| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package jpeg implements a JPEG image decoder and encoder. |
| // |
| // JPEG is defined in ITU-T T.81: http://www.w3.org/Graphics/JPEG/itu-t81.pdf. |
| package jpeg |
| |
| import ( |
| "bufio" |
| "image" |
| "image/color" |
| "io" |
| ) |
| |
| // TODO(nigeltao): fix up the doc comment style so that sentences start with |
| // the name of the type or function that they annotate. |
| |
| // A FormatError reports that the input is not a valid JPEG. |
| type FormatError string |
| |
| func (e FormatError) Error() string { return "invalid JPEG format: " + string(e) } |
| |
| // An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature. |
| type UnsupportedError string |
| |
| func (e UnsupportedError) Error() string { return "unsupported JPEG feature: " + string(e) } |
| |
| // Component specification, specified in section B.2.2. |
| type component struct { |
| h int // Horizontal sampling factor. |
| v int // Vertical sampling factor. |
| c uint8 // Component identifier. |
| tq uint8 // Quantization table destination selector. |
| } |
| |
| const ( |
| dcTable = 0 |
| acTable = 1 |
| maxTc = 1 |
| maxTh = 3 |
| maxTq = 3 |
| |
| // A grayscale JPEG image has only a Y component. |
| nGrayComponent = 1 |
| // A color JPEG image has Y, Cb and Cr components. |
| nColorComponent = 3 |
| |
| // We only support 4:4:4, 4:4:0, 4:2:2 and 4:2:0 downsampling, and therefore the |
| // number of luma samples per chroma sample is at most 2 in the horizontal |
| // and 2 in the vertical direction. |
| maxH = 2 |
| maxV = 2 |
| ) |
| |
| const ( |
| soiMarker = 0xd8 // Start Of Image. |
| eoiMarker = 0xd9 // End Of Image. |
| sof0Marker = 0xc0 // Start Of Frame (Baseline). |
| sof2Marker = 0xc2 // Start Of Frame (Progressive). |
| dhtMarker = 0xc4 // Define Huffman Table. |
| dqtMarker = 0xdb // Define Quantization Table. |
| sosMarker = 0xda // Start Of Scan. |
| driMarker = 0xdd // Define Restart Interval. |
| rst0Marker = 0xd0 // ReSTart (0). |
| rst7Marker = 0xd7 // ReSTart (7). |
| app0Marker = 0xe0 // APPlication specific (0). |
| app15Marker = 0xef // APPlication specific (15). |
| comMarker = 0xfe // COMment. |
| ) |
| |
| // unzig maps from the zig-zag ordering to the natural ordering. For example, |
| // unzig[3] is the column and row of the fourth element in zig-zag order. The |
| // value is 16, which means first column (16%8 == 0) and third row (16/8 == 2). |
| var unzig = [blockSize]int{ |
| 0, 1, 8, 16, 9, 2, 3, 10, |
| 17, 24, 32, 25, 18, 11, 4, 5, |
| 12, 19, 26, 33, 40, 48, 41, 34, |
| 27, 20, 13, 6, 7, 14, 21, 28, |
| 35, 42, 49, 56, 57, 50, 43, 36, |
| 29, 22, 15, 23, 30, 37, 44, 51, |
| 58, 59, 52, 45, 38, 31, 39, 46, |
| 53, 60, 61, 54, 47, 55, 62, 63, |
| } |
| |
| // If the passed in io.Reader does not also have ReadByte, then Decode will introduce its own buffering. |
| type Reader interface { |
| io.Reader |
| ReadByte() (c byte, err error) |
| } |
| |
| type decoder struct { |
| r Reader |
| b bits |
| width, height int |
| img1 *image.Gray |
| img3 *image.YCbCr |
| ri int // Restart Interval. |
| nComp int |
| progressive bool |
| eobRun uint16 // End-of-Band run, specified in section G.1.2.2. |
| comp [nColorComponent]component |
| progCoeffs [nColorComponent][]block // Saved state between progressive-mode scans. |
| huff [maxTc + 1][maxTh + 1]huffman |
| quant [maxTq + 1]block // Quantization tables, in zig-zag order. |
| tmp [1024]byte |
| } |
| |
| // Reads and ignores the next n bytes. |
| func (d *decoder) ignore(n int) error { |
| for n > 0 { |
| m := len(d.tmp) |
| if m > n { |
| m = n |
| } |
