| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package regexp implements regular expression search. |
| // |
| // The syntax of the regular expressions accepted is the same |
| // general syntax used by Perl, Python, and other languages. |
| // More precisely, it is the syntax accepted by RE2 and described at |
| // https://golang.org/s/re2syntax, except for \C. |
| // For an overview of the syntax, run |
| // go doc regexp/syntax |
| // |
| // The regexp implementation provided by this package is |
| // guaranteed to run in time linear in the size of the input. |
| // (This is a property not guaranteed by most open source |
| // implementations of regular expressions.) For more information |
| // about this property, see |
| // https://swtch.com/~rsc/regexp/regexp1.html |
| // or any book about automata theory. |
| // |
| // All characters are UTF-8-encoded code points. |
| // |
| // There are 16 methods of Regexp that match a regular expression and identify |
| // the matched text. Their names are matched by this regular expression: |
| // |
| // Find(All)?(String)?(Submatch)?(Index)? |
| // |
| // If 'All' is present, the routine matches successive non-overlapping |
| // matches of the entire expression. Empty matches abutting a preceding |
| // match are ignored. The return value is a slice containing the successive |
| // return values of the corresponding non-'All' routine. These routines take |
| // an extra integer argument, n. If n >= 0, the function returns at most n |
| // matches/submatches; otherwise, it returns all of them. |
| // |
| // If 'String' is present, the argument is a string; otherwise it is a slice |
| // of bytes; return values are adjusted as appropriate. |
| // |
| // If 'Submatch' is present, the return value is a slice identifying the |
| // successive submatches of the expression. Submatches are matches of |
| // parenthesized subexpressions (also known as capturing groups) within the |
| // regular expression, numbered from left to right in order of opening |
| // parenthesis. Submatch 0 is the match of the entire expression, submatch 1 |
| // the match of the first parenthesized subexpression, and so on. |
| // |
| // If 'Index' is present, matches and submatches are identified by byte index |
| // pairs within the input string: result[2*n:2*n+1] identifies the indexes of |
| // the nth submatch. The pair for n==0 identifies the match of the entire |
| // expression. If 'Index' is not present, the match is identified by the text |
| // of the match/submatch. If an index is negative or text is nil, it means that |
| // subexpression did not match any string in the input. For 'String' versions |
| // an empty string means either no match or an empty match. |
| // |
| // There is also a subset of the methods that can be applied to text read |
| // from a RuneReader: |
| // |
| // MatchReader, FindReaderIndex, FindReaderSubmatchIndex |
| // |
| // This set may grow. Note that regular expression matches may need to |
| // examine text beyond the text returned by a match, so the methods that |
| // match text from a RuneReader may read arbitrarily far into the input |
| // before returning. |
| // |
| // (There are a few other methods that do not match this pattern.) |
| // |
| package regexp |
| |
| import ( |
| "bytes" |
| "io" |
| "regexp/syntax" |
| "strconv" |
| "strings" |
| "sync" |
| "unicode" |
| "unicode/utf8" |
| ) |
| |
| // Regexp is the representation of a compiled regular expression. |
| // A Regexp is safe for concurrent use by multiple goroutines, |
| // except for configuration methods, such as Longest. |
| type Regexp struct { |
| expr string // as passed to Compile |
| prog *syntax.Prog // compiled program |
| onepass *onePassProg // onepass program or nil |
| numSubexp int |
| maxBitStateLen int |
| subexpNames []string |
| prefix string // required prefix in unanchored matches |
| prefixBytes []byte // prefix, as a []byte |
| prefixRune rune // first rune in prefix |
| prefixEnd uint32 // pc for last rune in prefix |
| mpool int // pool for machines |
| matchcap int // size of recorded match lengths |
| prefixComplete bool // prefix is the entire regexp |
| cond syntax.EmptyOp // empty-width conditions required at start of match |
| minInputLen int // minimum length of the input in bytes |
| |
| // This field can be modified by the Longest method, |
| // but it is otherwise read-only. |
| longest bool // whether regexp prefers leftmost-longest match |
| } |
| |
| // String returns the source text used to compile the regular expression. |
| func (re *Regexp) String() string { |
| return re.expr |
| } |
| |
| // Copy returns a new Regexp object copied from re. |
| // Calling Longest on one copy does not affect another. |
| // |
| // Deprecated: In earlier releases, when using a Regexp in multiple goroutines, |
| // giving each goroutine its own copy helped to avoid lock contention. |
| // As of Go 1.12, using Copy is no longer necessary to avoid lock contention. |
| // Copy may still be appropriate if the reason for its use is to make |
| // two copies with different Longest settings. |
| func (re *Regexp) Copy() *Regexp { |
| re2 := *re |
