|  | // Copyright 2009 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | // Package rsa implements RSA encryption as specified in PKCS #1 and RFC 8017. | 
|  | // | 
|  | // RSA is a single, fundamental operation that is used in this package to | 
|  | // implement either public-key encryption or public-key signatures. | 
|  | // | 
|  | // The original specification for encryption and signatures with RSA is PKCS #1 | 
|  | // and the terms "RSA encryption" and "RSA signatures" by default refer to | 
|  | // PKCS #1 version 1.5. However, that specification has flaws and new designs | 
|  | // should use version 2, usually called by just OAEP and PSS, where | 
|  | // possible. | 
|  | // | 
|  | // Two sets of interfaces are included in this package. When a more abstract | 
|  | // interface isn't necessary, there are functions for encrypting/decrypting | 
|  | // with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract | 
|  | // over the public key primitive, the PrivateKey type implements the | 
|  | // Decrypter and Signer interfaces from the crypto package. | 
|  | // | 
|  | // The RSA operations in this package are not implemented using constant-time algorithms. | 
|  | package rsa | 
|  |  | 
|  | import ( | 
|  | "crypto" | 
|  | "crypto/rand" | 
|  | "crypto/subtle" | 
|  | "errors" | 
|  | "hash" | 
|  | "io" | 
|  | "math" | 
|  | "math/big" | 
|  |  | 
|  | "crypto/internal/randutil" | 
|  | ) | 
|  |  | 
|  | var bigZero = big.NewInt(0) | 
|  | var bigOne = big.NewInt(1) | 
|  |  | 
|  | // A PublicKey represents the public part of an RSA key. | 
|  | type PublicKey struct { | 
|  | N *big.Int // modulus | 
|  | E int      // public exponent | 
|  | } | 
|  |  | 
|  | // Any methods implemented on PublicKey might need to also be implemented on | 
|  | // PrivateKey, as the latter embeds the former and will expose its methods. | 
|  |  | 
|  | // Size returns the modulus size in bytes. Raw signatures and ciphertexts | 
|  | // for or by this public key will have the same size. | 
|  | func (pub *PublicKey) Size() int { | 
|  | return (pub.N.BitLen() + 7) / 8 | 
|  | } | 
|  |  | 
|  | // Equal reports whether pub and x have the same value. | 
|  | func (pub *PublicKey) Equal(x crypto.PublicKey) bool { | 
|  | xx, ok := x.(*PublicKey) | 
|  | if !ok { | 
|  | return false | 
|  | } | 
|  | return pub.N.Cmp(xx.N) == 0 && pub.E == xx.E | 
|  | } | 
|  |  | 
|  | // OAEPOptions is an interface for passing options to OAEP decryption using the | 
|  | // crypto.Decrypter interface. | 
|  | type OAEPOptions struct { | 
|  | // Hash is the hash function that will be used when generating the mask. | 
|  | Hash crypto.Hash | 
|  | // Label is an arbitrary byte string that must be equal to the value | 
|  | // used when encrypting. | 
|  | Label []byte | 
|  | } | 
|  |  | 
|  | var ( | 
|  | errPublicModulus       = errors.New("crypto/rsa: missing public modulus") | 
|  | errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small") | 
|  | errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large") | 
|  | ) | 
|  |  | 
|  | // checkPub sanity checks the public key before we use it. | 
|  | // We require pub.E to fit into a 32-bit integer so that we | 
|  | // do not have different behavior depending on whether | 
|  | // int is 32 or 64 bits. See also | 
|  | // https://www.imperialviolet.org/2012/03/16/rsae.html. | 
