|  | // Copyright 2009 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package math | 
|  |  | 
|  | func isOddInt(x float64) bool { | 
|  | xi, xf := Modf(x) | 
|  | return xf == 0 && int64(xi)&1 == 1 | 
|  | } | 
|  |  | 
|  | // Special cases taken from FreeBSD's /usr/src/lib/msun/src/e_pow.c | 
|  | // updated by IEEE Std. 754-2008 "Section 9.2.1 Special values". | 
|  |  | 
|  | // Pow returns x**y, the base-x exponential of y. | 
|  | // | 
|  | // Special cases are (in order): | 
|  | //	Pow(x, ±0) = 1 for any x | 
|  | //	Pow(1, y) = 1 for any y | 
|  | //	Pow(x, 1) = x for any x | 
|  | //	Pow(NaN, y) = NaN | 
|  | //	Pow(x, NaN) = NaN | 
|  | //	Pow(±0, y) = ±Inf for y an odd integer < 0 | 
|  | //	Pow(±0, -Inf) = +Inf | 
|  | //	Pow(±0, +Inf) = +0 | 
|  | //	Pow(±0, y) = +Inf for finite y < 0 and not an odd integer | 
|  | //	Pow(±0, y) = ±0 for y an odd integer > 0 | 
|  | //	Pow(±0, y) = +0 for finite y > 0 and not an odd integer | 
|  | //	Pow(-1, ±Inf) = 1 | 
|  | //	Pow(x, +Inf) = +Inf for |x| > 1 | 
|  | //	Pow(x, -Inf) = +0 for |x| > 1 | 
|  | //	Pow(x, +Inf) = +0 for |x| < 1 | 
|  | //	Pow(x, -Inf) = +Inf for |x| < 1 | 
|  | //	Pow(+Inf, y) = +Inf for y > 0 | 
|  | //	Pow(+Inf, y) = +0 for y < 0 | 
|  | //	Pow(-Inf, y) = Pow(-0, -y) | 
|  | //	Pow(x, y) = NaN for finite x < 0 and finite non-integer y | 
|  | func Pow(x, y float64) float64 { | 
|  | return libc_pow(x, y) | 
|  | } | 
|  |  | 
|  | //extern pow | 
|  | func libc_pow(float64, float64) float64 | 
|  |  | 
|  | func pow(x, y float64) float64 { | 
|  | switch { | 
|  | case y == 0 || x == 1: | 
|  | return 1 | 
|  | case y == 1: | 
|  | return x | 
|  | case IsNaN(x) || IsNaN(y): | 
|  | return NaN() | 
|  | case x == 0: | 
|  | switch { | 
|  | case y < 0: | 
|  | if isOddInt(y) { | 
|  | return Copysign(Inf(1), x) | 
|  | } | 
|  | return Inf(1) | 
|  | case y > 0: | 
|  | if isOddInt(y) { | 
|  | return x | 
|  | } | 
|  | return 0 | 
|  | } | 
|  | case IsInf(y, 0): | 
|  | switch { | 
|  | case x == -1: | 
|  | return 1 | 
|  | case (Abs(x) < 1) == IsInf(y, 1): | 
|  | return 0 | 
|  | default: | 
|  | return Inf(1) | 
|  | } | 
|  | case IsInf(x, 0): | 
|  | if IsInf(x, -1) { | 
|  | return Pow(1/x, -y) // Pow(-0, -y) | 
|  | } | 
|  | switch { | 
|  | case y < 0: | 
|  | return 0 | 
|  | case y > 0: | 
|  | return Inf(1) | 
|  | } | 
|  | case y == 0.5: | 
|  | return Sqrt(x) | 
|  | case y == -0.5: | 
|  | return 1 / Sqrt(x) | 
|  | } | 
|  |  | 
|  | yi, yf := Modf(Abs(y)) | 
|  | if yf != 0 && x < 0 { | 
|  | return NaN() | 
|  | } | 
|  | if yi >= 1<<63 { | 
|  | // yi is a large even int that will lead to overflow (or underflow to 0) | 
|  | // for all x except -1 (x == 1 was handled earlier) | 
|  | switch { | 
|  | case x == -1: | 
|  | return 1 | 
|  | case (Abs(x) < 1) == (y > 0): | 
|  | return 0 | 
|  | default: | 
|  | return Inf(1) | 
|  | } | 
|  | } | 
|  |  | 
|  | // ans = a1 * 2**ae (= 1 for now). | 
|  | a1 := 1.0 | 
|  | ae := 0 | 
|  |  | 
|  | // ans *= x**yf | 
|  | if yf != 0 { | 
|  | if yf > 0.5 { | 
|  | yf-- | 
|  | yi++ | 
|  | } | 
|  | a1 = Exp(yf * Log(x)) | 
|  | } | 
|  |  | 
|  | // ans *= x**yi | 
|  | // by multiplying in successive squarings | 
|  | // of x according to bits of yi. | 
|  | // accumulate powers of two into exp. | 
|  | x1, xe := Frexp(x) | 
|  | for i := int64(yi); i != 0; i >>= 1 { | 
|  | if xe < -1<<12 || 1<<12 < xe { | 
|  | // catch xe before it overflows the left shift below | 
|  | // Since i !=0 it has at least one bit still set, so ae will accumulate xe | 
|  | // on at least one more iteration, ae += xe is a lower bound on ae | 
|  | // the lower bound on ae exceeds the size of a float64 exp | 
|  | // so the final call to Ldexp will produce under/overflow (0/Inf) | 
|  | ae += xe | 
|  | break | 
|  | } | 
|  | if i&1 == 1 { | 
|  | a1 *= x1 | 
|  | ae += xe | 
|  | } | 
|  | x1 *= x1 | 
|  | xe <<= 1 | 
|  | if x1 < .5 { | 
|  | x1 += x1 | 
|  | xe-- | 
|  | } | 
|  | } | 
|  |  | 
|  | // ans = a1*2**ae | 
|  | // if y < 0 { ans = 1 / ans } | 
|  | // but in the opposite order | 
|  | if y < 0 { | 
|  | a1 = 1 / a1 | 
|  | ae = -ae | 
|  | } | 
|  | return Ldexp(a1, ae) | 
|  | } |