| return &re2 |
| } |
| |
| // Compile parses a regular expression and returns, if successful, |
| // a Regexp object that can be used to match against text. |
| // |
| // When matching against text, the regexp returns a match that |
| // begins as early as possible in the input (leftmost), and among those |
| // it chooses the one that a backtracking search would have found first. |
| // This so-called leftmost-first matching is the same semantics |
| // that Perl, Python, and other implementations use, although this |
| // package implements it without the expense of backtracking. |
| // For POSIX leftmost-longest matching, see CompilePOSIX. |
| func Compile(expr string) (*Regexp, error) { |
| return compile(expr, syntax.Perl, false) |
| } |
| |
| // CompilePOSIX is like Compile but restricts the regular expression |
| // to POSIX ERE (egrep) syntax and changes the match semantics to |
| // leftmost-longest. |
| // |
| // That is, when matching against text, the regexp returns a match that |
| // begins as early as possible in the input (leftmost), and among those |
| // it chooses a match that is as long as possible. |
| // This so-called leftmost-longest matching is the same semantics |
| // that early regular expression implementations used and that POSIX |
| // specifies. |
| // |
| // However, there can be multiple leftmost-longest matches, with different |
| // submatch choices, and here this package diverges from POSIX. |
| // Among the possible leftmost-longest matches, this package chooses |
| // the one that a backtracking search would have found first, while POSIX |
| // specifies that the match be chosen to maximize the length of the first |
| // subexpression, then the second, and so on from left to right. |
| // The POSIX rule is computationally prohibitive and not even well-defined. |
| // See https://swtch.com/~rsc/regexp/regexp2.html#posix for details. |
| func CompilePOSIX(expr string) (*Regexp, error) { |
| return compile(expr, syntax.POSIX, true) |
| } |
| |
| // Longest makes future searches prefer the leftmost-longest match. |
| // That is, when matching against text, the regexp returns a match that |
| // begins as early as possible in the input (leftmost), and among those |
| // it chooses a match that is as long as possible. |
| // This method modifies the Regexp and may not be called concurrently |
| // with any other methods. |
| func (re *Regexp) Longest() { |
| re.longest = true |
| } |
| |
| func compile(expr string, mode syntax.Flags, longest bool) (*Regexp, error) { |
| re, err := syntax.Parse(expr, mode) |
| if err != nil { |
| return nil, err |
| } |
| maxCap := re.MaxCap() |
| capNames := re.CapNames() |
| |
| re = re.Simplify() |
| prog, err := syntax.Compile(re) |
| if err != nil { |
| return nil, err |
| } |
| matchcap := prog.NumCap |
| if matchcap < 2 { |
| matchcap = 2 |
| } |
| regexp := &Regexp{ |
| expr: expr, |
| prog: prog, |
| onepass: compileOnePass(prog), |
| numSubexp: maxCap, |
| subexpNames: capNames, |
| cond: prog.StartCond(), |
| longest: longest, |
| matchcap: matchcap, |
| minInputLen: minInputLen(re), |
| } |
| if regexp.onepass == nil { |
| regexp.prefix, regexp.prefixComplete = prog.Prefix() |
| regexp.maxBitStateLen = maxBitStateLen(prog) |
| } else { |
| regexp.prefix, regexp.prefixComplete, regexp.prefixEnd = onePassPrefix(prog) |
| } |
| if regexp.prefix != "" { |
| // TODO(rsc): Remove this allocation by adding |
| // IndexString to package bytes. |
| regexp.prefixBytes = []byte(regexp.prefix) |
| regexp.prefixRune, _ = utf8.DecodeRuneInString(regexp.prefix) |
| } |
| |
| n := len(prog.Inst) |
| i := 0 |
| for matchSize[i] != 0 && matchSize[i] < n { |
| i++ |
| } |
| regexp.mpool = i |
| |
| return regexp, nil |
| } |
| |
| // Pools of *machine for use during (*Regexp).doExecute, |
| // split up by the size of the execution queues. |
| // matchPool[i] machines have queue size matchSize[i]. |
| // On a 64-bit system each queue entry is 16 bytes, |
| // so matchPool[0] has 16*2*128 = 4kB queues, etc. |
| // The final matchPool is a catch-all for very large queues. |
| var ( |
| matchSize = [...]int{128, 512, 2048, 16384, 0} |
| matchPool [len(matchSize)]sync.Pool |
| ) |
| |
| // get returns a machine to use for matching re. |
| // It uses the re's machine cache if possible, to avoid |
| // unnecessary allocation. |
| func (re *Regexp) get() *machine { |
| m, ok := matchPool[re.mpool].Get().(*machine) |
| if !ok { |
| m = new(machine) |
| } |
| m.re = re |
| m.p = re.prog |
| if cap(m.matchcap) < re.matchcap { |
| m.matchcap = make([]int, re.matchcap) |
| for _, t := range m.pool { |
| t.cap = make([]int, re.matchcap) |
| } |
| } |
| |
| // Allocate queues if needed. |
| // Or reallocate, for "large" match pool. |
| n := matchSize[re.mpool] |
| if n == 0 { // large pool |
| n = len(re.prog.Inst) |
| } |
| if len(m.q0.sparse) < n { |
| m.q0 = queue{make([]uint32, n), make([]entry, 0, n)} |
| m.q1 = queue{make([]uint32, n), make([]entry, 0, n)} |
| } |
| return m |
| } |
| |
| // put returns a machine to the correct machine pool. |
| func (re *Regexp) put(m *machine) { |
| m.re = nil |
| m.p = nil |
| m.inputs.clear() |
| matchPool[re.mpool].Put(m) |
