| // Copyright 2010 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package math |
| |
| // Coefficients _sin[] and _cos[] are found in pkg/math/sin.go. |
| |
| // Sincos returns Sin(x), Cos(x). |
| // |
| // Special cases are: |
| // Sincos(±0) = ±0, 1 |
| // Sincos(±Inf) = NaN, NaN |
| // Sincos(NaN) = NaN, NaN |
| func Sincos(x float64) (sin, cos float64) { |
| const ( |
| PI4A = 7.85398125648498535156E-1 // 0x3fe921fb40000000, Pi/4 split into three parts |
| PI4B = 3.77489470793079817668E-8 // 0x3e64442d00000000, |
| PI4C = 2.69515142907905952645E-15 // 0x3ce8469898cc5170, |
| ) |
| // special cases |
| switch { |
| case x == 0: |
| return x, 1 // return ±0.0, 1.0 |
| case IsNaN(x) || IsInf(x, 0): |
| return NaN(), NaN() |
| } |
| |
| // make argument positive |
| sinSign, cosSign := false, false |
| if x < 0 { |
| x = -x |
| sinSign = true |
| } |
| |
| var j uint64 |
| var y, z float64 |
| if x >= reduceThreshold { |
| j, z = trigReduce(x) |
| } else { |
| j = uint64(x * (4 / Pi)) // integer part of x/(Pi/4), as integer for tests on the phase angle |
| y = float64(j) // integer part of x/(Pi/4), as float |
| |
| if j&1 == 1 { // map zeros to origin |
| j++ |
| y++ |
| } |
| j &= 7 // octant modulo 2Pi radians (360 degrees) |
| z = ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic |
| } |
| if j > 3 { // reflect in x axis |
| j -= 4 |
| sinSign, cosSign = !sinSign, !cosSign |
| } |
| if j > 1 { |
| cosSign = !cosSign |
| } |
| |
| zz := z * z |
| cos = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5]) |
| sin = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5]) |
| if j == 1 || j == 2 { |
| sin, cos = cos, sin |
| } |
| if cosSign { |
| cos = -cos |
| } |
| if sinSign { |
| sin = -sin |
| } |
| return |
| } |