|  | func checkPub(pub *PublicKey) error { | 
|  | if pub.N == nil { | 
|  | return errPublicModulus | 
|  | } | 
|  | if pub.E < 2 { | 
|  | return errPublicExponentSmall | 
|  | } | 
|  | if pub.E > 1<<31-1 { | 
|  | return errPublicExponentLarge | 
|  | } | 
|  | return nil | 
|  | } | 
|  |  | 
|  | // A PrivateKey represents an RSA key | 
|  | type PrivateKey struct { | 
|  | PublicKey            // public part. | 
|  | D         *big.Int   // private exponent | 
|  | Primes    []*big.Int // prime factors of N, has >= 2 elements. | 
|  |  | 
|  | // Precomputed contains precomputed values that speed up private | 
|  | // operations, if available. | 
|  | Precomputed PrecomputedValues | 
|  | } | 
|  |  | 
|  | // Public returns the public key corresponding to priv. | 
|  | func (priv *PrivateKey) Public() crypto.PublicKey { | 
|  | return &priv.PublicKey | 
|  | } | 
|  |  | 
|  | // Equal reports whether priv and x have equivalent values. It ignores | 
|  | // Precomputed values. | 
|  | func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool { | 
|  | xx, ok := x.(*PrivateKey) | 
|  | if !ok { | 
|  | return false | 
|  | } | 
|  | if !priv.PublicKey.Equal(&xx.PublicKey) || priv.D.Cmp(xx.D) != 0 { | 
|  | return false | 
|  | } | 
|  | if len(priv.Primes) != len(xx.Primes) { | 
|  | return false | 
|  | } | 
|  | for i := range priv.Primes { | 
|  | if priv.Primes[i].Cmp(xx.Primes[i]) != 0 { | 
|  | return false | 
|  | } | 
|  | } | 
|  | return true | 
|  | } | 
|  |  | 
|  | // Sign signs digest with priv, reading randomness from rand. If opts is a | 
|  | // *PSSOptions then the PSS algorithm will be used, otherwise PKCS #1 v1.5 will | 
|  | // be used. digest must be the result of hashing the input message using | 
|  | // opts.HashFunc(). | 
|  | // | 
|  | // This method implements crypto.Signer, which is an interface to support keys | 
|  | // where the private part is kept in, for example, a hardware module. Common | 
|  | // uses should use the Sign* functions in this package directly. | 
|  | func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) { | 
|  | if pssOpts, ok := opts.(*PSSOptions); ok { | 
|  | return SignPSS(rand, priv, pssOpts.Hash, digest, pssOpts) | 
|  | } | 
|  |  | 
|  | return SignPKCS1v15(rand, priv, opts.HashFunc(), digest) | 
|  | } | 
|  |  | 
|  | // Decrypt decrypts ciphertext with priv. If opts is nil or of type | 
|  | // *PKCS1v15DecryptOptions then PKCS #1 v1.5 decryption is performed. Otherwise | 
|  | // opts must have type *OAEPOptions and OAEP decryption is done. | 
|  | func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) { | 
|  | if opts == nil { | 
|  | return DecryptPKCS1v15(rand, priv, ciphertext) | 
|  | } | 
|  |  | 
|  | switch opts := opts.(type) { | 
|  | case *OAEPOptions: | 
|  | return DecryptOAEP(opts.Hash.New(), rand, priv, ciphertext, opts.Label) | 
|  |  | 
|  | case *PKCS1v15DecryptOptions: | 
|  | if l := opts.SessionKeyLen; l > 0 { | 
|  | plaintext = make([]byte, l) | 
|  | if _, err := io.ReadFull(rand, plaintext); err != nil { | 
|  | return nil, err | 
|  | } | 
|  | if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil { | 
|  | return nil, err | 
|  | } | 
|  | return plaintext, nil | 
|  | } else { | 
|  | return DecryptPKCS1v15(rand, priv, ciphertext) | 
|  | } | 
|  |  | 
|  | default: | 
|  | return nil, errors.New("crypto/rsa: invalid options for Decrypt") | 