| } |
| |
| // minInputLen walks the regexp to find the minimum length of any matchable input |
| func minInputLen(re *syntax.Regexp) int { |
| switch re.Op { |
| default: |
| return 0 |
| case syntax.OpAnyChar, syntax.OpAnyCharNotNL, syntax.OpCharClass: |
| return 1 |
| case syntax.OpLiteral: |
| l := 0 |
| for _, r := range re.Rune { |
| l += utf8.RuneLen(r) |
| } |
| return l |
| case syntax.OpCapture, syntax.OpPlus: |
| return minInputLen(re.Sub[0]) |
| case syntax.OpRepeat: |
| return re.Min * minInputLen(re.Sub[0]) |
| case syntax.OpConcat: |
| l := 0 |
| for _, sub := range re.Sub { |
| l += minInputLen(sub) |
| } |
| return l |
| case syntax.OpAlternate: |
| l := minInputLen(re.Sub[0]) |
| var lnext int |
| for _, sub := range re.Sub[1:] { |
| lnext = minInputLen(sub) |
| if lnext < l { |
| l = lnext |
| } |
| } |
| return l |
| } |
| } |
| |
| // MustCompile is like Compile but panics if the expression cannot be parsed. |
| // It simplifies safe initialization of global variables holding compiled regular |
| // expressions. |
| func MustCompile(str string) *Regexp { |
| regexp, err := Compile(str) |
| if err != nil { |
| panic(`regexp: Compile(` + quote(str) + `): ` + err.Error()) |
| } |
| return regexp |
| } |
| |
| // MustCompilePOSIX is like CompilePOSIX but panics if the expression cannot be parsed. |
| // It simplifies safe initialization of global variables holding compiled regular |
| // expressions. |
| func MustCompilePOSIX(str string) *Regexp { |
| regexp, err := CompilePOSIX(str) |
| if err != nil { |
| panic(`regexp: CompilePOSIX(` + quote(str) + `): ` + err.Error()) |
| } |
| return regexp |
| } |
| |
| func quote(s string) string { |
| if strconv.CanBackquote(s) { |
| return "`" + s + "`" |
| } |
| return strconv.Quote(s) |
| } |
| |
| // NumSubexp returns the number of parenthesized subexpressions in this Regexp. |
| func (re *Regexp) NumSubexp() int { |
| return re.numSubexp |
| } |
| |
| // SubexpNames returns the names of the parenthesized subexpressions |
| // in this Regexp. The name for the first sub-expression is names[1], |
| // so that if m is a match slice, the name for m[i] is SubexpNames()[i]. |
| // Since the Regexp as a whole cannot be named, names[0] is always |
| // the empty string. The slice should not be modified. |
| func (re *Regexp) SubexpNames() []string { |
| return re.subexpNames |
| } |
| |
| // SubexpIndex returns the index of the first subexpression with the given name, |
| // or -1 if there is no subexpression with that name. |
| // |
| // Note that multiple subexpressions can be written using the same name, as in |
| // (?P<bob>a+)(?P<bob>b+), which declares two subexpressions named "bob". |
| // In this case, SubexpIndex returns the index of the leftmost such subexpression |
| // in the regular expression. |
| func (re *Regexp) SubexpIndex(name string) int { |
| if name != "" { |
| for i, s := range re.subexpNames { |
| if name == s { |
| return i |
| } |
| } |
| } |
| return -1 |
| } |
| |
| const endOfText rune = -1 |
| |
| // input abstracts different representations of the input text. It provides |
| // one-character lookahead. |
| type input interface { |
| step(pos int) (r rune, width int) // advance one rune |
| canCheckPrefix() bool // can we look ahead without losing info? |
| hasPrefix(re *Regexp) bool |
| index(re *Regexp, pos int) int |
| context(pos int) lazyFlag |
| } |
| |
| // inputString scans a string. |
| type inputString struct { |
| str string |
| } |
| |
| func (i *inputString) step(pos int) (rune, int) { |
| if pos < len(i.str) { |
| c := i.str[pos] |
| if c < utf8.RuneSelf { |
| return rune(c), 1 |
| } |
| return utf8.DecodeRuneInString(i.str[pos:]) |
| } |
| return endOfText, 0 |
| } |
| |
| func (i *inputString) canCheckPrefix() bool { |
| return true |
| } |
| |
| func (i *inputString) hasPrefix(re *Regexp) bool { |
| return strings.HasPrefix(i.str, re.prefix) |
| } |
| |
| func (i *inputString) index(re *Regexp, pos int) int { |
| return strings.Index(i.str[pos:], re.prefix) |
| } |
| |
| func (i *inputString) context(pos int) lazyFlag { |
| r1, r2 := endOfText, endOfText |
| // 0 < pos && pos <= len(i.str) |
| if uint(pos-1) < uint(len(i.str)) { |
| r1 = rune(i.str[pos-1]) |
| if r1 >= utf8.RuneSelf { |
| r1, _ = utf8.DecodeLastRuneInString(i.str[:pos]) |
| } |
| } |
| // 0 <= pos && pos < len(i.str) |
| if uint(pos) < uint(len(i.str)) { |
| r2 = rune(i.str[pos]) |
| if r2 >= utf8.RuneSelf { |
| r2, _ = utf8.DecodeRuneInString(i.str[pos:]) |
| } |
| } |
| return newLazyFlag(r1, r2) |
| } |
| |
| // inputBytes scans a byte slice. |
| type inputBytes struct { |
| str []byte |
| } |
| |
| func (i *inputBytes) step(pos int) (rune, int) { |
| if pos < len(i.str) { |
| c := i.str[pos] |
| if c < utf8.RuneSelf { |
| return rune(c), 1 |
| } |
| return utf8.DecodeRune(i.str[pos:]) |
| } |
| return endOfText, 0 |
| } |
| |
| func (i *inputBytes) canCheckPrefix() bool { |
| return true |
| } |
| |
| func (i *inputBytes) hasPrefix(re *Regexp) bool { |
| return bytes.HasPrefix(i.str, re.prefixBytes) |
| } |
| |
| func (i *inputBytes) index(re *Regexp, pos int) int { |
| return bytes.Index(i.str[pos:], re.prefixBytes) |
