|  | // Copyright 2009 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | // See malloc.h for overview. | 
|  | // | 
|  | // TODO(rsc): double-check stats. | 
|  |  | 
|  | package runtime | 
|  | #include <stddef.h> | 
|  | #include <errno.h> | 
|  | #include <stdlib.h> | 
|  | #include "runtime.h" | 
|  | #include "arch.h" | 
|  | #include "malloc.h" | 
|  | #include "go-type.h" | 
|  |  | 
|  | // Map gccgo field names to gc field names. | 
|  | // Type aka __go_type_descriptor | 
|  | #define kind __code | 
|  | #define string __reflection | 
|  |  | 
|  | // GCCGO SPECIFIC CHANGE | 
|  | // | 
|  | // There is a long comment in runtime_mallocinit about where to put the heap | 
|  | // on a 64-bit system.  It makes assumptions that are not valid on linux/arm64 | 
|  | // -- it assumes user space can choose the lower 47 bits of a pointer, but on | 
|  | // linux/arm64 we can only choose the lower 39 bits.  This means the heap is | 
|  | // roughly a quarter of the available address space and we cannot choose a bit | 
|  | // pattern that all pointers will have -- luckily the GC is mostly precise | 
|  | // these days so this doesn't matter all that much.  The kernel (as of 3.13) | 
|  | // will allocate address space starting either down from 0x7fffffffff or up | 
|  | // from 0x2000000000, so we put the heap roughly in the middle of these two | 
|  | // addresses to minimize the chance that a non-heap allocation will get in the | 
|  | // way of the heap. | 
|  | // | 
|  | // This all means that there isn't much point in trying 256 different | 
|  | // locations for the heap on such systems. | 
|  | #ifdef __aarch64__ | 
|  | #define HeapBase(i) ((void*)(uintptr)(0x40ULL<<32)) | 
|  | #define HeapBaseOptions 1 | 
|  | #elif defined(_AIX) | 
|  | // mmap adresses range start at 0x07000000_00000000 on AIX for 64 bits processes | 
|  | #define HeapBase(i) ((void*)(uintptr)(0x70ULL<<52)) | 
|  | #define HeapBaseOptions 1 | 
|  | #else | 
|  | #define HeapBase(i) ((void*)(uintptr)(i<<40|0x00c0ULL<<32)) | 
|  | #define HeapBaseOptions 0x80 | 
|  | #endif | 
|  | // END GCCGO SPECIFIC CHANGE | 
|  |  | 
|  | // Mark mheap as 'no pointers', it does not contain interesting pointers but occupies ~45K. | 
|  | MHeap runtime_mheap; | 
|  |  | 
|  | int32	runtime_checking; | 
|  |  | 
|  | extern volatile intgo runtime_MemProfileRate | 
|  | __asm__ (GOSYM_PREFIX "runtime.MemProfileRate"); | 
|  |  | 
|  | static MSpan* largealloc(uint32, uintptr*); | 
|  | static void runtime_profilealloc(void *v, uintptr size); | 
|  | static void settype(MSpan *s, void *v, uintptr typ); | 
|  |  | 
|  | // Allocate an object of at least size bytes. | 
|  | // Small objects are allocated from the per-thread cache's free lists. | 
|  | // Large objects (> 32 kB) are allocated straight from the heap. | 
|  | // If the block will be freed with runtime_free(), typ must be 0. | 
|  | void* | 
|  | runtime_mallocgc(uintptr size, uintptr typ, uint32 flag) | 
|  | { | 
|  | M *m; | 
|  | G *g; | 
|  | int32 sizeclass; | 
|  | uintptr tinysize, size1; | 
|  | intgo rate; | 
|  | MCache *c; | 
|  | MSpan *s; | 
|  | MLink *v, *next; | 
|  | byte *tiny; | 
|  | bool incallback; | 
|  | MStats *pmstats; | 
|  |  | 
|  | if(size == 0) { | 
|  | // All 0-length allocations use this pointer. | 
|  | // The language does not require the allocations to | 
|  | // have distinct values. | 
|  | return runtime_getZerobase(); | 
|  | } | 
|  |  | 
|  | g = runtime_g(); | 
|  | m = g->m; | 
|  |  | 
|  | incallback = false; | 
|  | if(m->mcache == nil && m->ncgo > 0) { | 
|  | // For gccgo this case can occur when a cgo or SWIG function | 
