| // Copyright 2014 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package runtime |
| |
| import ( |
| "runtime/internal/atomic" |
| "runtime/internal/sys" |
| "unsafe" |
| ) |
| |
| // For gccgo, use go:linkname to export compiler-called functions. |
| // |
| //go:linkname requireitab |
| //go:linkname assertitab |
| //go:linkname panicdottype |
| //go:linkname ifaceE2E2 |
| //go:linkname ifaceI2E2 |
| //go:linkname ifaceE2I2 |
| //go:linkname ifaceI2I2 |
| //go:linkname ifaceE2T2P |
| //go:linkname ifaceI2T2P |
| //go:linkname ifaceE2T2 |
| //go:linkname ifaceI2T2 |
| //go:linkname ifaceT2Ip |
| // Temporary for C code to call: |
| //go:linkname getitab |
| |
| // The gccgo itab structure is different than the gc one. |
| // |
| // Both gccgo and gc represent empty interfaces the same way: |
| // a two field struct, where the first field points to a type descriptor |
| // (a *_type) and the second field is the data pointer. |
| // |
| // Non-empty interfaces are also two-field structs, and the second |
| // field is the data pointer. However, for gccgo, the first field, the |
| // itab field, is different. The itab field points to the interface |
| // method table, which is the implemention of a specific interface |
| // type for a specific dynamic non-interface type. An interface |
| // method table is a list of pointer values. The first pointer is the |
| // type descriptor (a *_type) for the dynamic type. The subsequent |
| // pointers are pointers to function code, which implement the methods |
| // required by the interface. The pointers are sorted by name. |
| // |
| // The method pointers in the itab are C function pointers, not Go |
| // function pointers; they may be called directly, and they have no |
| // closures. The receiver is always passed as a pointer, and it is |
| // always the same pointer stored in the interface value. A value |
| // method starts by copying the receiver value out of the pointer into |
| // a local variable. |
| // |
| // A method call on an interface value is by definition calling a |
| // method at a known index m in the list of methods. Given a non-empty |
| // interface value i, the call i.m(args) looks like |
| // i.itab[m+1](i.iface, args) |
| |
| // Both an empty interface and a non-empty interface have a data |
| // pointer field. The meaning of this field is determined by the |
| // kindDirectIface bit in the `kind` field of the type descriptor of |
| // the value stored in the interface. If kindDirectIface is set, then |
| // the data pointer field in the interface value is exactly the value |
| // stored in the interface. Otherwise, the data pointer field is a |
| // pointer to memory that holds the value. It follows from this that |
| // kindDirectIface can only be set for a type whose representation is |
| // simply a pointer. In the current gccgo implementation, this is set |
| // for types that are pointer-shaped, including unsafe.Pointer, channels, |
| // maps, functions, single-field structs and single-element arrays whose |
| // single field is simply a pointer-shaped type. |
| |
| // For a nil interface value both fields in the interface struct are nil. |
| |
| // itabs are statically allocated or persistently allocated. They are |
| // never freed. For itabs allocated at run time, they are cached in |
| // itabTable, so we reuse the same itab for the same (interface, concrete) |
| // type pair. The gc runtime prepopulates the cache with statically |
| // allocated itabs. Currently we don't do that as we don't have a way to |
| // find all the statically allocated itabs. |
| |
| const itabInitSize = 512 |
| |
| var ( |
| itabLock mutex // lock for accessing itab table |
| itabTable = &itabTableInit // pointer to current table |