| } |
| |
| func (i *inputBytes) context(pos int) lazyFlag { |
| r1, r2 := endOfText, endOfText |
| // 0 < pos && pos <= len(i.str) |
| if uint(pos-1) < uint(len(i.str)) { |
| r1 = rune(i.str[pos-1]) |
| if r1 >= utf8.RuneSelf { |
| r1, _ = utf8.DecodeLastRune(i.str[:pos]) |
| } |
| } |
| // 0 <= pos && pos < len(i.str) |
| if uint(pos) < uint(len(i.str)) { |
| r2 = rune(i.str[pos]) |
| if r2 >= utf8.RuneSelf { |
| r2, _ = utf8.DecodeRune(i.str[pos:]) |
| } |
| } |
| return newLazyFlag(r1, r2) |
| } |
| |
| // inputReader scans a RuneReader. |
| type inputReader struct { |
| r io.RuneReader |
| atEOT bool |
| pos int |
| } |
| |
| func (i *inputReader) step(pos int) (rune, int) { |
| if !i.atEOT && pos != i.pos { |
| return endOfText, 0 |
| |
| } |
| r, w, err := i.r.ReadRune() |
| if err != nil { |
| i.atEOT = true |
| return endOfText, 0 |
| } |
| i.pos += w |
| return r, w |
| } |
| |
| func (i *inputReader) canCheckPrefix() bool { |
| return false |
| } |
| |
| func (i *inputReader) hasPrefix(re *Regexp) bool { |
| return false |
| } |
| |
| func (i *inputReader) index(re *Regexp, pos int) int { |
| return -1 |
| } |
| |
| func (i *inputReader) context(pos int) lazyFlag { |
| return 0 // not used |
| } |
| |
| // LiteralPrefix returns a literal string that must begin any match |
| // of the regular expression re. It returns the boolean true if the |
| // literal string comprises the entire regular expression. |
| func (re *Regexp) LiteralPrefix() (prefix string, complete bool) { |
| return re.prefix, re.prefixComplete |
| } |
| |
| // MatchReader reports whether the text returned by the RuneReader |
| // contains any match of the regular expression re. |
| func (re *Regexp) MatchReader(r io.RuneReader) bool { |
| return re.doMatch(r, nil, "") |
| } |
| |
| // MatchString reports whether the string s |
| // contains any match of the regular expression re. |
| func (re *Regexp) MatchString(s string) bool { |
| return re.doMatch(nil, nil, s) |
| } |
| |
| // Match reports whether the byte slice b |
| // contains any match of the regular expression re. |
| func (re *Regexp) Match(b []byte) bool { |
| return re.doMatch(nil, b, "") |
| } |
| |
| // MatchReader reports whether the text returned by the RuneReader |
| // contains any match of the regular expression pattern. |
| // More complicated queries need to use Compile and the full Regexp interface. |
| func MatchReader(pattern string, r io.RuneReader) (matched bool, err error) { |
| re, err := Compile(pattern) |
| if err != nil { |
| return false, err |
| } |
| return re.MatchReader(r), nil |
| } |
| |
| // MatchString reports whether the string s |
| // contains any match of the regular expression pattern. |
| // More complicated queries need to use Compile and the full Regexp interface. |
| func MatchString(pattern string, s string) (matched bool, err error) { |
| re, err := Compile(pattern) |
| if err != nil { |
| return false, err |
| } |
| return re.MatchString(s), nil |
| } |
| |
| // Match reports whether the byte slice b |
| // contains any match of the regular expression pattern. |
| // More complicated queries need to use Compile and the full Regexp interface. |
| func Match(pattern string, b []byte) (matched bool, err error) { |
| re, err := Compile(pattern) |
| if err != nil { |
| return false, err |
| } |
| return re.Match(b), nil |
| } |
| |
| // ReplaceAllString returns a copy of src, replacing matches of the Regexp |
| // with the replacement string repl. Inside repl, $ signs are interpreted as |
| // in Expand, so for instance $1 represents the text of the first submatch. |
| func (re *Regexp) ReplaceAllString(src, repl string) string { |
| n := 2 |
| if strings.Contains(repl, "$") { |
| n = 2 * (re.numSubexp + 1) |
| } |
| b := re.replaceAll(nil, src, n, func(dst []byte, match []int) []byte { |
| return re.expand(dst, repl, nil, src, match) |
| }) |
| return string(b) |
| } |
| |
| // ReplaceAllLiteralString returns a copy of src, replacing matches of the Regexp |
| // with the replacement string repl. The replacement repl is substituted directly, |
| // without using Expand. |
| func (re *Regexp) ReplaceAllLiteralString(src, repl string) string { |
| return string(re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte { |
| return append(dst, repl...) |
| })) |
| } |
| |
| // ReplaceAllStringFunc returns a copy of src in which all matches of the |
| // Regexp have been replaced by the return value of function repl applied |
| // to the matched substring. The replacement returned by repl is substituted |
| // directly, without using Expand. |
| func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string { |
| b := re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte { |
| return append(dst, repl(src[match[0]:match[1]])...) |
| }) |
| return string(b) |
| } |
| |
| func (re *Regexp) replaceAll(bsrc []byte, src string, nmatch int, repl func(dst []byte, m []int) []byte) []byte { |
| lastMatchEnd := 0 // end position of the most recent match |
| searchPos := 0 // position where we next look for a match |
| var buf []byte |
| var endPos int |
| if bsrc != nil { |
| endPos = len(bsrc) |
| } else { |
| endPos = len(src) |