|  | // has an interface return type and the function | 
|  | // returns a non-pointer, so memory allocation occurs | 
|  | // after syscall.Cgocall but before syscall.CgocallDone. | 
|  | // We treat it as a callback. | 
|  | runtime_exitsyscall(0); | 
|  | m = runtime_m(); | 
|  | incallback = true; | 
|  | flag |= FlagNoInvokeGC; | 
|  | } | 
|  |  | 
|  | if((g->preempt || runtime_gcwaiting()) && g != m->g0 && m->locks == 0 && !(flag & FlagNoInvokeGC) && m->preemptoff.len == 0) { | 
|  | g->preempt = false; | 
|  | runtime_gosched(); | 
|  | m = runtime_m(); | 
|  | } | 
|  | if(m->mallocing) | 
|  | runtime_throw("malloc/free - deadlock"); | 
|  | // Disable preemption during settype. | 
|  | // We can not use m->mallocing for this, because settype calls mallocgc. | 
|  | m->locks++; | 
|  | m->mallocing = 1; | 
|  |  | 
|  | if(DebugTypeAtBlockEnd) | 
|  | size += sizeof(uintptr); | 
|  |  | 
|  | c = m->mcache; | 
|  | if(!runtime_debug.efence && size <= MaxSmallSize) { | 
|  | if((flag&(FlagNoScan|FlagNoGC)) == FlagNoScan && size < TinySize) { | 
|  | // Tiny allocator. | 
|  | // | 
|  | // Tiny allocator combines several tiny allocation requests | 
|  | // into a single memory block. The resulting memory block | 
|  | // is freed when all subobjects are unreachable. The subobjects | 
|  | // must be FlagNoScan (don't have pointers), this ensures that | 
|  | // the amount of potentially wasted memory is bounded. | 
|  | // | 
|  | // Size of the memory block used for combining (TinySize) is tunable. | 
|  | // Current setting is 16 bytes, which relates to 2x worst case memory | 
|  | // wastage (when all but one subobjects are unreachable). | 
|  | // 8 bytes would result in no wastage at all, but provides less | 
|  | // opportunities for combining. | 
|  | // 32 bytes provides more opportunities for combining, | 
|  | // but can lead to 4x worst case wastage. | 
|  | // The best case winning is 8x regardless of block size. | 
|  | // | 
|  | // Objects obtained from tiny allocator must not be freed explicitly. | 
|  | // So when an object will be freed explicitly, we ensure that | 
|  | // its size >= TinySize. | 
|  | // | 
|  | // SetFinalizer has a special case for objects potentially coming | 
|  | // from tiny allocator, it such case it allows to set finalizers | 
|  | // for an inner byte of a memory block. | 
|  | // | 
|  | // The main targets of tiny allocator are small strings and | 
|  | // standalone escaping variables. On a json benchmark | 
|  | // the allocator reduces number of allocations by ~12% and | 
|  | // reduces heap size by ~20%. | 
|  |  | 
|  | tinysize = c->tinysize; | 
|  | if(size <= tinysize) { | 
|  | tiny = c->tiny; | 
|  | // Align tiny pointer for required (conservative) alignment. | 
|  | if((size&7) == 0) | 
|  | tiny = (byte*)ROUND((uintptr)tiny, 8); | 
|  | else if((size&3) == 0) | 
|  | tiny = (byte*)ROUND((uintptr)tiny, 4); | 
|  | else if((size&1) == 0) | 
|  | tiny = (byte*)ROUND((uintptr)tiny, 2); | 
|  | size1 = size + (tiny - (byte*)c->tiny); | 
|  | if(size1 <= tinysize) { | 
|  | // The object fits into existing tiny block. | 
|  | v = (MLink*)tiny; | 
|  | c->tiny = (byte*)c->tiny + size1; | 
|  | c->tinysize -= size1; | 
|  | m->mallocing = 0; | 
|  | m->locks--; | 
|  | if(incallback) | 
|  | runtime_entersyscall(0); | 
|  | return v; | 
|  | } | 
|  | } | 
|  | // Allocate a new TinySize block. | 
|  | s = c->alloc[TinySizeClass]; | 
|  | if(s->freelist == nil) | 
|  | s = runtime_MCache_Refill(c, TinySizeClass); | 
|  | v = s->freelist; | 
|  | next = v->next; | 
|  | s->freelist = next; | 
