbx, mby, d.predC8) |
| predFunc8[p](d, ybrBY, ybrBX) |
| if d.nzACMask&0x0f0000 != 0 { |
| d.inverseDCT8(ybrBY, ybrBX, bCoeffBase) |
| } else if d.nzDCMask&0x0f0000 != 0 { |
| d.inverseDCT8DCOnly(ybrBY, ybrBX, bCoeffBase) |
| } |
| predFunc8[p](d, ybrRY, ybrRX) |
| if d.nzACMask&0xf00000 != 0 { |
| d.inverseDCT8(ybrRY, ybrRX, rCoeffBase) |
| } else if d.nzDCMask&0xf00000 != 0 { |
| d.inverseDCT8DCOnly(ybrRY, ybrRX, rCoeffBase) |
| } |
| } |
| |
| // reconstruct reconstructs one macroblock and returns whether inner loop |
| // filtering should be skipped for it. |
| func (d *Decoder) reconstruct(mbx, mby int) (skip bool) { |
| if d.segmentHeader.updateMap { |
| if !d.fp.readBit(d.segmentHeader.prob[0]) { |
| d.segment = int(d.fp.readUint(d.segmentHeader.prob[1], 1)) |
| } else { |
| d.segment = int(d.fp.readUint(d.segmentHeader.prob[2], 1)) + 2 |
| } |
| } |
| if d.useSkipProb { |
| skip = d.fp.readBit(d.skipProb) |
| } |
| // Prepare the workspace. |
| for i := range d.coeff { |
| d.coeff[i] = 0 |
| } |
| d.prepareYBR(mbx, mby) |
| // Parse the predictor modes. |
| d.usePredY16 = d.fp.readBit(145) |
| if d.usePredY16 { |
| d.parsePredModeY16(mbx) |
| } else { |
| d.parsePredModeY4(mbx) |
| } |
| d.parsePredModeC8() |
| // Parse the residuals. |
| if !skip { |
| skip = d.parseResiduals(mbx, mby) |
| } else { |
| if d.usePredY16 { |
| d.leftMB.nzY16 = 0 |
| d.upMB[mbx].nzY16 = 0 |
| } |
| d.leftMB.nzMask = 0 |
| d.upMB[mbx].nzMask = 0 |
| d.nzDCMask = 0 |
| d.nzACMask = 0 |
| } |
| // Reconstruct the YCbCr data and copy it to the image. |
| d.reconstructMacroblock(mbx, mby) |
| for i, y := (mby*d.img.YStride+mbx)*16, 0; y < 16; i, y = i+d.img.YStride, y+1 { |
| copy(d.img.Y[i:i+16], d.ybr[ybrYY+y][ybrYX:ybrYX+16]) |
| } |
| for i, y := (mby*d.img.CStride+mbx)*8, 0; y < 8; i, y = i+d.img.CStride, y+1 { |
| copy(d.img.Cb[i:i+8], d.ybr[ybrBY+y][ybrBX:ybrBX+8]) |
| copy(d.img.Cr[i:i+8], d.ybr[ybrRY+y][ybrRX:ybrRX+8]) |
| } |
| return skip |
| } |