| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as |
| // defined in FIPS 186-3. |
| package ecdsa |
| |
| // References: |
| // [NSA]: Suite B implementer's guide to FIPS 186-3, |
| // http://www.nsa.gov/ia/_files/ecdsa.pdf |
| // [SECG]: SECG, SEC1 |
| // http://www.secg.org/download/aid-780/sec1-v2.pdf |
| |
| import ( |
| "crypto/elliptic" |
| "io" |
| "math/big" |
| ) |
| |
| // PublicKey represents an ECDSA public key. |
| type PublicKey struct { |
| elliptic.Curve |
| X, Y *big.Int |
| } |
| |
| // PrivateKey represents a ECDSA private key. |
| type PrivateKey struct { |
| PublicKey |
| D *big.Int |
| } |
| |
| var one = new(big.Int).SetInt64(1) |
| |
| // randFieldElement returns a random element of the field underlying the given |
| // curve using the procedure given in [NSA] A.2.1. |
| func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) { |
| params := c.Params() |
| b := make([]byte, params.BitSize/8+8) |
| _, err = io.ReadFull(rand, b) |
| if err != nil { |
| return |
| } |
| |
| k = new(big.Int).SetBytes(b) |
| n := new(big.Int).Sub(params.N, one) |
| k.Mod(k, n) |
| k.Add(k, one) |
| return |
| } |
| |
| // GenerateKey generates a public&private key pair. |
| func GenerateKey(c elliptic.Curve, rand io.Reader) (priv *PrivateKey, err error) { |
| k, err := randFieldElement(c, rand) |
| if err != nil { |
| return |
| } |
| |
| priv = new(PrivateKey) |
| priv.PublicKey.Curve = c |
| priv.D = k |
| priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes()) |
| return |
| } |
| |
| // hashToInt converts a hash value to an integer. There is some disagreement |
| // about how this is done. [NSA] suggests that this is done in the obvious |
| // manner, but [SECG] truncates the hash to the bit-length of the curve order |
| // first. We follow [SECG] because that's what OpenSSL does. Additionally, |
| // OpenSSL right shifts excess bits from the number if the hash is too large |
| // and we mirror that too. |
| func hashToInt(hash []byte, c elliptic.Curve) *big.Int { |
| orderBits := c.Params().N.BitLen() |
| orderBytes := (orderBits + 7) / 8 |
| if len(hash) > orderBytes { |
| hash = hash[:orderBytes] |
| } |
| |
| ret := new(big.Int).SetBytes(hash) |
| excess := len(hash)*8 - orderBits |
| if excess > 0 { |
| ret.Rsh(ret, uint(excess)) |
| } |
| return ret |
| } |
| |
| // Sign signs an arbitrary length hash (which should be the result of hashing a |
| // larger message) using the private key, priv. It returns the signature as a |
| // pair of integers. The security of the private key depends on the entropy of |
| // rand. |
| func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) { |
| // See [NSA] 3.4.1 |
| c := priv.PublicKey.Curve |
| N := c.Params().N |
| |
| var k, kInv *big.Int |
| for { |
| for { |
| k, err = randFieldElement(c, rand) |
| if err != nil { |
| r = nil |
| return |
| } |
| |
| kInv = new(big.Int).ModInverse(k, N) |
| r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) |
| r.Mod(r, N) |
| if r.Sign() != 0 { |
| break |
| } |
| } |
| |
| e := hashToInt(hash, c) |
| s = new(big.Int).Mul(priv.D, r) |
| s.Add(s, e) |
| s.Mul(s, kInv) |
| s.Mod(s, N) |
| if s.Sign() != 0 { |
| break |
| } |
| } |
| |
| return |
| } |
| |
| // Verify verifies the signature in r, s of hash using the public key, pub. It |
| // returns true iff the signature is valid. |
| func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool { |
| // See [NSA] 3.4.2 |
| c := pub.Curve |
| N := c.Params().N |
| |
| if r.Sign() == 0 || s.Sign() == 0 { |
| return false |
| } |
| if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 { |
| return false |
| } |
| e := hashToInt(hash, c) |
| w := new(big.Int).ModInverse(s, N) |
| |
| u1 := e.Mul(e, w) |
| u1.Mod(u1, N) |
| u2 := w.Mul(r, w) |
| u2.Mod(u2, N) |
| |
| x1, y1 := c.ScalarBaseMult(u1.Bytes()) |
| x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes()) |
| x, y := c.Add(x1, y1, x2, y2) |
| if x.Sign() == 0 && y.Sign() == 0 { |
| return false |
| } |
| x.Mod(x, N) |
| return x.Cmp(r) == 0 |
| } |