|  | } | 
|  | } | 
|  |  | 
|  | type PrecomputedValues struct { | 
|  | Dp, Dq *big.Int // D mod (P-1) (or mod Q-1) | 
|  | Qinv   *big.Int // Q^-1 mod P | 
|  |  | 
|  | // CRTValues is used for the 3rd and subsequent primes. Due to a | 
|  | // historical accident, the CRT for the first two primes is handled | 
|  | // differently in PKCS #1 and interoperability is sufficiently | 
|  | // important that we mirror this. | 
|  | CRTValues []CRTValue | 
|  | } | 
|  |  | 
|  | // CRTValue contains the precomputed Chinese remainder theorem values. | 
|  | type CRTValue struct { | 
|  | Exp   *big.Int // D mod (prime-1). | 
|  | Coeff *big.Int // R·Coeff ≡ 1 mod Prime. | 
|  | R     *big.Int // product of primes prior to this (inc p and q). | 
|  | } | 
|  |  | 
|  | // Validate performs basic sanity checks on the key. | 
|  | // It returns nil if the key is valid, or else an error describing a problem. | 
|  | func (priv *PrivateKey) Validate() error { | 
|  | if err := checkPub(&priv.PublicKey); err != nil { | 
|  | return err | 
|  | } | 
|  |  | 
|  | // Check that Πprimes == n. | 
|  | modulus := new(big.Int).Set(bigOne) | 
|  | for _, prime := range priv.Primes { | 
|  | // Any primes ≤ 1 will cause divide-by-zero panics later. | 
|  | if prime.Cmp(bigOne) <= 0 { | 
|  | return errors.New("crypto/rsa: invalid prime value") | 
|  | } | 
|  | modulus.Mul(modulus, prime) | 
|  | } | 
|  | if modulus.Cmp(priv.N) != 0 { | 
|  | return errors.New("crypto/rsa: invalid modulus") | 
|  | } | 
|  |  | 
|  | // Check that de ≡ 1 mod p-1, for each prime. | 
|  | // This implies that e is coprime to each p-1 as e has a multiplicative | 
|  | // inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) = | 
|  | // exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1 | 
|  | // mod p. Thus a^de ≡ a mod n for all a coprime to n, as required. | 
|  | congruence := new(big.Int) | 
|  | de := new(big.Int).SetInt64(int64(priv.E)) | 
|  | de.Mul(de, priv.D) | 
|  | for _, prime := range priv.Primes { | 
|  | pminus1 := new(big.Int).Sub(prime, bigOne) | 
|  | congruence.Mod(de, pminus1) | 
|  | if congruence.Cmp(bigOne) != 0 { | 
|  | return errors.New("crypto/rsa: invalid exponents") | 
|  | } | 
|  | } | 
|  | return nil | 
|  | } | 
|  |  | 
|  | // GenerateKey generates an RSA keypair of the given bit size using the | 
|  | // random source random (for example, crypto/rand.Reader). | 
|  | func GenerateKey(random io.Reader, bits int) (*PrivateKey, error) { | 
|  | return GenerateMultiPrimeKey(random, 2, bits) | 
|  | } | 
|  |  | 
|  | // GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit | 
|  | // size and the given random source, as suggested in [1]. Although the public | 
|  | // keys are compatible (actually, indistinguishable) from the 2-prime case, | 
|  | // the private keys are not. Thus it may not be possible to export multi-prime | 
|  | // private keys in certain formats or to subsequently import them into other | 
|  | // code. | 
|  | // | 
|  | // Table 1 in [2] suggests maximum numbers of primes for a given size. | 
|  | // | 
|  | // [1] US patent 4405829 (1972, expired) | 
|  | // [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf | 
|  | func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (*PrivateKey, error) { | 
|  | randutil.MaybeReadByte(random) | 
|  |  | 
|  | priv := new(PrivateKey) | 
|  | priv.E = 65537 | 
|  |  | 
