blob: 40c17aa93141201a2e221ee06e3e75956e8e49af [file] [log] [blame]
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package vector
// This file contains a fixed point math implementation of the vector
// graphics rasterizer.
import (
"golang.org/x/image/math/f32"
)
const (
// ϕ is the number of binary digits after the fixed point.
//
// For example, if ϕ == 10 (and int1ϕ is based on the int32 type) then we
// are using 22.10 fixed point math.
//
// When changing this number, also change the assembly code (search for ϕ
// in the .s files).
ϕ = 10
fxOne int1ϕ = 1 << ϕ
fxOneAndAHalf int1ϕ = 1<<ϕ + 1<<(ϕ-1)
fxOneMinusIota int1ϕ = 1<<ϕ - 1 // Used for rounding up.
)
// int1ϕ is a signed fixed-point number with 1*ϕ binary digits after the fixed
// point.
type int1ϕ int32
// int2ϕ is a signed fixed-point number with 2*ϕ binary digits after the fixed
// point.
//
// The Rasterizer's bufU32 field, nominally of type []uint32 (since that slice
// is also used by other code), can be thought of as a []int2ϕ during the
// fixedLineTo method. Lines of code that are actually like:
// buf[i] += uint32(etc) // buf has type []uint32.
// can be thought of as
// buf[i] += int2ϕ(etc) // buf has type []int2ϕ.
type int2ϕ int32
func fixedMax(x, y int1ϕ) int1ϕ {
if x > y {
return x
}
return y
}
func fixedMin(x, y int1ϕ) int1ϕ {
if x < y {
return x
}
return y
}
func fixedFloor(x int1ϕ) int32 { return int32(x >> ϕ) }
func fixedCeil(x int1ϕ) int32 { return int32((x + fxOneMinusIota) >> ϕ) }
func (z *Rasterizer) fixedLineTo(b f32.Vec2) {
a := z.pen
z.pen = b
dir := int1ϕ(1)
if a[1] > b[1] {
dir, a, b = -1, b, a
}
// Horizontal line segments yield no change in coverage. Almost horizontal
// segments would yield some change, in ideal math, but the computation
// further below, involving 1 / (b[1] - a[1]), is unstable in fixed point
// math, so we treat the segment as if it was perfectly horizontal.
if b[1]-a[1] <= 0.000001 {
return
}
dxdy := (b[0] - a[0]) / (b[1] - a[1])
ay := int1ϕ(a[1] * float32(fxOne))
by := int1ϕ(b[1] * float32(fxOne))
x := int1ϕ(a[0] * float32(fxOne))
y := fixedFloor(ay)
yMax := fixedCeil(by)
if yMax > int32(z.size.Y) {
yMax = int32(z.size.Y)
}
width := int32(z.size.X)
for ; y < yMax; y++ {
dy := fixedMin(int1ϕ(y+1)<<ϕ, by) - fixedMax(int1ϕ(y)<<ϕ, ay)
xNext := x + int1ϕ(float32(dy)*dxdy)
if y < 0 {
x = xNext
continue
}
buf := z.bufU32[y*width:]
d := dy * dir
x0, x1 := x, xNext
if x > xNext {
x0, x1 = x1, x0
}
x0i := fixedFloor(x0)
x0Floor := int1ϕ(x0i) << ϕ
x1i := fixedCeil(x1)
x1Ceil := int1ϕ(x1i) << ϕ
if x1i <= x0i+1 {
xmf := (x+xNext)>>1 - x0Floor
if i := clamp(x0i+0, width); i < uint(len(buf)) {
buf[i] += uint32(d * (fxOne - xmf))
}
if i := clamp(x0i+1, width); i < uint(len(buf)) {
buf[i] += uint32(d * xmf)
}
} else {
oneOverS := x1 - x0
twoOverS := 2 * oneOverS
x0f := x0 - x0Floor
oneMinusX0f := fxOne - x0f
oneMinusX0fSquared := oneMinusX0f * oneMinusX0f
x1f := x1 - x1Ceil + fxOne
x1fSquared := x1f * x1f
// These next two variables are unused, as rounding errors are
// minimized when we delay the division by oneOverS for as long as
// possible. These lines of code (and the "In ideal math" comments
// below) are commented out instead of deleted in order to aid the
// comparison with the floating point version of the rasterizer.