|  | s->ref++; | 
|  | if(next != nil)  // prefetching nil leads to a DTLB miss | 
|  | PREFETCH(next); | 
|  | ((uint64*)v)[0] = 0; | 
|  | ((uint64*)v)[1] = 0; | 
|  | // See if we need to replace the existing tiny block with the new one | 
|  | // based on amount of remaining free space. | 
|  | if(TinySize-size > tinysize) { | 
|  | c->tiny = (byte*)v + size; | 
|  | c->tinysize = TinySize - size; | 
|  | } | 
|  | size = TinySize; | 
|  | goto done; | 
|  | } | 
|  | // Allocate from mcache free lists. | 
|  | // Inlined version of SizeToClass(). | 
|  | if(size <= 1024-8) | 
|  | sizeclass = runtime_size_to_class8[(size+7)>>3]; | 
|  | else | 
|  | sizeclass = runtime_size_to_class128[(size-1024+127) >> 7]; | 
|  | size = runtime_class_to_size[sizeclass]; | 
|  | s = c->alloc[sizeclass]; | 
|  | if(s->freelist == nil) | 
|  | s = runtime_MCache_Refill(c, sizeclass); | 
|  | v = s->freelist; | 
|  | next = v->next; | 
|  | s->freelist = next; | 
|  | s->ref++; | 
|  | if(next != nil)  // prefetching nil leads to a DTLB miss | 
|  | PREFETCH(next); | 
|  | if(!(flag & FlagNoZero)) { | 
|  | v->next = nil; | 
|  | // block is zeroed iff second word is zero ... | 
|  | if(size > 2*sizeof(uintptr) && ((uintptr*)v)[1] != 0) | 
|  | runtime_memclr((byte*)v, size); | 
|  | } | 
|  | done: | 
|  | c->local_cachealloc += size; | 
|  | } else { | 
|  | // Allocate directly from heap. | 
|  | s = largealloc(flag, &size); | 
|  | v = (void*)(s->start << PageShift); | 
|  | } | 
|  |  | 
|  | if(flag & FlagNoGC) | 
|  | runtime_marknogc(v); | 
|  | else if(!(flag & FlagNoScan)) | 
|  | runtime_markscan(v); | 
|  |  | 
|  | if(DebugTypeAtBlockEnd) | 
|  | *(uintptr*)((uintptr)v+size-sizeof(uintptr)) = typ; | 
|  |  | 
|  | m->mallocing = 0; | 
|  | // TODO: save type even if FlagNoScan?  Potentially expensive but might help | 
|  | // heap profiling/tracing. | 
|  | if(UseSpanType && !(flag & FlagNoScan) && typ != 0) | 
|  | settype(s, v, typ); | 
|  |  | 
|  | if(runtime_debug.allocfreetrace) | 
|  | runtime_tracealloc(v, size, typ); | 
|  |  | 
|  | if(!(flag & FlagNoProfiling) && (rate = runtime_MemProfileRate) > 0) { | 
|  | if(size < (uintptr)rate && size < (uintptr)(uint32)c->next_sample) | 
|  | c->next_sample -= size; | 
|  | else | 
|  | runtime_profilealloc(v, size); | 
|  | } | 
|  |  | 
|  | m->locks--; | 
|  |  | 
|  | pmstats = mstats(); | 
|  | if(!(flag & FlagNoInvokeGC) && pmstats->heap_alloc >= pmstats->next_gc) | 
|  | runtime_gc(0); | 
|  |  | 
|  | if(incallback) | 
|  | runtime_entersyscall(0); | 
|  |  | 
|  | return v; | 
|  | } | 
|  |  | 
|  | static MSpan* | 
|  | largealloc(uint32 flag, uintptr *sizep) | 
|  | { | 
|  | uintptr npages, size; | 
|  | MSpan *s; | 
|  | void *v; | 
|  |  | 
|  | // Allocate directly from heap. | 
|  | size = *sizep; | 
|  | if(size + PageSize < size) | 
|  | runtime_throw("out of memory"); | 
|  | npages = size >> PageShift; | 
|  | if((size & PageMask) != 0) | 
|  | npages++; | 
|  | s = runtime_MHeap_Alloc(&runtime_mheap, npages, 0, 1, !(flag & FlagNoZero)); | 
|  | if(s == nil) | 
|  | runtime_throw("out of memory"); | 
|  | s->limit = (uintptr)((byte*)(s->start<<PageShift) + size); | 
|  | *sizep = npages<<PageShift; | 
|  | v = (void*)(s->start << PageShift); | 
|  | // setup for mark sweep | 
|  | runtime_markspan(v, 0, 0, true); | 
|  | return s; | 
|  | } | 
|  |  | 
|  | static void | 
|  | runtime_profilealloc(void *v, uintptr size) | 
|  | { | 
|  | uintptr rate; | 
|  | int32 next; | 
|  | MCache *c; | 
|  |  | 
|  | c = runtime_m()->mcache; | 
|  | rate = runtime_MemProfileRate; | 
|  | if(size < rate) { | 