|  | if nprimes < 2 { | 
|  | return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2") | 
|  | } | 
|  |  | 
|  | if bits < 64 { | 
|  | primeLimit := float64(uint64(1) << uint(bits/nprimes)) | 
|  | // pi approximates the number of primes less than primeLimit | 
|  | pi := primeLimit / (math.Log(primeLimit) - 1) | 
|  | // Generated primes start with 11 (in binary) so we can only | 
|  | // use a quarter of them. | 
|  | pi /= 4 | 
|  | // Use a factor of two to ensure that key generation terminates | 
|  | // in a reasonable amount of time. | 
|  | pi /= 2 | 
|  | if pi <= float64(nprimes) { | 
|  | return nil, errors.New("crypto/rsa: too few primes of given length to generate an RSA key") | 
|  | } | 
|  | } | 
|  |  | 
|  | primes := make([]*big.Int, nprimes) | 
|  |  | 
|  | NextSetOfPrimes: | 
|  | for { | 
|  | todo := bits | 
|  | // crypto/rand should set the top two bits in each prime. | 
|  | // Thus each prime has the form | 
|  | //   p_i = 2^bitlen(p_i) × 0.11... (in base 2). | 
|  | // And the product is: | 
|  | //   P = 2^todo × α | 
|  | // where α is the product of nprimes numbers of the form 0.11... | 
|  | // | 
|  | // If α < 1/2 (which can happen for nprimes > 2), we need to | 
|  | // shift todo to compensate for lost bits: the mean value of 0.11... | 
|  | // is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2 | 
|  | // will give good results. | 
|  | if nprimes >= 7 { | 
|  | todo += (nprimes - 2) / 5 | 
|  | } | 
|  | for i := 0; i < nprimes; i++ { | 
|  | var err error | 
|  | primes[i], err = rand.Prime(random, todo/(nprimes-i)) | 
|  | if err != nil { | 
|  | return nil, err | 
|  | } | 
|  | todo -= primes[i].BitLen() | 
|  | } | 
|  |  | 
|  | // Make sure that primes is pairwise unequal. | 
|  | for i, prime := range primes { | 
|  | for j := 0; j < i; j++ { | 
|  | if prime.Cmp(primes[j]) == 0 { | 
|  | continue NextSetOfPrimes | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | n := new(big.Int).Set(bigOne) | 
|  | totient := new(big.Int).Set(bigOne) | 
|  | pminus1 := new(big.Int) | 
|  | for _, prime := range primes { | 
|  | n.Mul(n, prime) | 
|  | pminus1.Sub(prime, bigOne) | 
|  | totient.Mul(totient, pminus1) | 
|  | } | 
|  | if n.BitLen() != bits { | 
|  | // This should never happen for nprimes == 2 because | 
|  | // crypto/rand should set the top two bits in each prime. | 
|  | // For nprimes > 2 we hope it does not happen often. | 
|  | continue NextSetOfPrimes | 
|  | } | 
|  |  | 
|  | priv.D = new(big.Int) | 
|  | e := big.NewInt(int64(priv.E)) | 
|  | ok := priv.D.ModInverse(e, totient) | 
|  |  | 
|  | if ok != nil { | 
|  | priv.Primes = primes | 
|  | priv.N = n | 
|  | break | 
|  | } | 
|  | } | 
|  |  | 
|  | priv.Precompute() | 
|  | return priv, nil | 
|  | } | 
|  |  | 
|  | // incCounter increments a four byte, big-endian counter. | 
|  | func incCounter(c *[4]byte) { | 
|  | if c[3]++; c[3] != 0 { | 
|  | return | 
|  | } | 
|  | if c[2]++; c[2] != 0 { | 
|  | return | 
|  | } | 
|  | if c[1]++; c[1] != 0 { | 
|  | return | 
|  | } | 
|  | c[0]++ | 
|  | } | 
|  |  | 
|  | // mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function | 
|  | // specified in PKCS #1 v2.1. | 
|  | func mgf1XOR(out []byte, hash hash.Hash, seed []byte) { | 
|  | var counter [4]byte | 
|  | var digest []byte | 
|  |  | 
|  | done := 0 | 
|  | for done < len(out) { | 
|  | hash.Write(seed) | 