| } |
| if nmatch > re.prog.NumCap { |
| nmatch = re.prog.NumCap |
| } |
| |
| var dstCap [2]int |
| for searchPos <= endPos { |
| a := re.doExecute(nil, bsrc, src, searchPos, nmatch, dstCap[:0]) |
| if len(a) == 0 { |
| break // no more matches |
| } |
| |
| // Copy the unmatched characters before this match. |
| if bsrc != nil { |
| buf = append(buf, bsrc[lastMatchEnd:a[0]]...) |
| } else { |
| buf = append(buf, src[lastMatchEnd:a[0]]...) |
| } |
| |
| // Now insert a copy of the replacement string, but not for a |
| // match of the empty string immediately after another match. |
| // (Otherwise, we get double replacement for patterns that |
| // match both empty and nonempty strings.) |
| if a[1] > lastMatchEnd || a[0] == 0 { |
| buf = repl(buf, a) |
| } |
| lastMatchEnd = a[1] |
| |
| // Advance past this match; always advance at least one character. |
| var width int |
| if bsrc != nil { |
| _, width = utf8.DecodeRune(bsrc[searchPos:]) |
| } else { |
| _, width = utf8.DecodeRuneInString(src[searchPos:]) |
| } |
| if searchPos+width > a[1] { |
| searchPos += width |
| } else if searchPos+1 > a[1] { |
| // This clause is only needed at the end of the input |
| // string. In that case, DecodeRuneInString returns width=0. |
| searchPos++ |
| } else { |
| searchPos = a[1] |
| } |
| } |
| |
| // Copy the unmatched characters after the last match. |
| if bsrc != nil { |
| buf = append(buf, bsrc[lastMatchEnd:]...) |
| } else { |
| buf = append(buf, src[lastMatchEnd:]...) |
| } |
| |
| return buf |
| } |
| |
| // ReplaceAll returns a copy of src, replacing matches of the Regexp |
| // with the replacement text repl. Inside repl, $ signs are interpreted as |
| // in Expand, so for instance $1 represents the text of the first submatch. |
| func (re *Regexp) ReplaceAll(src, repl []byte) []byte { |
| n := 2 |
| if bytes.IndexByte(repl, '$') >= 0 { |
| n = 2 * (re.numSubexp + 1) |
| } |
| srepl := "" |
| b := re.replaceAll(src, "", n, func(dst []byte, match []int) []byte { |
| if len(srepl) != len(repl) { |
| srepl = string(repl) |
| } |
| return re.expand(dst, srepl, src, "", match) |
| }) |
| return b |
| } |
| |
| // ReplaceAllLiteral returns a copy of src, replacing matches of the Regexp |
| // with the replacement bytes repl. The replacement repl is substituted directly, |
| // without using Expand. |
| func (re *Regexp) ReplaceAllLiteral(src, repl []byte) []byte { |
| return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte { |
| return append(dst, repl...) |
| }) |
| } |
| |
| // ReplaceAllFunc returns a copy of src in which all matches of the |
| // Regexp have been replaced by the return value of function repl applied |
| // to the matched byte slice. The replacement returned by repl is substituted |
| // directly, without using Expand. |
| func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte { |
| return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte { |
| return append(dst, repl(src[match[0]:match[1]])...) |
| }) |
| } |
| |
| // Bitmap used by func special to check whether a character needs to be escaped. |
| var specialBytes [16]byte |
| |
| // special reports whether byte b needs to be escaped by QuoteMeta. |
| func special(b byte) bool { |
| return b < utf8.RuneSelf && specialBytes[b%16]&(1<<(b/16)) != 0 |
| } |
| |
| func init() { |
| for _, b := range []byte(`\.+*?()|[]{}^$`) { |
| specialBytes[b%16] |= 1 << (b / 16) |
| } |
| } |
| |
| // QuoteMeta returns a string that escapes all regular expression metacharacters |
| // inside the argument text; the returned string is a regular expression matching |
| // the literal text. |
| func QuoteMeta(s string) string { |
| // A byte loop is correct because all metacharacters are ASCII. |
| var i int |
| for i = 0; i < len(s); i++ { |
| if special(s[i]) { |
| break |
| } |
| } |
| // No meta characters found, so return original string. |
| if i >= len(s) { |
| return s |
| } |
| |
| b := make([]byte, 2*len(s)-i) |
| copy(b, s[:i]) |
| j := i |
| for ; i < len(s); i++ { |
| if special(s[i]) { |
| b[j] = '\\' |
| j++ |
| } |
| b[j] = s[i] |
| j++ |
| } |
| return string(b[:j]) |
| } |
| |
| // The number of capture values in the program may correspond |
| // to fewer capturing expressions than are in the regexp. |
| // For example, "(a){0}" turns into an empty program, so the |
| // maximum capture in the program is 0 but we need to return |
| // an expression for \1. Pad appends -1s to the slice a as needed. |
| func (re *Regexp) pad(a []int) []int { |
| if a == nil { |
| // No match. |
| return nil |
| } |
| n := (1 + re.numSubexp) * 2 |
| for len(a) < n { |
| a = append(a, -1) |
| } |
| return a |
| } |
| |
| // allMatches calls deliver at most n times |
| // with the location of successive matches in the input text. |
| // The input text is b if non-nil, otherwise s. |
| func (re *Regexp) allMatches(s string, b []byte, n int, deliver func([]int)) { |
| var end int |
| if b == nil { |
| end = len(s) |
| } else { |
| end = len(b) |
| } |
| |
| for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; { |
| matches := re.doExecute(nil, b, s, pos, re.prog.NumCap, nil) |
| if len(matches) == 0 { |
| break |
| } |
| |
| accept := true |