|  | // pick next profile time | 
|  | // If you change this, also change allocmcache. | 
|  | if(rate > 0x3fffffff)	// make 2*rate not overflow | 
|  | rate = 0x3fffffff; | 
|  | next = runtime_fastrand() % (2*rate); | 
|  | // Subtract the "remainder" of the current allocation. | 
|  | // Otherwise objects that are close in size to sampling rate | 
|  | // will be under-sampled, because we consistently discard this remainder. | 
|  | next -= (size - c->next_sample); | 
|  | if(next < 0) | 
|  | next = 0; | 
|  | c->next_sample = next; | 
|  | } | 
|  | runtime_MProf_Malloc(v, size); | 
|  | } | 
|  |  | 
|  | int32 | 
|  | runtime_mlookup(void *v, byte **base, uintptr *size, MSpan **sp) | 
|  | { | 
|  | M *m; | 
|  | uintptr n, i; | 
|  | byte *p; | 
|  | MSpan *s; | 
|  |  | 
|  | m = runtime_m(); | 
|  |  | 
|  | m->mcache->local_nlookup++; | 
|  | if (sizeof(void*) == 4 && m->mcache->local_nlookup >= (1<<30)) { | 
|  | // purge cache stats to prevent overflow | 
|  | runtime_lock(&runtime_mheap); | 
|  | runtime_purgecachedstats(m->mcache); | 
|  | runtime_unlock(&runtime_mheap); | 
|  | } | 
|  |  | 
|  | s = runtime_MHeap_LookupMaybe(&runtime_mheap, v); | 
|  | if(sp) | 
|  | *sp = s; | 
|  | if(s == nil) { | 
|  | runtime_checkfreed(v, 1); | 
|  | if(base) | 
|  | *base = nil; | 
|  | if(size) | 
|  | *size = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | p = (byte*)((uintptr)s->start<<PageShift); | 
|  | if(s->sizeclass == 0) { | 
|  | // Large object. | 
|  | if(base) | 
|  | *base = p; | 
|  | if(size) | 
|  | *size = s->npages<<PageShift; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | n = s->elemsize; | 
|  | if(base) { | 
|  | i = ((byte*)v - p)/n; | 
|  | *base = p + i*n; | 
|  | } | 
|  | if(size) | 
|  | *size = n; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void | 
|  | runtime_purgecachedstats(MCache *c) | 
|  | { | 
|  | MHeap *h; | 
|  | int32 i; | 
|  |  | 
|  | // Protected by either heap or GC lock. | 
|  | h = &runtime_mheap; | 
|  | mstats()->heap_alloc += (intptr)c->local_cachealloc; | 
|  | c->local_cachealloc = 0; | 
|  | mstats()->nlookup += c->local_nlookup; | 
|  | c->local_nlookup = 0; | 
|  | h->largefree += c->local_largefree; | 
|  | c->local_largefree = 0; | 
|  | h->nlargefree += c->local_nlargefree; | 
|  | c->local_nlargefree = 0; | 
|  | for(i=0; i<(int32)nelem(c->local_nsmallfree); i++) { | 
|  | h->nsmallfree[i] += c->local_nsmallfree[i]; | 
|  | c->local_nsmallfree[i] = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Initialized in mallocinit because it's defined in go/runtime/mem.go. | 
|  |  | 
|  | #define MaxArena32 (2U<<30) | 
|  |  | 
|  | void | 
|  | runtime_mallocinit(void) | 
|  | { | 
|  | byte *p, *p1; | 
|  | uintptr arena_size, bitmap_size, spans_size, p_size; | 
|  | uintptr *pend; | 
|  | uintptr end; | 
|  | uintptr limit; | 
|  | uint64 i; | 
|  | bool reserved; | 
|  |  | 
|  | p = nil; | 
|  | p_size = 0; | 
|  | arena_size = 0; | 
|  | bitmap_size = 0; | 
|  | spans_size = 0; | 
|  | reserved = false; | 
|  |  | 
|  | // for 64-bit build | 
|  | USED(p); | 
|  | USED(p_size); | 
|  | USED(arena_size); | 
|  | USED(bitmap_size); | 
|  | USED(spans_size); | 
|  |  | 
|  | runtime_InitSizes(); | 
|  |  | 
|  | if(runtime_class_to_size[TinySizeClass] != TinySize) | 
|  | runtime_throw("bad TinySizeClass"); | 
|  |  | 
|  | // limit = runtime_memlimit(); | 
|  | // See https://code.google.com/p/go/issues/detail?id=5049 | 
|  | // TODO(rsc): Fix after 1.1. | 
|  | limit = 0; | 
|  |  | 
|  | // Set up the allocation arena, a contiguous area of memory where | 
|  | // allocated data will be found.  The arena begins with a bitmap large | 