| itabTableInit = itabTableType{size: itabInitSize} // starter table |
| ) |
| |
| // Cache entry type of itab table. |
| // For gccgo, this is not the data type we used in the interface header. |
| type itab struct { |
| inter *interfacetype |
| methods [2]unsafe.Pointer // method table. variable sized. first entry is the type descriptor. |
| } |
| |
| func (m *itab) _type() *_type { |
| return (*_type)(m.methods[0]) |
| } |
| |
| // Note: change the formula in the mallocgc call in itabAdd if you change these fields. |
| type itabTableType struct { |
| size uintptr // length of entries array. Always a power of 2. |
| count uintptr // current number of filled entries. |
| entries [itabInitSize]*itab // really [size] large |
| } |
| |
| func itabHashFunc(inter *interfacetype, typ *_type) uintptr { |
| // compiler has provided some good hash codes for us. |
| return uintptr(inter.typ.hash ^ typ.hash) |
| } |
| |
| // find finds the given interface/type pair in t. |
| // Returns nil if the given interface/type pair isn't present. |
| func (t *itabTableType) find(inter *interfacetype, typ *_type) *itab { |
| // Implemented using quadratic probing. |
| // Probe sequence is h(i) = h0 + i*(i+1)/2 mod 2^k. |
| // We're guaranteed to hit all table entries using this probe sequence. |
| mask := t.size - 1 |
| h := itabHashFunc(inter, typ) & mask |
| for i := uintptr(1); ; i++ { |
| p := (**itab)(add(unsafe.Pointer(&t.entries), h*sys.PtrSize)) |
| // Use atomic read here so if we see m != nil, we also see |
| // the initializations of the fields of m. |
| // m := *p |
| m := (*itab)(atomic.Loadp(unsafe.Pointer(p))) |
| if m == nil { |
| return nil |
| } |
| if m.inter == inter && m._type() == typ { |
| return m |
| } |
| h += i |
| h &= mask |
| } |
| } |
| |
| // itabAdd adds the given itab to the itab hash table. |
| // itabLock must be held. |
| func itabAdd(m *itab) { |
| // Bugs can lead to calling this while mallocing is set, |
| // typically because this is called while panicing. |
| // Crash reliably, rather than only when we need to grow |
| // the hash table. |
| if getg().m.mallocing != 0 { |
| throw("malloc deadlock") |
| } |
| |
| t := itabTable |
| if t.count >= 3*(t.size/4) { // 75% load factor |
| // Grow hash table. |
| // t2 = new(itabTableType) + some additional entries |
| // We lie and tell malloc we want pointer-free memory because |
| // all the pointed-to values are not in the heap. |
| t2 := (*itabTableType)(mallocgc((2+2*t.size)*sys.PtrSize, nil, true)) |
| t2.size = t.size * 2 |
| |
| // Copy over entries. |
| // Note: while copying, other threads may look for an itab and |
| // fail to find it. That's ok, they will then try to get the itab lock |
| // and as a consequence wait until this copying is complete. |
| iterate_itabs(t2.add) |
| if t2.count != t.count { |
| throw("mismatched count during itab table copy") |
| } |
| // Publish new hash table. Use an atomic write: see comment in getitab. |
| atomicstorep(unsafe.Pointer(&itabTable), unsafe.Pointer(t2)) |
| // Adopt the new table as our own. |
| t = itabTable |
| // Note: the old table can be GC'ed here. |
| } |
| t.add(m) |
| } |
| |
| // add adds the given itab to itab table t. |
| // itabLock must be held. |
| func (t *itabTableType) add(m *itab) { |
| // See comment in find about the probe sequence. |
| // Insert new itab in the first empty spot in the probe sequence. |
| mask := t.size - 1 |
| h := itabHashFunc(m.inter, m._type()) & mask |
| for i := uintptr(1); ; i++ { |
| p := (**itab)(add(unsafe.Pointer(&t.entries), h*sys.PtrSize)) |
| m2 := *p |
| if m2 == m { |
| // A given itab may be used in more than one module |
| // and thanks to the way global symbol resolution works, the |
| // pointed-to itab may already have been inserted into the |
