| // Copyright 2010 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package tls |
| |
| import ( |
| "crypto" |
| "crypto/ecdsa" |
| "crypto/elliptic" |
| "crypto/md5" |
| "crypto/rsa" |
| "crypto/sha1" |
| "crypto/x509" |
| "encoding/asn1" |
| "errors" |
| "io" |
| "math/big" |
| |
| "golang_org/x/crypto/curve25519" |
| ) |
| |
| var errClientKeyExchange = errors.New("tls: invalid ClientKeyExchange message") |
| var errServerKeyExchange = errors.New("tls: invalid ServerKeyExchange message") |
| |
| // rsaKeyAgreement implements the standard TLS key agreement where the client |
| // encrypts the pre-master secret to the server's public key. |
| type rsaKeyAgreement struct{} |
| |
| func (ka rsaKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) { |
| return nil, nil |
| } |
| |
| func (ka rsaKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) { |
| if len(ckx.ciphertext) < 2 { |
| return nil, errClientKeyExchange |
| } |
| |
| ciphertext := ckx.ciphertext |
| if version != VersionSSL30 { |
| ciphertextLen := int(ckx.ciphertext[0])<<8 | int(ckx.ciphertext[1]) |
| if ciphertextLen != len(ckx.ciphertext)-2 { |
| return nil, errClientKeyExchange |
| } |
| ciphertext = ckx.ciphertext[2:] |
| } |
| priv, ok := cert.PrivateKey.(crypto.Decrypter) |
| if !ok { |
| return nil, errors.New("tls: certificate private key does not implement crypto.Decrypter") |
| } |
| // Perform constant time RSA PKCS#1 v1.5 decryption |
| preMasterSecret, err := priv.Decrypt(config.rand(), ciphertext, &rsa.PKCS1v15DecryptOptions{SessionKeyLen: 48}) |
| if err != nil { |
| return nil, err |
| } |
| // We don't check the version number in the premaster secret. For one, |
| // by checking it, we would leak information about the validity of the |
| // encrypted pre-master secret. Secondly, it provides only a small |
| // benefit against a downgrade attack and some implementations send the |
| // wrong version anyway. See the discussion at the end of section |
| // 7.4.7.1 of RFC 4346. |
| return preMasterSecret, nil |
| } |
| |
| func (ka rsaKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error { |
| return errors.New("tls: unexpected ServerKeyExchange") |
| } |
| |
| func (ka rsaKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) { |
| preMasterSecret := make([]byte, 48) |
| preMasterSecret[0] = byte(clientHello.vers >> 8) |
| preMasterSecret[1] = byte(clientHello.vers) |
| _, err := io.ReadFull(config.rand(), preMasterSecret[2:]) |
| if err != nil { |
| return nil, nil, err |
| } |
| |
| encrypted, err := rsa.EncryptPKCS1v15(config.rand(), cert.PublicKey.(*rsa.PublicKey), preMasterSecret) |
| if err != nil { |
| return nil, nil, err |
| } |
| ckx := new(clientKeyExchangeMsg) |
| ckx.ciphertext = make([]byte, len(encrypted)+2) |
| ckx.ciphertext[0] = byte(len(encrypted) >> 8) |
| ckx.ciphertext[1] = byte(len(encrypted)) |
| copy(ckx.ciphertext[2:], encrypted) |
| return preMasterSecret, ckx, nil |
| } |
| |
| // sha1Hash calculates a SHA1 hash over the given byte slices. |
| func sha1Hash(slices [][]byte) []byte { |
| hsha1 := sha1.New() |
| for _, slice := range slices { |
| hsha1.Write(slice) |
| } |
| return hsha1.Sum(nil) |
| } |
| |
| // md5SHA1Hash implements TLS 1.0's hybrid hash function which consists of the |
| // concatenation of an MD5 and SHA1 hash. |
| func md5SHA1Hash(slices [][]byte) []byte { |
| md5sha1 := make([]byte, md5.Size+sha1.Size) |
| hmd5 := md5.New() |
| for _, slice := range slices { |
| hmd5.Write(slice) |
| } |
| copy(md5sha1, hmd5.Sum(nil)) |
| copy(md5sha1[md5.Size:], sha1Hash(slices)) |
| return md5sha1 |
| } |
| |
| // hashForServerKeyExchange hashes the given slices and returns their digest |