|  | // enough to hold 4 bits per allocated word. | 
|  | if(sizeof(void*) == 8 && (limit == 0 || limit > (1<<30))) { | 
|  | // On a 64-bit machine, allocate from a single contiguous reservation. | 
|  | // 128 GB (MaxMem) should be big enough for now. | 
|  | // | 
|  | // The code will work with the reservation at any address, but ask | 
|  | // SysReserve to use 0x0000XXc000000000 if possible (XX=00...7f). | 
|  | // Allocating a 128 GB region takes away 37 bits, and the amd64 | 
|  | // doesn't let us choose the top 17 bits, so that leaves the 11 bits | 
|  | // in the middle of 0x00c0 for us to choose.  Choosing 0x00c0 means | 
|  | // that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x00df. | 
|  | // In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid | 
|  | // UTF-8 sequences, and they are otherwise as far away from | 
|  | // ff (likely a common byte) as possible.  If that fails, we try other 0xXXc0 | 
|  | // addresses.  An earlier attempt to use 0x11f8 caused out of memory errors | 
|  | // on OS X during thread allocations.  0x00c0 causes conflicts with | 
|  | // AddressSanitizer which reserves all memory up to 0x0100. | 
|  | // These choices are both for debuggability and to reduce the | 
|  | // odds of the conservative garbage collector not collecting memory | 
|  | // because some non-pointer block of memory had a bit pattern | 
|  | // that matched a memory address. | 
|  | // | 
|  | // Actually we reserve 136 GB (because the bitmap ends up being 8 GB) | 
|  | // but it hardly matters: e0 00 is not valid UTF-8 either. | 
|  | // | 
|  | // If this fails we fall back to the 32 bit memory mechanism | 
|  | arena_size = MaxMem; | 
|  | bitmap_size = arena_size / (sizeof(void*)*8/4); | 
|  | spans_size = arena_size / PageSize * sizeof(runtime_mheap.spans[0]); | 
|  | spans_size = ROUND(spans_size, PageSize); | 
|  | for(i = 0; i < HeapBaseOptions; i++) { | 
|  | p = HeapBase(i); | 
|  | p_size = bitmap_size + spans_size + arena_size + PageSize; | 
|  | p = runtime_SysReserve(p, p_size, &reserved); | 
|  | if(p != nil) | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (p == nil) { | 
|  | // On a 32-bit machine, we can't typically get away | 
|  | // with a giant virtual address space reservation. | 
|  | // Instead we map the memory information bitmap | 
|  | // immediately after the data segment, large enough | 
|  | // to handle another 2GB of mappings (256 MB), | 
|  | // along with a reservation for another 512 MB of memory. | 
|  | // When that gets used up, we'll start asking the kernel | 
|  | // for any memory anywhere and hope it's in the 2GB | 
|  | // following the bitmap (presumably the executable begins | 
|  | // near the bottom of memory, so we'll have to use up | 
|  | // most of memory before the kernel resorts to giving out | 
|  | // memory before the beginning of the text segment). | 
|  | // | 
|  | // Alternatively we could reserve 512 MB bitmap, enough | 
|  | // for 4GB of mappings, and then accept any memory the | 
|  | // kernel threw at us, but normally that's a waste of 512 MB | 
|  | // of address space, which is probably too much in a 32-bit world. | 
|  | bitmap_size = MaxArena32 / (sizeof(void*)*8/4); | 
|  | arena_size = 512<<20; | 
|  | spans_size = MaxArena32 / PageSize * sizeof(runtime_mheap.spans[0]); | 
|  | if(limit > 0 && arena_size+bitmap_size+spans_size > limit) { | 
|  | bitmap_size = (limit / 9) & ~((1<<PageShift) - 1); | 
|  | arena_size = bitmap_size * 8; | 
|  | spans_size = arena_size / PageSize * sizeof(runtime_mheap.spans[0]); | 
|  | } | 