| // global 'hash'. |
| return |
| } |
| if m2 == nil { |
| // Use atomic write here so if a reader sees m, it also |
| // sees the correctly initialized fields of m. |
| // NoWB is ok because m is not in heap memory. |
| // *p = m |
| atomic.StorepNoWB(unsafe.Pointer(p), unsafe.Pointer(m)) |
| t.count++ |
| return |
| } |
| h += i |
| h &= mask |
| } |
| } |
| |
| // init fills in the m.methods array with all the code pointers for |
| // the m.inter/m._type pair. If the type does not implement the interface, |
| // it sets m.methods[1] to nil and returns the name of an interface function that is missing. |
| // It is ok to call this multiple times on the same m, even concurrently. |
| func (m *itab) init() string { |
| inter := m.inter |
| typ := m._type() |
| ni := len(inter.methods) + 1 |
| methods := (*[1 << 16]unsafe.Pointer)(unsafe.Pointer(&m.methods[0]))[:ni:ni] |
| var m1 unsafe.Pointer |
| |
| ri := 0 |
| for li := range inter.methods { |
| lhsMethod := &inter.methods[li] |
| var rhsMethod *method |
| |
| for { |
| if ri >= len(typ.methods) { |
| m.methods[1] = nil |
| return *lhsMethod.name |
| } |
| |
| rhsMethod = &typ.methods[ri] |
| if (lhsMethod.name == rhsMethod.name || *lhsMethod.name == *rhsMethod.name) && |
| (lhsMethod.pkgPath == rhsMethod.pkgPath || *lhsMethod.pkgPath == *rhsMethod.pkgPath) { |
| break |
| } |
| |
| ri++ |
| } |
| |
| if !eqtype(lhsMethod.typ, rhsMethod.mtyp) { |
| m.methods[1] = nil |
| return *lhsMethod.name |
| } |
| |
| if li == 0 { |
| m1 = rhsMethod.tfn // we'll set m.methods[1] at the end |
| } else { |
| methods[li+1] = rhsMethod.tfn |
| } |
| ri++ |
| } |
| m.methods[1] = m1 |
| return "" |
| } |
| |
| func iterate_itabs(fn func(*itab)) { |
| // Note: only runs during stop the world or with itabLock held, |
| // so no other locks/atomics needed. |
| t := itabTable |
| for i := uintptr(0); i < t.size; i++ { |
| m := *(**itab)(add(unsafe.Pointer(&t.entries), i*sys.PtrSize)) |
| if m != nil { |
| fn(m) |
| } |
| } |
| } |
| |
| // Return the interface method table for a value of type rhs converted |
| // to an interface of type lhs. |
| func getitab(lhs, rhs *_type, canfail bool) unsafe.Pointer { |
| if rhs == nil { |
| return nil |
| } |
| |
| if lhs.kind&kindMask != kindInterface { |
| throw("getitab called for non-interface type") |
| } |
| |
| lhsi := (*interfacetype)(unsafe.Pointer(lhs)) |
| |
| if len(lhsi.methods) == 0 { |
| throw("getitab called for empty interface type") |
| } |
| |
| if rhs.uncommontype == nil || len(rhs.methods) == 0 { |
| if canfail { |
| return nil |
| } |
| panic(&TypeAssertionError{nil, rhs, lhs, *lhsi.methods[0].name}) |
| } |
| |
| var m *itab |
| |
| // First, look in the existing table to see if we can find the itab we need. |
| // This is by far the most common case, so do it without locks. |
| // Use atomic to ensure we see any previous writes done by the thread |
| // that updates the itabTable field (with atomic.Storep in itabAdd). |
| t := (*itabTableType)(atomic.Loadp(unsafe.Pointer(&itabTable))) |
| if m = t.find(lhsi, rhs); m != nil { |
| goto finish |
| } |
| |
| // Not found. Grab the lock and try again. |
| lockInit(&itabLock, lockRankItab) |
| lock(&itabLock) |
| if m = itabTable.find(lhsi, rhs); m != nil { |
| unlock(&itabLock) |
| goto finish |
| } |
| |
| // Entry doesn't exist yet. Make a new entry & add it. |
| m = (*itab)(persistentalloc(unsafe.Sizeof(itab{})+uintptr(len(lhsi.methods)-1)*sys.PtrSize, 0, &memstats.other_sys)) |
| m.inter = lhsi |
| m.methods[0] = unsafe.Pointer(rhs) |
| m.init() |
| itabAdd(m) |
| unlock(&itabLock) |
| finish: |
| if m.methods[1] != nil { |
| return unsafe.Pointer(&m.methods[0]) |
| } |
| if canfail { |
| return nil |
| } |