|  | hash.Write(counter[0:4]) | 
|  | digest = hash.Sum(digest[:0]) | 
|  | hash.Reset() | 
|  |  | 
|  | for i := 0; i < len(digest) && done < len(out); i++ { | 
|  | out[done] ^= digest[i] | 
|  | done++ | 
|  | } | 
|  | incCounter(&counter) | 
|  | } | 
|  | } | 
|  |  | 
|  | // ErrMessageTooLong is returned when attempting to encrypt a message which is | 
|  | // too large for the size of the public key. | 
|  | var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size") | 
|  |  | 
|  | func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int { | 
|  | e := big.NewInt(int64(pub.E)) | 
|  | c.Exp(m, e, pub.N) | 
|  | return c | 
|  | } | 
|  |  | 
|  | // EncryptOAEP encrypts the given message with RSA-OAEP. | 
|  | // | 
|  | // OAEP is parameterised by a hash function that is used as a random oracle. | 
|  | // Encryption and decryption of a given message must use the same hash function | 
|  | // and sha256.New() is a reasonable choice. | 
|  | // | 
|  | // The random parameter is used as a source of entropy to ensure that | 
|  | // encrypting the same message twice doesn't result in the same ciphertext. | 
|  | // | 
|  | // The label parameter may contain arbitrary data that will not be encrypted, | 
|  | // but which gives important context to the message. For example, if a given | 
|  | // public key is used to encrypt two types of messages then distinct label | 
|  | // values could be used to ensure that a ciphertext for one purpose cannot be | 
|  | // used for another by an attacker. If not required it can be empty. | 
|  | // | 
|  | // The message must be no longer than the length of the public modulus minus | 
|  | // twice the hash length, minus a further 2. | 
|  | func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) ([]byte, error) { | 
|  | if err := checkPub(pub); err != nil { | 
|  | return nil, err | 
|  | } | 
|  | hash.Reset() | 
|  | k := pub.Size() | 
|  | if len(msg) > k-2*hash.Size()-2 { | 
|  | return nil, ErrMessageTooLong | 
|  | } | 
|  |  | 
|  | hash.Write(label) | 
|  | lHash := hash.Sum(nil) | 
|  | hash.Reset() | 
|  |  | 
|  | em := make([]byte, k) | 
|  | seed := em[1 : 1+hash.Size()] | 
|  | db := em[1+hash.Size():] | 
|  |  | 
|  | copy(db[0:hash.Size()], lHash) | 
|  | db[len(db)-len(msg)-1] = 1 | 
|  | copy(db[len(db)-len(msg):], msg) | 
|  |  | 
|  | _, err := io.ReadFull(random, seed) | 
|  | if err != nil { | 
|  | return nil, err | 
|  | } | 
|  |  | 
|  | mgf1XOR(db, hash, seed) | 
|  | mgf1XOR(seed, hash, db) | 
|  |  | 
|  | m := new(big.Int) | 
|  | m.SetBytes(em) | 
|  | c := encrypt(new(big.Int), pub, m) | 
|  |  | 
|  | out := make([]byte, k) | 
|  | return c.FillBytes(out), nil | 
|  | } | 
|  |  | 
|  | // ErrDecryption represents a failure to decrypt a message. | 
|  | // It is deliberately vague to avoid adaptive attacks. | 
|  | var ErrDecryption = errors.New("crypto/rsa: decryption error") | 
|  |  | 
|  | // ErrVerification represents a failure to verify a signature. | 
|  | // It is deliberately vague to avoid adaptive attacks. | 
|  | var ErrVerification = errors.New("crypto/rsa: verification error") | 
|  |  | 
|  | // Precompute performs some calculations that speed up private key operations | 
|  | // in the future. | 
|  | func (priv *PrivateKey) Precompute() { | 
|  | if priv.Precomputed.Dp != nil { | 
|  | return | 
|  | } | 
|  |  | 
|  | priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne) | 