| _, err := io.ReadFull(d.r, d.tmp[0:m]) |
| if err != nil { |
| return err |
| } |
| n -= m |
| } |
| return nil |
| } |
| |
| // Specified in section B.2.2. |
| func (d *decoder) processSOF(n int) error { |
| switch n { |
| case 6 + 3*nGrayComponent: |
| d.nComp = nGrayComponent |
| case 6 + 3*nColorComponent: |
| d.nComp = nColorComponent |
| default: |
| return UnsupportedError("SOF has wrong length") |
| } |
| _, err := io.ReadFull(d.r, d.tmp[:n]) |
| if err != nil { |
| return err |
| } |
| // We only support 8-bit precision. |
| if d.tmp[0] != 8 { |
| return UnsupportedError("precision") |
| } |
| d.height = int(d.tmp[1])<<8 + int(d.tmp[2]) |
| d.width = int(d.tmp[3])<<8 + int(d.tmp[4]) |
| if int(d.tmp[5]) != d.nComp { |
| return UnsupportedError("SOF has wrong number of image components") |
| } |
| for i := 0; i < d.nComp; i++ { |
| d.comp[i].c = d.tmp[6+3*i] |
| d.comp[i].tq = d.tmp[8+3*i] |
| if d.nComp == nGrayComponent { |
| // If a JPEG image has only one component, section A.2 says "this data |
| // is non-interleaved by definition" and section A.2.2 says "[in this |
| // case...] the order of data units within a scan shall be left-to-right |
| // and top-to-bottom... regardless of the values of H_1 and V_1". Section |
| // 4.8.2 also says "[for non-interleaved data], the MCU is defined to be |
| // one data unit". Similarly, section A.1.1 explains that it is the ratio |
| // of H_i to max_j(H_j) that matters, and similarly for V. For grayscale |
| // images, H_1 is the maximum H_j for all components j, so that ratio is |
| // always 1. The component's (h, v) is effectively always (1, 1): even if |
| // the nominal (h, v) is (2, 1), a 20x5 image is encoded in three 8x8 |
| // MCUs, not two 16x8 MCUs. |
| d.comp[i].h = 1 |
| d.comp[i].v = 1 |
| continue |
| } |
| hv := d.tmp[7+3*i] |
| d.comp[i].h = int(hv >> 4) |
| d.comp[i].v = int(hv & 0x0f) |
| // For color images, we only support 4:4:4, 4:4:0, 4:2:2 or 4:2:0 chroma |
| // downsampling ratios. This implies that the (h, v) values for the Y |
| // component are either (1, 1), (1, 2), (2, 1) or (2, 2), and the (h, v) |
| // values for the Cr and Cb components must be (1, 1). |
| if i == 0 { |
| if hv != 0x11 && hv != 0x21 && hv != 0x22 && hv != 0x12 { |
| return UnsupportedError("luma downsample ratio") |
| } |
| } else if hv != 0x11 { |
| return UnsupportedError("chroma downsample ratio") |
| } |
| } |
| return nil |
| } |
| |
| // Specified in section B.2.4.1. |
| func (d *decoder) processDQT(n int) error { |
| const qtLength = 1 + blockSize |
| for ; n >= qtLength; n -= qtLength { |
| _, err := io.ReadFull(d.r, d.tmp[0:qtLength]) |
| if err != nil { |
| return err |
| } |
| pq := d.tmp[0] >> 4 |
| if pq != 0 { |
| return UnsupportedError("bad Pq value") |
| } |
| tq := d.tmp[0] & 0x0f |
| if tq > maxTq { |
| return FormatError("bad Tq value") |
| } |
| for i := range d.quant[tq] { |
| d.quant[tq][i] = int32(d.tmp[i+1]) |
| } |
| } |
| if n != 0 { |
| return FormatError("DQT has wrong length") |
| } |
| return nil |
| } |
| |
| // Specified in section B.2.4.4. |
| func (d *decoder) processDRI(n int) error { |
| if n != 2 { |
| return FormatError("DRI has wrong length") |
| } |
| _, err := io.ReadFull(d.r, d.tmp[0:2]) |
| if err != nil { |
| return err |
| } |
| d.ri = int(d.tmp[0])<<8 + int(d.tmp[1]) |
| return nil |
| } |
| |
| // decode reads a JPEG image from r and returns it as an image.Image. |
| func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, error) { |
| if rr, ok := r.(Reader); ok { |
| d.r = rr |
| } else { |
| d.r = bufio.NewReader(r) |
| } |
| |
| // Check for the Start Of Image marker. |