| // this can only happen if the conversion |
| // was already done once using the , ok form |
| // and we have a cached negative result. |
| // The cached result doesn't record which |
| // interface function was missing, so initialize |
| // the itab again to get the missing function name. |
| panic(&TypeAssertionError{nil, rhs, lhs, m.init()}) |
| } |
| |
| // Return the interface method table for a value of type rhs converted |
| // to an interface of type lhs. Panics if the conversion is impossible. |
| func requireitab(lhs, rhs *_type) unsafe.Pointer { |
| return getitab(lhs, rhs, false) |
| } |
| |
| // Return the interface method table for a value of type rhs converted |
| // to an interface of type lhs. Panics if the conversion is |
| // impossible or if the rhs type is nil. |
| func assertitab(lhs, rhs *_type) unsafe.Pointer { |
| if rhs == nil { |
| panic(&TypeAssertionError{nil, nil, lhs, ""}) |
| } |
| |
| if lhs.kind&kindMask != kindInterface { |
| throw("assertitab called for non-interface type") |
| } |
| |
| lhsi := (*interfacetype)(unsafe.Pointer(lhs)) |
| |
| if len(lhsi.methods) == 0 { |
| return unsafe.Pointer(rhs) |
| } |
| |
| return getitab(lhs, rhs, false) |
| } |
| |
| // panicdottype is called when doing an i.(T) conversion and the conversion fails. |
| func panicdottype(lhs, rhs, inter *_type) { |
| panic(&TypeAssertionError{inter, rhs, lhs, ""}) |
| } |
| |
| // Convert an empty interface to an empty interface, for a comma-ok |
| // type assertion. |
| func ifaceE2E2(e eface) (eface, bool) { |
| return e, e._type != nil |
| } |
| |
| // Convert a non-empty interface to an empty interface, for a comma-ok |
| // type assertion. |
| func ifaceI2E2(i iface) (eface, bool) { |
| if i.tab == nil { |
| return eface{nil, nil}, false |
| } else { |
| return eface{*(**_type)(i.tab), i.data}, true |
| } |
| } |
| |
| // Convert an empty interface to a non-empty interface, for a comma-ok |
| // type assertion. |
| func ifaceE2I2(inter *_type, e eface) (iface, bool) { |
| if e._type == nil { |
| return iface{nil, nil}, false |
| } else { |
| itab := getitab(inter, e._type, true) |
| if itab == nil { |
| return iface{nil, nil}, false |
| } else { |
| return iface{itab, e.data}, true |
| } |
| } |
| } |
| |
| // Convert a non-empty interface to a non-empty interface, for a |
| // comma-ok type assertion. |
| func ifaceI2I2(inter *_type, i iface) (iface, bool) { |
| if i.tab == nil { |
| return iface{nil, nil}, false |
| } else { |
| itab := getitab(inter, *(**_type)(i.tab), true) |
| if itab == nil { |
| return iface{nil, nil}, false |
| } else { |
| return iface{itab, i.data}, true |
| } |
| } |
| } |
| |
| // Convert an empty interface to a pointer non-interface type. |
| func ifaceE2T2P(t *_type, e eface) (unsafe.Pointer, bool) { |
| if !eqtype(t, e._type) { |
| return nil, false |
| } else { |
| return e.data, true |
| } |
| } |
| |
| // Convert a non-empty interface to a pointer non-interface type. |
| func ifaceI2T2P(t *_type, i iface) (unsafe.Pointer, bool) { |
| if i.tab == nil || !eqtype(t, *(**_type)(i.tab)) { |
| return nil, false |
| } else { |
| return i.data, true |
| } |
| } |
| |
| // Convert an empty interface to a non-pointer non-interface type. |
| func ifaceE2T2(t *_type, e eface, ret unsafe.Pointer) bool { |
| if !eqtype(t, e._type) { |
| typedmemclr(t, ret) |
| return false |
| } else { |
| if isDirectIface(t) { |
| *(*unsafe.Pointer)(ret) = e.data |
| } else { |
| typedmemmove(t, ret, e.data) |
| } |
| return true |
| } |
| } |
| |
| // Convert a non-empty interface to a non-pointer non-interface type. |
| func ifaceI2T2(t *_type, i iface, ret unsafe.Pointer) bool { |
| if i.tab == nil || !eqtype(t, *(**_type)(i.tab)) { |
| typedmemclr(t, ret) |
| return false |
| } else { |