|  | spans_size = ROUND(spans_size, PageSize); | 
|  |  | 
|  | // SysReserve treats the address we ask for, end, as a hint, | 
|  | // not as an absolute requirement.  If we ask for the end | 
|  | // of the data segment but the operating system requires | 
|  | // a little more space before we can start allocating, it will | 
|  | // give out a slightly higher pointer.  Except QEMU, which | 
|  | // is buggy, as usual: it won't adjust the pointer upward. | 
|  | // So adjust it upward a little bit ourselves: 1/4 MB to get | 
|  | // away from the running binary image and then round up | 
|  | // to a MB boundary. | 
|  |  | 
|  | #ifdef _AIX | 
|  | // mmap adresses range start at 0x30000000 on AIX for 32 bits processes | 
|  | end = 0x30000000U; | 
|  | #else | 
|  | end = 0; | 
|  | pend = &__go_end; | 
|  | if(pend != nil) | 
|  | end = *pend; | 
|  | #endif | 
|  | p = (byte*)ROUND(end + (1<<18), 1<<20); | 
|  | p_size = bitmap_size + spans_size + arena_size + PageSize; | 
|  | p = runtime_SysReserve(p, p_size, &reserved); | 
|  | if(p == nil) | 
|  | runtime_throw("runtime: cannot reserve arena virtual address space"); | 
|  | } | 
|  |  | 
|  | // PageSize can be larger than OS definition of page size, | 
|  | // so SysReserve can give us a PageSize-unaligned pointer. | 
|  | // To overcome this we ask for PageSize more and round up the pointer. | 
|  | p1 = (byte*)ROUND((uintptr)p, PageSize); | 
|  |  | 
|  | runtime_mheap.spans = (MSpan**)p1; | 
|  | runtime_mheap.bitmap = p1 + spans_size; | 
|  | runtime_mheap.arena_start = p1 + spans_size + bitmap_size; | 
|  | runtime_mheap.arena_used = runtime_mheap.arena_start; | 
|  | runtime_mheap.arena_end = p + p_size; | 
|  | runtime_mheap.arena_reserved = reserved; | 
|  |  | 
|  | if(((uintptr)runtime_mheap.arena_start & (PageSize-1)) != 0) | 
|  | runtime_throw("misrounded allocation in mallocinit"); | 
|  |  | 
|  | // Initialize the rest of the allocator. | 
|  | runtime_MHeap_Init(&runtime_mheap); | 
|  | runtime_m()->mcache = runtime_allocmcache(); | 
|  | } | 
|  |  | 
|  | void* | 
|  | runtime_MHeap_SysAlloc(MHeap *h, uintptr n) | 
|  | { | 
|  | byte *p, *p_end; | 
|  | uintptr p_size; | 
|  | bool reserved; | 
|  |  | 
|  |  | 
|  | if(n > (uintptr)(h->arena_end - h->arena_used)) { | 
|  | // We are in 32-bit mode, maybe we didn't use all possible address space yet. | 
|  | // Reserve some more space. | 
|  | byte *new_end; | 
|  |  | 
|  | p_size = ROUND(n + PageSize, 256<<20); | 
|  | new_end = h->arena_end + p_size; | 
|  | if(new_end <= h->arena_start + MaxArena32) { | 
|  | // TODO: It would be bad if part of the arena | 
|  | // is reserved and part is not. | 
|  | p = runtime_SysReserve(h->arena_end, p_size, &reserved); | 
|  | if(p == h->arena_end) { | 
|  | h->arena_end = new_end; | 
|  | h->arena_reserved = reserved; | 
|  | } | 
|  | else if(p+p_size <= h->arena_start + MaxArena32) { | 
|  | // Keep everything page-aligned. | 
|  | // Our pages are bigger than hardware pages. | 
|  | h->arena_end = p+p_size; | 
|  | h->arena_used = p + (-(uintptr)p&(PageSize-1)); | 
|  | h->arena_reserved = reserved; | 
|  | } else { | 
|  | uint64 stat; | 
|  | stat = 0; | 
|  | runtime_SysFree(p, p_size, &stat); | 
|  | } | 
|  | } | 
|  | } | 
|  | if(n <= (uintptr)(h->arena_end - h->arena_used)) { | 
|  | // Keep taking from our reservation. | 
|  | p = h->arena_used; | 
|  | runtime_SysMap(p, n, h->arena_reserved, &mstats()->heap_sys); | 
|  | h->arena_used += n; | 
|  | runtime_MHeap_MapBits(h); | 
|  | runtime_MHeap_MapSpans(h); | 
|  |  | 
|  | if(((uintptr)p & (PageSize-1)) != 0) | 