| _, err := io.ReadFull(d.r, d.tmp[0:2]) |
| if err != nil { |
| return nil, err |
| } |
| if d.tmp[0] != 0xff || d.tmp[1] != soiMarker { |
| return nil, FormatError("missing SOI marker") |
| } |
| |
| // Process the remaining segments until the End Of Image marker. |
| for { |
| _, err := io.ReadFull(d.r, d.tmp[0:2]) |
| if err != nil { |
| return nil, err |
| } |
| if d.tmp[0] != 0xff { |
| return nil, FormatError("missing 0xff marker start") |
| } |
| marker := d.tmp[1] |
| for marker == 0xff { |
| // Section B.1.1.2 says, "Any marker may optionally be preceded by any |
| // number of fill bytes, which are bytes assigned code X'FF'". |
| marker, err = d.r.ReadByte() |
| if err != nil { |
| return nil, err |
| } |
| } |
| if marker == eoiMarker { // End Of Image. |
| break |
| } |
| if rst0Marker <= marker && marker <= rst7Marker { |
| // Figures B.2 and B.16 of the specification suggest that restart markers should |
| // only occur between Entropy Coded Segments and not after the final ECS. |
| // However, some encoders may generate incorrect JPEGs with a final restart |
| // marker. That restart marker will be seen here instead of inside the processSOS |
| // method, and is ignored as a harmless error. Restart markers have no extra data, |
| // so we check for this before we read the 16-bit length of the segment. |
| continue |
| } |
| |
| // Read the 16-bit length of the segment. The value includes the 2 bytes for the |
| // length itself, so we subtract 2 to get the number of remaining bytes. |
| _, err = io.ReadFull(d.r, d.tmp[0:2]) |
| if err != nil { |
| return nil, err |
| } |
| n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2 |
| if n < 0 { |
| return nil, FormatError("short segment length") |
| } |
| |
| switch { |
| case marker == sof0Marker || marker == sof2Marker: // Start Of Frame. |
| d.progressive = marker == sof2Marker |
| err = d.processSOF(n) |
| if configOnly { |
| return nil, err |
| } |
| case marker == dhtMarker: // Define Huffman Table. |
| err = d.processDHT(n) |
| case marker == dqtMarker: // Define Quantization Table. |
| err = d.processDQT(n) |
| case marker == sosMarker: // Start Of Scan. |
| err = d.processSOS(n) |
| case marker == driMarker: // Define Restart Interval. |
| err = d.processDRI(n) |
| case app0Marker <= marker && marker <= app15Marker || marker == comMarker: // APPlication specific, or COMment. |
| err = d.ignore(n) |
| default: |
| err = UnsupportedError("unknown marker") |
| } |
| if err != nil { |
| return nil, err |
| } |
| } |
| if d.img1 != nil { |
| return d.img1, nil |
| } |
| if d.img3 != nil { |
| return d.img3, nil |
| } |
| return nil, FormatError("missing SOS marker") |
| } |
| |
| // Decode reads a JPEG image from r and returns it as an image.Image. |
| func Decode(r io.Reader) (image.Image, error) { |
| var d decoder |
| return d.decode(r, false) |
| } |
| |
| // DecodeConfig returns the color model and dimensions of a JPEG image without |
| // decoding the entire image. |
| func DecodeConfig(r io.Reader) (image.Config, error) { |
| var d decoder |
| if _, err := d.decode(r, true); err != nil { |
| return image.Config{}, err |
| } |
| switch d.nComp { |
| case nGrayComponent: |
| return image.Config{ |
| ColorModel: color.GrayModel, |
| Width: d.width, |
| Height: d.height, |
| }, nil |
| case nColorComponent: |
| return image.Config{ |
| ColorModel: color.YCbCrModel, |
| Width: d.width, |
| Height: d.height, |
| }, nil |
| } |
| return image.Config{}, FormatError("missing SOF marker") |
| } |
| |
| func init() { |
| image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig) |
| } |