| if isDirectIface(t) { |
| *(*unsafe.Pointer)(ret) = i.data |
| } else { |
| typedmemmove(t, ret, i.data) |
| } |
| return true |
| } |
| } |
| |
| // Return whether we can convert a type to an interface type. |
| func ifaceT2Ip(to, from *_type) bool { |
| if from == nil { |
| return false |
| } |
| |
| if to.kind&kindMask != kindInterface { |
| throw("ifaceT2Ip called with non-interface type") |
| } |
| toi := (*interfacetype)(unsafe.Pointer(to)) |
| |
| if from.uncommontype == nil || len(from.methods) == 0 { |
| return len(toi.methods) == 0 |
| } |
| |
| ri := 0 |
| for li := range toi.methods { |
| toMethod := &toi.methods[li] |
| var fromMethod *method |
| for { |
| if ri >= len(from.methods) { |
| return false |
| } |
| |
| fromMethod = &from.methods[ri] |
| if (toMethod.name == fromMethod.name || *toMethod.name == *fromMethod.name) && |
| (toMethod.pkgPath == fromMethod.pkgPath || *toMethod.pkgPath == *fromMethod.pkgPath) { |
| break |
| } |
| |
| ri++ |
| } |
| |
| if !eqtype(fromMethod.mtyp, toMethod.typ) { |
| return false |
| } |
| |
| ri++ |
| } |
| |
| return true |
| } |
| |
| //go:linkname reflect_ifaceE2I reflect.ifaceE2I |
| func reflect_ifaceE2I(inter *interfacetype, e eface, dst *iface) { |
| t := e._type |
| if t == nil { |
| panic(TypeAssertionError{nil, nil, &inter.typ, ""}) |
| } |
| dst.tab = requireitab((*_type)(unsafe.Pointer(inter)), t) |
| dst.data = e.data |
| } |
| |
| //go:linkname reflectlite_ifaceE2I internal..z2freflectlite.ifaceE2I |
| func reflectlite_ifaceE2I(inter *interfacetype, e eface, dst *iface) { |
| t := e._type |
| if t == nil { |
| panic(TypeAssertionError{nil, nil, &inter.typ, ""}) |
| } |
| dst.tab = requireitab((*_type)(unsafe.Pointer(inter)), t) |
| dst.data = e.data |
| } |
| |
| // staticuint64s is used to avoid allocating in convTx for small integer values. |
| var staticuint64s = [...]uint64{ |
| 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
| 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, |
| 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, |
| 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, |
| 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, |
| 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, |
| 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, |
| 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, |
| 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, |
| 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, |
| 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, |
| 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, |
| 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, |
| 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, |
| 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, |
| 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, |
| 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, |
| 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, |
| 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, |
| 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, |
| 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, |
| 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, |
| 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, |
| 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf, |
| 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, |
| 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, |
| 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, |
| 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf, |
| 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, |
| 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, |
| 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, |
| 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff, |
| } |