|  | runtime_throw("misrounded allocation in MHeap_SysAlloc"); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | // If using 64-bit, our reservation is all we have. | 
|  | if((uintptr)(h->arena_end - h->arena_start) >= MaxArena32) | 
|  | return nil; | 
|  |  | 
|  | // On 32-bit, once the reservation is gone we can | 
|  | // try to get memory at a location chosen by the OS | 
|  | // and hope that it is in the range we allocated bitmap for. | 
|  | p_size = ROUND(n, PageSize) + PageSize; | 
|  | p = runtime_SysAlloc(p_size, &mstats()->heap_sys); | 
|  | if(p == nil) | 
|  | return nil; | 
|  |  | 
|  | if(p < h->arena_start || (uintptr)(p+p_size - h->arena_start) >= MaxArena32) { | 
|  | runtime_printf("runtime: memory allocated by OS (%p) not in usable range [%p,%p)\n", | 
|  | p, h->arena_start, h->arena_start+MaxArena32); | 
|  | runtime_SysFree(p, p_size, &mstats()->heap_sys); | 
|  | return nil; | 
|  | } | 
|  |  | 
|  | p_end = p + p_size; | 
|  | p += -(uintptr)p & (PageSize-1); | 
|  | if(p+n > h->arena_used) { | 
|  | h->arena_used = p+n; | 
|  | if(p_end > h->arena_end) | 
|  | h->arena_end = p_end; | 
|  | runtime_MHeap_MapBits(h); | 
|  | runtime_MHeap_MapSpans(h); | 
|  | } | 
|  |  | 
|  | if(((uintptr)p & (PageSize-1)) != 0) | 
|  | runtime_throw("misrounded allocation in MHeap_SysAlloc"); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static struct | 
|  | { | 
|  | Lock; | 
|  | byte*	pos; | 
|  | byte*	end; | 
|  | } persistent; | 
|  |  | 
|  | enum | 
|  | { | 
|  | PersistentAllocChunk	= 256<<10, | 
|  | PersistentAllocMaxBlock	= 64<<10,  // VM reservation granularity is 64K on windows | 
|  | }; | 
|  |  | 
|  | // Wrapper around SysAlloc that can allocate small chunks. | 
|  | // There is no associated free operation. | 
|  | // Intended for things like function/type/debug-related persistent data. | 
|  | // If align is 0, uses default align (currently 8). | 
|  | void* | 
|  | runtime_persistentalloc(uintptr size, uintptr align, uint64 *stat) | 
|  | { | 
|  | byte *p; | 
|  |  | 
|  | if(align != 0) { | 
|  | if(align&(align-1)) | 
|  | runtime_throw("persistentalloc: align is not a power of 2"); | 
|  | if(align > PageSize) | 
|  | runtime_throw("persistentalloc: align is too large"); | 
|  | } else | 
|  | align = 8; | 
|  | if(size >= PersistentAllocMaxBlock) | 
|  | return runtime_SysAlloc(size, stat); | 
|  | runtime_lock(&persistent); | 
|  | persistent.pos = (byte*)ROUND((uintptr)persistent.pos, align); | 
|  | if(persistent.pos + size > persistent.end) { | 
|  | persistent.pos = runtime_SysAlloc(PersistentAllocChunk, &mstats()->other_sys); | 
|  | if(persistent.pos == nil) { | 
|  | runtime_unlock(&persistent); | 
|  | runtime_throw("runtime: cannot allocate memory"); | 
|  | } | 
|  | persistent.end = persistent.pos + PersistentAllocChunk; | 
|  | } | 
|  | p = persistent.pos; | 
|  | persistent.pos += size; | 
|  | runtime_unlock(&persistent); | 
|  | if(stat != &mstats()->other_sys) { | 
|  | // reaccount the allocation against provided stat | 
|  | runtime_xadd64(stat, size); | 
|  | runtime_xadd64(&mstats()->other_sys, -(uint64)size); | 
|  | } | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static void | 
|  | settype(MSpan *s, void *v, uintptr typ) | 
|  | { | 
|  | uintptr size, ofs, j, t; | 
|  | uintptr ntypes, nbytes2, nbytes3; | 
|  | uintptr *data2; | 
|  | byte *data3; | 
|  |  | 
|  | if(s->sizeclass == 0) { | 
|  | s->types.compression = MTypes_Single; | 
|  | s->types.data = typ; | 
|  | return; | 
|  | } | 
|  | size = s->elemsize; | 
|  | ofs = ((uintptr)v - (s->start<<PageShift)) / size; | 
|  |  | 
|  | switch(s->types.compression) { | 
|  | case MTypes_Empty: | 