| if matches[1] == pos { |
| // We've found an empty match. |
| if matches[0] == prevMatchEnd { |
| // We don't allow an empty match right |
| // after a previous match, so ignore it. |
| accept = false |
| } |
| var width int |
| // TODO: use step() |
| if b == nil { |
| _, width = utf8.DecodeRuneInString(s[pos:end]) |
| } else { |
| _, width = utf8.DecodeRune(b[pos:end]) |
| } |
| if width > 0 { |
| pos += width |
| } else { |
| pos = end + 1 |
| } |
| } else { |
| pos = matches[1] |
| } |
| prevMatchEnd = matches[1] |
| |
| if accept { |
| deliver(re.pad(matches)) |
| i++ |
| } |
| } |
| } |
| |
| // Find returns a slice holding the text of the leftmost match in b of the regular expression. |
| // A return value of nil indicates no match. |
| func (re *Regexp) Find(b []byte) []byte { |
| var dstCap [2]int |
| a := re.doExecute(nil, b, "", 0, 2, dstCap[:0]) |
| if a == nil { |
| return nil |
| } |
| return b[a[0]:a[1]:a[1]] |
| } |
| |
| // FindIndex returns a two-element slice of integers defining the location of |
| // the leftmost match in b of the regular expression. The match itself is at |
| // b[loc[0]:loc[1]]. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindIndex(b []byte) (loc []int) { |
| a := re.doExecute(nil, b, "", 0, 2, nil) |
| if a == nil { |
| return nil |
| } |
| return a[0:2] |
| } |
| |
| // FindString returns a string holding the text of the leftmost match in s of the regular |
| // expression. If there is no match, the return value is an empty string, |
| // but it will also be empty if the regular expression successfully matches |
| // an empty string. Use FindStringIndex or FindStringSubmatch if it is |
| // necessary to distinguish these cases. |
| func (re *Regexp) FindString(s string) string { |
| var dstCap [2]int |
| a := re.doExecute(nil, nil, s, 0, 2, dstCap[:0]) |
| if a == nil { |
| return "" |
| } |
| return s[a[0]:a[1]] |
| } |
| |
| // FindStringIndex returns a two-element slice of integers defining the |
| // location of the leftmost match in s of the regular expression. The match |
| // itself is at s[loc[0]:loc[1]]. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindStringIndex(s string) (loc []int) { |
| a := re.doExecute(nil, nil, s, 0, 2, nil) |
| if a == nil { |
| return nil |
| } |
| return a[0:2] |
| } |
| |
| // FindReaderIndex returns a two-element slice of integers defining the |
| // location of the leftmost match of the regular expression in text read from |
| // the RuneReader. The match text was found in the input stream at |
| // byte offset loc[0] through loc[1]-1. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindReaderIndex(r io.RuneReader) (loc []int) { |
| a := re.doExecute(r, nil, "", 0, 2, nil) |
| if a == nil { |
| return nil |
| } |
| return a[0:2] |
| } |
| |
| // FindSubmatch returns a slice of slices holding the text of the leftmost |
| // match of the regular expression in b and the matches, if any, of its |
| // subexpressions, as defined by the 'Submatch' descriptions in the package |
| // comment. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindSubmatch(b []byte) [][]byte { |
| var dstCap [4]int |
| a := re.doExecute(nil, b, "", 0, re.prog.NumCap, dstCap[:0]) |
| if a == nil { |
| return nil |
| } |
| ret := make([][]byte, 1+re.numSubexp) |
| for i := range ret { |
| if 2*i < len(a) && a[2*i] >= 0 { |
| ret[i] = b[a[2*i]:a[2*i+1]:a[2*i+1]] |
| } |
| } |
| return ret |
| } |
| |
| // Expand appends template to dst and returns the result; during the |
| // append, Expand replaces variables in the template with corresponding |
| // matches drawn from src. The match slice should have been returned by |
| // FindSubmatchIndex. |
| // |
| // In the template, a variable is denoted by a substring of the form |
| // $name or ${name}, where name is a non-empty sequence of letters, |
| // digits, and underscores. A purely numeric name like $1 refers to |
| // the submatch with the corresponding index; other names refer to |
| // capturing parentheses named with the (?P<name>...) syntax. A |
| // reference to an out of range or unmatched index or a name that is not |
| // present in the regular expression is replaced with an empty slice. |
| // |
| // In the $name form, name is taken to be as long as possible: $1x is |
| // equivalent to ${1x}, not ${1}x, and, $10 is equivalent to ${10}, not ${1}0. |
| // |
| // To insert a literal $ in the output, use $$ in the template. |
| func (re *Regexp) Expand(dst []byte, template []byte, src []byte, match []int) []byte { |
| return re.expand(dst, string(template), src, "", match) |
| } |
| |
| // ExpandString is like Expand but the template and source are strings. |
| // It appends to and returns a byte slice in order to give the calling |
| // code control over allocation. |
| func (re *Regexp) ExpandString(dst []byte, template string, src string, match []int) []byte { |
| return re.expand(dst, template, nil, src, match) |
| } |
| |
| func (re *Regexp) expand(dst []byte, template string, bsrc []byte, src string, match []int) []byte { |
| for len(template) > 0 { |
| i := strings.Index(template, "$") |
| if i < 0 { |
| break |
| } |
| dst = append(dst, template[:i]...) |