//
// a0 := ((oneMinusX0f * oneMinusX0f) >> 1) / oneOverS
// am := ((x1f * x1f) >> 1) / oneOverS
if i := clamp(x0i, width); i < uint(len(buf)) {
// In ideal math: buf[i] += uint32(d * a0)
D := oneMinusX0fSquared
D *= d
D /= twoOverS
buf[i] += uint32(D)
}
if x1i == x0i+2 {
if i := clamp(x0i+1, width); i < uint(len(buf)) {
// In ideal math: buf[i] += uint32(d * (fxOne - a0 - am))
D := twoOverS<<ϕ - oneMinusX0fSquared - x1fSquared
D *= d
D /= twoOverS
buf[i] += uint32(D)
}
} else {
// This is commented out for the same reason as a0 and am.
//
// a1 := ((fxOneAndAHalf - x0f) << ϕ) / oneOverS
if i := clamp(x0i+1, width); i < uint(len(buf)) {
// In ideal math: buf[i] += uint32(d * (a1 - a0))
//
// Convert to int64 to avoid overflow. Without that,
// TestRasterizePolygon fails.
D := int64((fxOneAndAHalf-x0f)<<(ϕ+1) - oneMinusX0fSquared)
D *= int64(d)
D /= int64(twoOverS)
buf[i] += uint32(D)
}
dTimesS := uint32((d << (2 * ϕ)) / oneOverS)
for xi := x0i + 2; xi < x1i-1; xi++ {
if i := clamp(xi, width); i < uint(len(buf)) {
buf[i] += dTimesS
}
}
// This is commented out for the same reason as a0 and am.
//
// a2 := a1 + (int1ϕ(x1i-x0i-3)<<(2*ϕ))/oneOverS
if i := clamp(x1i-1, width); i < uint(len(buf)) {
// In ideal math: buf[i] += uint32(d * (fxOne - a2 - am))
//
// Convert to int64 to avoid overflow. Without that,
// TestRasterizePolygon fails.
D := int64(twoOverS << ϕ)
D -= int64((fxOneAndAHalf - x0f) << (ϕ + 1))
D -= int64((x1i - x0i - 3) << (2*ϕ + 1))
D -= int64(x1fSquared)
D *= int64(d)
D /= int64(twoOverS)
buf[i] += uint32(D)
}
}
if i := clamp(x1i, width); i < uint(len(buf)) {
// In ideal math: buf[i] += uint32(d * am)
D := x1fSquared
D *= d
D /= twoOverS
buf[i] += uint32(D)
}
}
x = xNext
}
}
func fixedAccumulateOpOver(dst []uint8, src []uint32) {
acc := int2ϕ(0)
for i, v := range src {
acc += int2ϕ(v)
a := acc
if a < 0 {
a = -a
}
a >>= 2*ϕ - 16
if a > 0xffff {
a = 0xffff
}
// This algorithm comes from the standard library's image/draw package.
dstA := uint32(dst[i]) * 0x101
maskA := uint32(a)
outA := dstA*(0xffff-maskA)/0xffff + maskA
dst[i] = uint8(outA >> 8)
}
}
func fixedAccumulateOpSrc(dst []uint8, src []uint32) {
// Sanity check that len(dst) >= len(src).
if len(dst) < len(src) {
return
}
acc := int2ϕ(0)
for i, v := range src {
acc += int2ϕ(v)
a := acc
if a < 0 {
a = -a
}
a >>= 2*ϕ - 8
if a > 0xff {
a = 0xff
}
dst[i] = uint8(a)
}
}
func fixedAccumulateMask(buf []uint32) {
acc := int2ϕ(0)
for i, v := range buf {
acc += int2ϕ(v)
a := acc
if a < 0 {
a = -a
}
a >>= 2*ϕ - 16
if a > 0xffff {
a = 0xffff
}
buf[i] = uint32(a)
}
}