| // and the identifier of the hash function used. The sigAndHash argument is |
| // only used for >= TLS 1.2 and precisely identifies the hash function to use. |
| func hashForServerKeyExchange(sigAndHash signatureAndHash, version uint16, slices ...[]byte) ([]byte, crypto.Hash, error) { |
| if version >= VersionTLS12 { |
| if !isSupportedSignatureAndHash(sigAndHash, supportedSignatureAlgorithms) { |
| return nil, crypto.Hash(0), errors.New("tls: unsupported hash function used by peer") |
| } |
| hashFunc, err := lookupTLSHash(sigAndHash.hash) |
| if err != nil { |
| return nil, crypto.Hash(0), err |
| } |
| h := hashFunc.New() |
| for _, slice := range slices { |
| h.Write(slice) |
| } |
| digest := h.Sum(nil) |
| return digest, hashFunc, nil |
| } |
| if sigAndHash.signature == signatureECDSA { |
| return sha1Hash(slices), crypto.SHA1, nil |
| } |
| return md5SHA1Hash(slices), crypto.MD5SHA1, nil |
| } |
| |
| // pickTLS12HashForSignature returns a TLS 1.2 hash identifier for signing a |
| // ServerKeyExchange given the signature type being used and the client's |
| // advertised list of supported signature and hash combinations. |
| func pickTLS12HashForSignature(sigType uint8, clientList []signatureAndHash) (uint8, error) { |
| if len(clientList) == 0 { |
| // If the client didn't specify any signature_algorithms |
| // extension then we can assume that it supports SHA1. See |
| // http://tools.ietf.org/html/rfc5246#section-7.4.1.4.1 |
| return hashSHA1, nil |
| } |
| |
| for _, sigAndHash := range clientList { |
| if sigAndHash.signature != sigType { |
| continue |
| } |
| if isSupportedSignatureAndHash(sigAndHash, supportedSignatureAlgorithms) { |
| return sigAndHash.hash, nil |
| } |
| } |
| |
| return 0, errors.New("tls: client doesn't support any common hash functions") |
| } |
| |
| func curveForCurveID(id CurveID) (elliptic.Curve, bool) { |
| switch id { |
| case CurveP256: |
| return elliptic.P256(), true |
| case CurveP384: |
| return elliptic.P384(), true |
| case CurveP521: |
| return elliptic.P521(), true |
| default: |
| return nil, false |
| } |
| |
| } |
| |
| // ecdheRSAKeyAgreement implements a TLS key agreement where the server |
| // generates a ephemeral EC public/private key pair and signs it. The |
| // pre-master secret is then calculated using ECDH. The signature may |
| // either be ECDSA or RSA. |
| type ecdheKeyAgreement struct { |
| version uint16 |
| sigType uint8 |
| privateKey []byte |
| curveid CurveID |
| |
| // publicKey is used to store the peer's public value when X25519 is |
| // being used. |
| publicKey []byte |
| // x and y are used to store the peer's public value when one of the |
| // NIST curves is being used. |
| x, y *big.Int |
| } |
| |
| func (ka *ecdheKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) { |
| preferredCurves := config.curvePreferences() |
| |
| NextCandidate: |
| for _, candidate := range preferredCurves { |
| for _, c := range clientHello.supportedCurves { |
| if candidate == c { |
| ka.curveid = c |
| break NextCandidate |
| } |
| } |
| } |
| |
| if ka.curveid == 0 { |
| return nil, errors.New("tls: no supported elliptic curves offered") |
| } |
| |
| var ecdhePublic []byte |
| |
| if ka.curveid == X25519 { |
| var scalar, public [32]byte |
| if _, err := io.ReadFull(config.rand(), scalar[:]); err != nil { |
| return nil, err |
| } |
| |
| curve25519.ScalarBaseMult(&public, &scalar) |
| ka.privateKey = scalar[:] |
| ecdhePublic = public[:] |
| } else { |
| curve, ok := curveForCurveID(ka.curveid) |
| if !ok { |
| return nil, errors.New("tls: preferredCurves includes unsupported curve") |
| } |
| |
| var x, y *big.Int |
| var err error |
| ka.privateKey, x, y, err = elliptic.GenerateKey(curve, config.rand()) |