|  | priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp) | 
|  |  | 
|  | priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne) | 
|  | priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq) | 
|  |  | 
|  | priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0]) | 
|  |  | 
|  | r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1]) | 
|  | priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2) | 
|  | for i := 2; i < len(priv.Primes); i++ { | 
|  | prime := priv.Primes[i] | 
|  | values := &priv.Precomputed.CRTValues[i-2] | 
|  |  | 
|  | values.Exp = new(big.Int).Sub(prime, bigOne) | 
|  | values.Exp.Mod(priv.D, values.Exp) | 
|  |  | 
|  | values.R = new(big.Int).Set(r) | 
|  | values.Coeff = new(big.Int).ModInverse(r, prime) | 
|  |  | 
|  | r.Mul(r, prime) | 
|  | } | 
|  | } | 
|  |  | 
|  | // decrypt performs an RSA decryption, resulting in a plaintext integer. If a | 
|  | // random source is given, RSA blinding is used. | 
|  | func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) { | 
|  | // TODO(agl): can we get away with reusing blinds? | 
|  | if c.Cmp(priv.N) > 0 { | 
|  | err = ErrDecryption | 
|  | return | 
|  | } | 
|  | if priv.N.Sign() == 0 { | 
|  | return nil, ErrDecryption | 
|  | } | 
|  |  | 
|  | var ir *big.Int | 
|  | if random != nil { | 
|  | randutil.MaybeReadByte(random) | 
|  |  | 
|  | // Blinding enabled. Blinding involves multiplying c by r^e. | 
|  | // Then the decryption operation performs (m^e * r^e)^d mod n | 
|  | // which equals mr mod n. The factor of r can then be removed | 
|  | // by multiplying by the multiplicative inverse of r. | 
|  |  | 
|  | var r *big.Int | 
|  | ir = new(big.Int) | 
|  | for { | 
|  | r, err = rand.Int(random, priv.N) | 
|  | if err != nil { | 
|  | return | 
|  | } | 
|  | if r.Cmp(bigZero) == 0 { | 
|  | r = bigOne | 
|  | } | 
|  | ok := ir.ModInverse(r, priv.N) | 
|  | if ok != nil { | 
|  | break | 
|  | } | 
|  | } | 
|  | bigE := big.NewInt(int64(priv.E)) | 
|  | rpowe := new(big.Int).Exp(r, bigE, priv.N) // N != 0 | 
|  | cCopy := new(big.Int).Set(c) | 
|  | cCopy.Mul(cCopy, rpowe) | 
|  | cCopy.Mod(cCopy, priv.N) | 
|  | c = cCopy | 
|  | } | 
|  |  | 
|  | if priv.Precomputed.Dp == nil { | 
|  | m = new(big.Int).Exp(c, priv.D, priv.N) | 
|  | } else { | 
|  | // We have the precalculated values needed for the CRT. | 
|  | m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0]) | 
|  | m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1]) | 
|  | m.Sub(m, m2) | 
|  | if m.Sign() < 0 { | 
|  | m.Add(m, priv.Primes[0]) | 
|  | } | 
|  | m.Mul(m, priv.Precomputed.Qinv) | 
|  | m.Mod(m, priv.Primes[0]) | 
|  | m.Mul(m, priv.Primes[1]) | 
|  | m.Add(m, m2) | 
|  |  | 
|  | for i, values := range priv.Precomputed.CRTValues { | 
|  | prime := priv.Primes[2+i] | 
|  | m2.Exp(c, values.Exp, prime) | 
|  | m2.Sub(m2, m) | 
|  | m2.Mul(m2, values.Coeff) | 
|  | m2.Mod(m2, prime) | 
|  | if m2.Sign() < 0 { | 
|  | m2.Add(m2, prime) | 
|  | } | 
|  | m2.Mul(m2, values.R) | 
|  | m.Add(m, m2) | 
|  | } | 
|  | } | 
|  |  | 
|  | if ir != nil { | 
|  | // Unblind. | 
|  | m.Mul(m, ir) | 
|  | m.Mod(m, priv.N) | 
|  | } | 
|  |  | 
|  | return | 
|  | } | 
|  |  | 
|  | func decryptAndCheck(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) { | 
|  | m, err = decrypt(random, priv, c) | 
|  | if err != nil { | 