|  | ntypes = (s->npages << PageShift) / size; | 
|  | nbytes3 = 8*sizeof(uintptr) + 1*ntypes; | 
|  | data3 = runtime_mallocgc(nbytes3, 0, FlagNoProfiling|FlagNoScan|FlagNoInvokeGC); | 
|  | s->types.compression = MTypes_Bytes; | 
|  | s->types.data = (uintptr)data3; | 
|  | ((uintptr*)data3)[1] = typ; | 
|  | data3[8*sizeof(uintptr) + ofs] = 1; | 
|  | break; | 
|  |  | 
|  | case MTypes_Words: | 
|  | ((uintptr*)s->types.data)[ofs] = typ; | 
|  | break; | 
|  |  | 
|  | case MTypes_Bytes: | 
|  | data3 = (byte*)s->types.data; | 
|  | for(j=1; j<8; j++) { | 
|  | if(((uintptr*)data3)[j] == typ) { | 
|  | break; | 
|  | } | 
|  | if(((uintptr*)data3)[j] == 0) { | 
|  | ((uintptr*)data3)[j] = typ; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if(j < 8) { | 
|  | data3[8*sizeof(uintptr) + ofs] = j; | 
|  | } else { | 
|  | ntypes = (s->npages << PageShift) / size; | 
|  | nbytes2 = ntypes * sizeof(uintptr); | 
|  | data2 = runtime_mallocgc(nbytes2, 0, FlagNoProfiling|FlagNoScan|FlagNoInvokeGC); | 
|  | s->types.compression = MTypes_Words; | 
|  | s->types.data = (uintptr)data2; | 
|  |  | 
|  | // Move the contents of data3 to data2. Then deallocate data3. | 
|  | for(j=0; j<ntypes; j++) { | 
|  | t = data3[8*sizeof(uintptr) + j]; | 
|  | t = ((uintptr*)data3)[t]; | 
|  | data2[j] = t; | 
|  | } | 
|  | data2[ofs] = typ; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | uintptr | 
|  | runtime_gettype(void *v) | 
|  | { | 
|  | MSpan *s; | 
|  | uintptr t, ofs; | 
|  | byte *data; | 
|  |  | 
|  | s = runtime_MHeap_LookupMaybe(&runtime_mheap, v); | 
|  | if(s != nil) { | 
|  | t = 0; | 
|  | switch(s->types.compression) { | 
|  | case MTypes_Empty: | 
|  | break; | 
|  | case MTypes_Single: | 
|  | t = s->types.data; | 
|  | break; | 
|  | case MTypes_Words: | 
|  | ofs = (uintptr)v - (s->start<<PageShift); | 
|  | t = ((uintptr*)s->types.data)[ofs/s->elemsize]; | 
|  | break; | 
|  | case MTypes_Bytes: | 
|  | ofs = (uintptr)v - (s->start<<PageShift); | 
|  | data = (byte*)s->types.data; | 
|  | t = data[8*sizeof(uintptr) + ofs/s->elemsize]; | 
|  | t = ((uintptr*)data)[t]; | 
|  | break; | 
|  | default: | 
|  | runtime_throw("runtime_gettype: invalid compression kind"); | 
|  | } | 
|  | if(0) { | 
|  | runtime_printf("%p -> %d,%X\n", v, (int32)s->types.compression, (int64)t); | 
|  | } | 
|  | return t; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Runtime stubs. | 
|  |  | 
|  | void* | 
|  | runtime_mal(uintptr n) | 
|  | { | 
|  | return runtime_mallocgc(n, 0, 0); | 
|  | } | 
|  |  | 
|  | func new(typ *Type) (ret *uint8) { | 
|  | ret = runtime_mallocgc(typ->__size, (uintptr)typ | TypeInfo_SingleObject, typ->kind&kindNoPointers ? FlagNoScan : 0); | 
|  | } | 
|  |  | 
|  | static void* | 
|  | runtime_docnew(const Type *typ, intgo n, int32 objtyp) | 
|  | { | 
|  | if((objtyp&(PtrSize-1)) != objtyp) | 
|  | runtime_throw("runtime: invalid objtyp"); | 
|  | if(n < 0 || (typ->__size > 0 && (uintptr)n > (MaxMem/typ->__size))) | 
|  | runtime_panicstring("runtime: allocation size out of range"); | 
|  | return runtime_mallocgc(typ->__size*n, (uintptr)typ | objtyp, typ->kind&kindNoPointers ? FlagNoScan : 0); | 
|  | } | 
|  |  | 
|  | // same as runtime_new, but callable from C | 
|  | void* | 
|  | runtime_cnew(const Type *typ) | 
|  | { | 
|  | return runtime_docnew(typ, 1, TypeInfo_SingleObject); | 
|  | } | 
|  |  | 
|  | void* | 
|  | runtime_cnewarray(const Type *typ, intgo n) | 
|  | { | 
|  | return runtime_docnew(typ, n, TypeInfo_Array); | 
|  | } | 
|  |  | 
|  | func GC() { | 
|  | runtime_gc(2);  // force GC and do eager sweep | 
|  | } |