| if err != nil { |
| return nil, err |
| } |
| ecdhePublic = elliptic.Marshal(curve, x, y) |
| } |
| |
| // http://tools.ietf.org/html/rfc4492#section-5.4 |
| serverECDHParams := make([]byte, 1+2+1+len(ecdhePublic)) |
| serverECDHParams[0] = 3 // named curve |
| serverECDHParams[1] = byte(ka.curveid >> 8) |
| serverECDHParams[2] = byte(ka.curveid) |
| serverECDHParams[3] = byte(len(ecdhePublic)) |
| copy(serverECDHParams[4:], ecdhePublic) |
| |
| sigAndHash := signatureAndHash{signature: ka.sigType} |
| |
| if ka.version >= VersionTLS12 { |
| var err error |
| if sigAndHash.hash, err = pickTLS12HashForSignature(ka.sigType, clientHello.signatureAndHashes); err != nil { |
| return nil, err |
| } |
| } |
| |
| digest, hashFunc, err := hashForServerKeyExchange(sigAndHash, ka.version, clientHello.random, hello.random, serverECDHParams) |
| if err != nil { |
| return nil, err |
| } |
| |
| priv, ok := cert.PrivateKey.(crypto.Signer) |
| if !ok { |
| return nil, errors.New("tls: certificate private key does not implement crypto.Signer") |
| } |
| var sig []byte |
| switch ka.sigType { |
| case signatureECDSA: |
| _, ok := priv.Public().(*ecdsa.PublicKey) |
| if !ok { |
| return nil, errors.New("tls: ECDHE ECDSA requires an ECDSA server key") |
| } |
| case signatureRSA: |
| _, ok := priv.Public().(*rsa.PublicKey) |
| if !ok { |
| return nil, errors.New("tls: ECDHE RSA requires a RSA server key") |
| } |
| default: |
| return nil, errors.New("tls: unknown ECDHE signature algorithm") |
| } |
| sig, err = priv.Sign(config.rand(), digest, hashFunc) |
| if err != nil { |
| return nil, errors.New("tls: failed to sign ECDHE parameters: " + err.Error()) |
| } |
| |
| skx := new(serverKeyExchangeMsg) |
| sigAndHashLen := 0 |
| if ka.version >= VersionTLS12 { |
| sigAndHashLen = 2 |
| } |
| skx.key = make([]byte, len(serverECDHParams)+sigAndHashLen+2+len(sig)) |
| copy(skx.key, serverECDHParams) |
| k := skx.key[len(serverECDHParams):] |
| if ka.version >= VersionTLS12 { |
| k[0] = sigAndHash.hash |
| k[1] = sigAndHash.signature |
| k = k[2:] |
| } |
| k[0] = byte(len(sig) >> 8) |
| k[1] = byte(len(sig)) |
| copy(k[2:], sig) |
| |
| return skx, nil |
| } |
| |
| func (ka *ecdheKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) { |
| if len(ckx.ciphertext) == 0 || int(ckx.ciphertext[0]) != len(ckx.ciphertext)-1 { |
| return nil, errClientKeyExchange |
| } |
| |
| if ka.curveid == X25519 { |
| if len(ckx.ciphertext) != 1+32 { |
| return nil, errClientKeyExchange |
| } |
| |
| var theirPublic, sharedKey, scalar [32]byte |
| copy(theirPublic[:], ckx.ciphertext[1:]) |
| copy(scalar[:], ka.privateKey) |
| curve25519.ScalarMult(&sharedKey, &scalar, &theirPublic) |
| return sharedKey[:], nil |
| } |
| |
| curve, ok := curveForCurveID(ka.curveid) |
| if !ok { |
| panic("internal error") |
| } |
| x, y := elliptic.Unmarshal(curve, ckx.ciphertext[1:]) |
| if x == nil { |
| return nil, errClientKeyExchange |
| } |
| if !curve.IsOnCurve(x, y) { |
| return nil, errClientKeyExchange |
| } |
| x, _ = curve.ScalarMult(x, y, ka.privateKey) |
| preMasterSecret := make([]byte, (curve.Params().BitSize+7)>>3) |
| xBytes := x.Bytes() |
| copy(preMasterSecret[len(preMasterSecret)-len(xBytes):], xBytes) |
| |
| return preMasterSecret, nil |
| } |
| |
| func (ka *ecdheKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error { |
| if len(skx.key) < 4 { |
| return errServerKeyExchange |
| } |
| if skx.key[0] != 3 { // named curve |
| return errors.New("tls: server selected unsupported curve") |
| } |
| ka.curveid = CurveID(skx.key[1])<<8 | CurveID(skx.key[2]) |
| |
| publicLen := int(skx.key[3]) |
| if publicLen+4 > len(skx.key) { |