|  | return nil, err | 
|  | } | 
|  |  | 
|  | // In order to defend against errors in the CRT computation, m^e is | 
|  | // calculated, which should match the original ciphertext. | 
|  | check := encrypt(new(big.Int), &priv.PublicKey, m) | 
|  | if c.Cmp(check) != 0 { | 
|  | return nil, errors.New("rsa: internal error") | 
|  | } | 
|  | return m, nil | 
|  | } | 
|  |  | 
|  | // DecryptOAEP decrypts ciphertext using RSA-OAEP. | 
|  | // | 
|  | // OAEP is parameterised by a hash function that is used as a random oracle. | 
|  | // Encryption and decryption of a given message must use the same hash function | 
|  | // and sha256.New() is a reasonable choice. | 
|  | // | 
|  | // The random parameter, if not nil, is used to blind the private-key operation | 
|  | // and avoid timing side-channel attacks. Blinding is purely internal to this | 
|  | // function – the random data need not match that used when encrypting. | 
|  | // | 
|  | // The label parameter must match the value given when encrypting. See | 
|  | // EncryptOAEP for details. | 
|  | func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) ([]byte, error) { | 
|  | if err := checkPub(&priv.PublicKey); err != nil { | 
|  | return nil, err | 
|  | } | 
|  | k := priv.Size() | 
|  | if len(ciphertext) > k || | 
|  | k < hash.Size()*2+2 { | 
|  | return nil, ErrDecryption | 
|  | } | 
|  |  | 
|  | c := new(big.Int).SetBytes(ciphertext) | 
|  |  | 
|  | m, err := decrypt(random, priv, c) | 
|  | if err != nil { | 
|  | return nil, err | 
|  | } | 
|  |  | 
|  | hash.Write(label) | 
|  | lHash := hash.Sum(nil) | 
|  | hash.Reset() | 
|  |  | 
|  | // We probably leak the number of leading zeros. | 
|  | // It's not clear that we can do anything about this. | 
|  | em := m.FillBytes(make([]byte, k)) | 
|  |  | 
|  | firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0) | 
|  |  | 
|  | seed := em[1 : hash.Size()+1] | 
|  | db := em[hash.Size()+1:] | 
|  |  | 
|  | mgf1XOR(seed, hash, db) | 
|  | mgf1XOR(db, hash, seed) | 
|  |  | 
|  | lHash2 := db[0:hash.Size()] | 
|  |  | 
|  | // We have to validate the plaintext in constant time in order to avoid | 
|  | // attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal | 
|  | // Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1 | 
|  | // v2.0. In J. Kilian, editor, Advances in Cryptology. | 
|  | lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2) | 
|  |  | 
|  | // The remainder of the plaintext must be zero or more 0x00, followed | 
|  | // by 0x01, followed by the message. | 
|  | //   lookingForIndex: 1 iff we are still looking for the 0x01 | 
|  | //   index: the offset of the first 0x01 byte | 
|  | //   invalid: 1 iff we saw a non-zero byte before the 0x01. | 
|  | var lookingForIndex, index, invalid int | 
|  | lookingForIndex = 1 | 
|  | rest := db[hash.Size():] | 
|  |  | 
|  | for i := 0; i < len(rest); i++ { | 
|  | equals0 := subtle.ConstantTimeByteEq(rest[i], 0) | 
|  | equals1 := subtle.ConstantTimeByteEq(rest[i], 1) | 
|  | index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index) | 
|  | lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex) | 
|  | invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid) | 
|  | } | 
|  |  | 
|  | if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 { | 
|  | return nil, ErrDecryption | 
|  | } | 
|  |  | 
|  | return rest[index+1:], nil | 
|  | } |