| template = template[i:] |
| if len(template) > 1 && template[1] == '$' { |
| // Treat $$ as $. |
| dst = append(dst, '$') |
| template = template[2:] |
| continue |
| } |
| name, num, rest, ok := extract(template) |
| if !ok { |
| // Malformed; treat $ as raw text. |
| dst = append(dst, '$') |
| template = template[1:] |
| continue |
| } |
| template = rest |
| if num >= 0 { |
| if 2*num+1 < len(match) && match[2*num] >= 0 { |
| if bsrc != nil { |
| dst = append(dst, bsrc[match[2*num]:match[2*num+1]]...) |
| } else { |
| dst = append(dst, src[match[2*num]:match[2*num+1]]...) |
| } |
| } |
| } else { |
| for i, namei := range re.subexpNames { |
| if name == namei && 2*i+1 < len(match) && match[2*i] >= 0 { |
| if bsrc != nil { |
| dst = append(dst, bsrc[match[2*i]:match[2*i+1]]...) |
| } else { |
| dst = append(dst, src[match[2*i]:match[2*i+1]]...) |
| } |
| break |
| } |
| } |
| } |
| } |
| dst = append(dst, template...) |
| return dst |
| } |
| |
| // extract returns the name from a leading "$name" or "${name}" in str. |
| // If it is a number, extract returns num set to that number; otherwise num = -1. |
| func extract(str string) (name string, num int, rest string, ok bool) { |
| if len(str) < 2 || str[0] != '$' { |
| return |
| } |
| brace := false |
| if str[1] == '{' { |
| brace = true |
| str = str[2:] |
| } else { |
| str = str[1:] |
| } |
| i := 0 |
| for i < len(str) { |
| rune, size := utf8.DecodeRuneInString(str[i:]) |
| if !unicode.IsLetter(rune) && !unicode.IsDigit(rune) && rune != '_' { |
| break |
| } |
| i += size |
| } |
| if i == 0 { |
| // empty name is not okay |
| return |
| } |
| name = str[:i] |
| if brace { |
| if i >= len(str) || str[i] != '}' { |
| // missing closing brace |
| return |
| } |
| i++ |
| } |
| |
| // Parse number. |
| num = 0 |
| for i := 0; i < len(name); i++ { |
| if name[i] < '0' || '9' < name[i] || num >= 1e8 { |
| num = -1 |
| break |
| } |
| num = num*10 + int(name[i]) - '0' |
| } |
| // Disallow leading zeros. |
| if name[0] == '0' && len(name) > 1 { |
| num = -1 |
| } |
| |
| rest = str[i:] |
| ok = true |
| return |
| } |
| |
| // FindSubmatchIndex returns a slice holding the index pairs identifying the |
| // leftmost match of the regular expression in b and the matches, if any, of |
| // its subexpressions, as defined by the 'Submatch' and 'Index' descriptions |
| // in the package comment. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindSubmatchIndex(b []byte) []int { |
| return re.pad(re.doExecute(nil, b, "", 0, re.prog.NumCap, nil)) |
| } |
| |
| // FindStringSubmatch returns a slice of strings holding the text of the |
| // leftmost match of the regular expression in s and the matches, if any, of |
| // its subexpressions, as defined by the 'Submatch' description in the |
| // package comment. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindStringSubmatch(s string) []string { |
| var dstCap [4]int |
| a := re.doExecute(nil, nil, s, 0, re.prog.NumCap, dstCap[:0]) |
| if a == nil { |
| return nil |
| } |
| ret := make([]string, 1+re.numSubexp) |
| for i := range ret { |
| if 2*i < len(a) && a[2*i] >= 0 { |
| ret[i] = s[a[2*i]:a[2*i+1]] |
| } |
| } |
| return ret |
| } |
| |
| // FindStringSubmatchIndex returns a slice holding the index pairs |
| // identifying the leftmost match of the regular expression in s and the |
| // matches, if any, of its subexpressions, as defined by the 'Submatch' and |
| // 'Index' descriptions in the package comment. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindStringSubmatchIndex(s string) []int { |
| return re.pad(re.doExecute(nil, nil, s, 0, re.prog.NumCap, nil)) |
| } |
| |
| // FindReaderSubmatchIndex returns a slice holding the index pairs |
| // identifying the leftmost match of the regular expression of text read by |
| // the RuneReader, and the matches, if any, of its subexpressions, as defined |
| // by the 'Submatch' and 'Index' descriptions in the package comment. A |
| // return value of nil indicates no match. |
| func (re *Regexp) FindReaderSubmatchIndex(r io.RuneReader) []int { |
| return re.pad(re.doExecute(r, nil, "", 0, re.prog.NumCap, nil)) |
| } |
| |
| const startSize = 10 // The size at which to start a slice in the 'All' routines. |
| |
| // FindAll is the 'All' version of Find; it returns a slice of all successive |
| // matches of the expression, as defined by the 'All' description in the |
| // package comment. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindAll(b []byte, n int) [][]byte { |
| if n < 0 { |
| n = len(b) + 1 |
| } |
| var result [][]byte |
| re.allMatches("", b, n, func(match []int) { |
| if result == nil { |
| result = make([][]byte, 0, startSize) |
| } |
| result = append(result, b[match[0]:match[1]:match[1]]) |
| }) |
| return result |
| } |
| |
| // FindAllIndex is the 'All' version of FindIndex; it returns a slice of all |
| // successive matches of the expression, as defined by the 'All' description |
| // in the package comment. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindAllIndex(b []byte, n int) [][]int { |
| if n < 0 { |
| n = len(b) + 1 |
| } |
| var result [][]int |
| re.allMatches("", b, n, func(match []int) { |