| return errServerKeyExchange |
| } |
| serverECDHParams := skx.key[:4+publicLen] |
| publicKey := serverECDHParams[4:] |
| |
| sig := skx.key[4+publicLen:] |
| if len(sig) < 2 { |
| return errServerKeyExchange |
| } |
| |
| if ka.curveid == X25519 { |
| if len(publicKey) != 32 { |
| return errors.New("tls: bad X25519 public value") |
| } |
| ka.publicKey = publicKey |
| } else { |
| curve, ok := curveForCurveID(ka.curveid) |
| if !ok { |
| return errors.New("tls: server selected unsupported curve") |
| } |
| |
| ka.x, ka.y = elliptic.Unmarshal(curve, publicKey) |
| if ka.x == nil { |
| return errServerKeyExchange |
| } |
| if !curve.IsOnCurve(ka.x, ka.y) { |
| return errServerKeyExchange |
| } |
| } |
| |
| sigAndHash := signatureAndHash{signature: ka.sigType} |
| if ka.version >= VersionTLS12 { |
| // handle SignatureAndHashAlgorithm |
| sigAndHash = signatureAndHash{hash: sig[0], signature: sig[1]} |
| if sigAndHash.signature != ka.sigType { |
| return errServerKeyExchange |
| } |
| sig = sig[2:] |
| if len(sig) < 2 { |
| return errServerKeyExchange |
| } |
| } |
| sigLen := int(sig[0])<<8 | int(sig[1]) |
| if sigLen+2 != len(sig) { |
| return errServerKeyExchange |
| } |
| sig = sig[2:] |
| |
| digest, hashFunc, err := hashForServerKeyExchange(sigAndHash, ka.version, clientHello.random, serverHello.random, serverECDHParams) |
| if err != nil { |
| return err |
| } |
| switch ka.sigType { |
| case signatureECDSA: |
| pubKey, ok := cert.PublicKey.(*ecdsa.PublicKey) |
| if !ok { |
| return errors.New("tls: ECDHE ECDSA requires a ECDSA server public key") |
| } |
| ecdsaSig := new(ecdsaSignature) |
| if _, err := asn1.Unmarshal(sig, ecdsaSig); err != nil { |
| return err |
| } |
| if ecdsaSig.R.Sign() <= 0 || ecdsaSig.S.Sign() <= 0 { |
| return errors.New("tls: ECDSA signature contained zero or negative values") |
| } |
| if !ecdsa.Verify(pubKey, digest, ecdsaSig.R, ecdsaSig.S) { |
| return errors.New("tls: ECDSA verification failure") |
| } |
| case signatureRSA: |
| pubKey, ok := cert.PublicKey.(*rsa.PublicKey) |
| if !ok { |
| return errors.New("tls: ECDHE RSA requires a RSA server public key") |
| } |
| if err := rsa.VerifyPKCS1v15(pubKey, hashFunc, digest, sig); err != nil { |
| return err |
| } |
| default: |
| return errors.New("tls: unknown ECDHE signature algorithm") |
| } |
| |
| return nil |
| } |
| |
| func (ka *ecdheKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) { |
| if ka.curveid == 0 { |
| return nil, nil, errors.New("tls: missing ServerKeyExchange message") |
| } |
| |
| var serialized, preMasterSecret []byte |
| |
| if ka.curveid == X25519 { |
| var ourPublic, theirPublic, sharedKey, scalar [32]byte |
| |
| if _, err := io.ReadFull(config.rand(), scalar[:]); err != nil { |
| return nil, nil, err |
| } |
| |
| copy(theirPublic[:], ka.publicKey) |
| curve25519.ScalarBaseMult(&ourPublic, &scalar) |
| curve25519.ScalarMult(&sharedKey, &scalar, &theirPublic) |
| serialized = ourPublic[:] |
| preMasterSecret = sharedKey[:] |
| } else { |
| curve, ok := curveForCurveID(ka.curveid) |
| if !ok { |
| panic("internal error") |
| } |
| priv, mx, my, err := elliptic.GenerateKey(curve, config.rand()) |
| if err != nil { |
| return nil, nil, err |
| } |
| x, _ := curve.ScalarMult(ka.x, ka.y, priv) |
| preMasterSecret = make([]byte, (curve.Params().BitSize+7)>>3) |
| xBytes := x.Bytes() |
| copy(preMasterSecret[len(preMasterSecret)-len(xBytes):], xBytes) |
| |
| serialized = elliptic.Marshal(curve, mx, my) |
| } |
| |
| ckx := new(clientKeyExchangeMsg) |
| ckx.ciphertext = make([]byte, 1+len(serialized)) |
| ckx.ciphertext[0] = byte(len(serialized)) |
| copy(ckx.ciphertext[1:], serialized) |
| |
| return preMasterSecret, ckx, nil |
| } |