| if result == nil { |
| result = make([][]int, 0, startSize) |
| } |
| result = append(result, match[0:2]) |
| }) |
| return result |
| } |
| |
| // FindAllString is the 'All' version of FindString; it returns a slice of all |
| // successive matches of the expression, as defined by the 'All' description |
| // in the package comment. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindAllString(s string, n int) []string { |
| if n < 0 { |
| n = len(s) + 1 |
| } |
| var result []string |
| re.allMatches(s, nil, n, func(match []int) { |
| if result == nil { |
| result = make([]string, 0, startSize) |
| } |
| result = append(result, s[match[0]:match[1]]) |
| }) |
| return result |
| } |
| |
| // FindAllStringIndex is the 'All' version of FindStringIndex; it returns a |
| // slice of all successive matches of the expression, as defined by the 'All' |
| // description in the package comment. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindAllStringIndex(s string, n int) [][]int { |
| if n < 0 { |
| n = len(s) + 1 |
| } |
| var result [][]int |
| re.allMatches(s, nil, n, func(match []int) { |
| if result == nil { |
| result = make([][]int, 0, startSize) |
| } |
| result = append(result, match[0:2]) |
| }) |
| return result |
| } |
| |
| // FindAllSubmatch is the 'All' version of FindSubmatch; it returns a slice |
| // of all successive matches of the expression, as defined by the 'All' |
| // description in the package comment. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindAllSubmatch(b []byte, n int) [][][]byte { |
| if n < 0 { |
| n = len(b) + 1 |
| } |
| var result [][][]byte |
| re.allMatches("", b, n, func(match []int) { |
| if result == nil { |
| result = make([][][]byte, 0, startSize) |
| } |
| slice := make([][]byte, len(match)/2) |
| for j := range slice { |
| if match[2*j] >= 0 { |
| slice[j] = b[match[2*j]:match[2*j+1]:match[2*j+1]] |
| } |
| } |
| result = append(result, slice) |
| }) |
| return result |
| } |
| |
| // FindAllSubmatchIndex is the 'All' version of FindSubmatchIndex; it returns |
| // a slice of all successive matches of the expression, as defined by the |
| // 'All' description in the package comment. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindAllSubmatchIndex(b []byte, n int) [][]int { |
| if n < 0 { |
| n = len(b) + 1 |
| } |
| var result [][]int |
| re.allMatches("", b, n, func(match []int) { |
| if result == nil { |
| result = make([][]int, 0, startSize) |
| } |
| result = append(result, match) |
| }) |
| return result |
| } |
| |
| // FindAllStringSubmatch is the 'All' version of FindStringSubmatch; it |
| // returns a slice of all successive matches of the expression, as defined by |
| // the 'All' description in the package comment. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindAllStringSubmatch(s string, n int) [][]string { |
| if n < 0 { |
| n = len(s) + 1 |
| } |
| var result [][]string |
| re.allMatches(s, nil, n, func(match []int) { |
| if result == nil { |
| result = make([][]string, 0, startSize) |
| } |
| slice := make([]string, len(match)/2) |
| for j := range slice { |
| if match[2*j] >= 0 { |
| slice[j] = s[match[2*j]:match[2*j+1]] |
| } |
| } |
| result = append(result, slice) |
| }) |
| return result |
| } |
| |
| // FindAllStringSubmatchIndex is the 'All' version of |
| // FindStringSubmatchIndex; it returns a slice of all successive matches of |
| // the expression, as defined by the 'All' description in the package |
| // comment. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindAllStringSubmatchIndex(s string, n int) [][]int { |
| if n < 0 { |
| n = len(s) + 1 |
| } |
| var result [][]int |
| re.allMatches(s, nil, n, func(match []int) { |
| if result == nil { |
| result = make([][]int, 0, startSize) |
| } |
| result = append(result, match) |
| }) |
| return result |
| } |
| |
| // Split slices s into substrings separated by the expression and returns a slice of |
| // the substrings between those expression matches. |
| // |
| // The slice returned by this method consists of all the substrings of s |
| // not contained in the slice returned by FindAllString. When called on an expression |
| // that contains no metacharacters, it is equivalent to strings.SplitN. |
| // |
| // Example: |
| // s := regexp.MustCompile("a*").Split("abaabaccadaaae", 5) |
| // // s: ["", "b", "b", "c", "cadaaae"] |
| // |
| // The count determines the number of substrings to return: |
| // n > 0: at most n substrings; the last substring will be the unsplit remainder. |
| // n == 0: the result is nil (zero substrings) |
| // n < 0: all substrings |
| func (re *Regexp) Split(s string, n int) []string { |
| |
| if n == 0 { |
| return nil |
| } |
| |
| if len(re.expr) > 0 && len(s) == 0 { |
| return []string{""} |
| } |
| |
| matches := re.FindAllStringIndex(s, n) |
| strings := make([]string, 0, len(matches)) |
| |
| beg := 0 |
| end := 0 |
| for _, match := range matches { |
| if n > 0 && len(strings) >= n-1 { |
| break |
| } |
| |
| end = match[0] |
| if match[1] != 0 { |
| strings = append(strings, s[beg:end]) |
| } |
| beg = match[1] |
| } |
| |
| if end != len(s) { |
| strings = append(strings, s[beg:]) |
| } |
| |
| return strings |
| } |