|  | // Copyright 2011 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package jpeg | 
|  |  | 
|  | import ( | 
|  | "bytes" | 
|  | "fmt" | 
|  | "image" | 
|  | "image/color" | 
|  | "image/png" | 
|  | "io/ioutil" | 
|  | "math/rand" | 
|  | "os" | 
|  | "testing" | 
|  | ) | 
|  |  | 
|  | // zigzag maps from the natural ordering to the zig-zag ordering. For example, | 
|  | // zigzag[0*8 + 3] is the zig-zag sequence number of the element in the fourth | 
|  | // column and first row. | 
|  | var zigzag = [blockSize]int{ | 
|  | 0, 1, 5, 6, 14, 15, 27, 28, | 
|  | 2, 4, 7, 13, 16, 26, 29, 42, | 
|  | 3, 8, 12, 17, 25, 30, 41, 43, | 
|  | 9, 11, 18, 24, 31, 40, 44, 53, | 
|  | 10, 19, 23, 32, 39, 45, 52, 54, | 
|  | 20, 22, 33, 38, 46, 51, 55, 60, | 
|  | 21, 34, 37, 47, 50, 56, 59, 61, | 
|  | 35, 36, 48, 49, 57, 58, 62, 63, | 
|  | } | 
|  |  | 
|  | func TestZigUnzig(t *testing.T) { | 
|  | for i := 0; i < blockSize; i++ { | 
|  | if unzig[zigzag[i]] != i { | 
|  | t.Errorf("unzig[zigzag[%d]] == %d", i, unzig[zigzag[i]]) | 
|  | } | 
|  | if zigzag[unzig[i]] != i { | 
|  | t.Errorf("zigzag[unzig[%d]] == %d", i, zigzag[unzig[i]]) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // unscaledQuantInNaturalOrder are the unscaled quantization tables in | 
|  | // natural (not zig-zag) order, as specified in section K.1. | 
|  | var unscaledQuantInNaturalOrder = [nQuantIndex][blockSize]byte{ | 
|  | // Luminance. | 
|  | { | 
|  | 16, 11, 10, 16, 24, 40, 51, 61, | 
|  | 12, 12, 14, 19, 26, 58, 60, 55, | 
|  | 14, 13, 16, 24, 40, 57, 69, 56, | 
|  | 14, 17, 22, 29, 51, 87, 80, 62, | 
|  | 18, 22, 37, 56, 68, 109, 103, 77, | 
|  | 24, 35, 55, 64, 81, 104, 113, 92, | 
|  | 49, 64, 78, 87, 103, 121, 120, 101, | 
|  | 72, 92, 95, 98, 112, 100, 103, 99, | 
|  | }, | 
|  | // Chrominance. | 
|  | { | 
|  | 17, 18, 24, 47, 99, 99, 99, 99, | 
|  | 18, 21, 26, 66, 99, 99, 99, 99, | 
|  | 24, 26, 56, 99, 99, 99, 99, 99, | 
|  | 47, 66, 99, 99, 99, 99, 99, 99, | 
|  | 99, 99, 99, 99, 99, 99, 99, 99, | 
|  | 99, 99, 99, 99, 99, 99, 99, 99, | 
|  | 99, 99, 99, 99, 99, 99, 99, 99, | 
|  | 99, 99, 99, 99, 99, 99, 99, 99, | 
|  | }, | 
|  | } | 
|  |  | 
|  | func TestUnscaledQuant(t *testing.T) { | 
|  | bad := false | 
|  | for i := quantIndex(0); i < nQuantIndex; i++ { | 
|  | for zig := 0; zig < blockSize; zig++ { | 
|  | got := unscaledQuant[i][zig] | 
|  | want := unscaledQuantInNaturalOrder[i][unzig[zig]] | 
|  | if got != want { | 
|  | t.Errorf("i=%d, zig=%d: got %d, want %d", i, zig, got, want) | 
|  | bad = true | 
|  | } | 
|  | } | 
|  | } | 
|  | if bad { | 
|  | names := [nQuantIndex]string{"Luminance", "Chrominance"} | 
|  | buf := &bytes.Buffer{} | 
|  | for i, name := range names { | 
|  | fmt.Fprintf(buf, "// %s.\n{\n", name) | 
|  | for zig := 0; zig < blockSize; zig++ { | 
|  | fmt.Fprintf(buf, "%d, ", unscaledQuantInNaturalOrder[i][unzig[zig]]) | 
|  | if zig%8 == 7 { | 
|  | buf.WriteString("\n") | 
|  | } | 
|  | } | 
|  | buf.WriteString("},\n") | 
|  | } | 
|  | t.Logf("expected unscaledQuant values:\n%s", buf.String()) | 
|  | } | 
|  | } | 
|  |  | 
|  | var testCase = []struct { | 
|  | filename  string | 
|  | quality   int | 
|  | tolerance int64 | 
|  | }{ | 
|  | {"../testdata/video-001.png", 1, 24 << 8}, | 
|  | {"../testdata/video-001.png", 20, 12 << 8}, | 
|  | {"../testdata/video-001.png", 60, 8 << 8}, | 
|  | {"../testdata/video-001.png", 80, 6 << 8}, | 
|  | {"../testdata/video-001.png", 90, 4 << 8}, | 
|  | {"../testdata/video-001.png", 100, 2 << 8}, | 
|  | } | 
|  |  | 
|  | func delta(u0, u1 uint32) int64 { | 
|  | d := int64(u0) - int64(u1) | 
|  | if d < 0 { | 
|  | return -d | 
|  | } | 
|  | return d | 
|  | } | 
|  |  | 
|  | func readPng(filename string) (image.Image, error) { | 
|  | f, err := os.Open(filename) | 
|  | if err != nil { | 
|  | return nil, err | 
|  | } | 
|  | defer f.Close() | 
|  | return png.Decode(f) | 
|  | } | 
|  |  | 
|  | func TestWriter(t *testing.T) { | 
|  | for _, tc := range testCase { | 
|  | // Read the image. | 
|  | m0, err := readPng(tc.filename) | 
|  | if err != nil { | 
|  | t.Error(tc.filename, err) | 
|  | continue | 
|  | } | 
|  | // Encode that image as JPEG. | 
|  | var buf bytes.Buffer | 
|  | err = Encode(&buf, m0, &Options{Quality: tc.quality}) | 
|  | if err != nil { | 
|  | t.Error(tc.filename, err) | 
|  | continue | 
|  | } | 
|  | // Decode that JPEG. | 
|  | m1, err := Decode(&buf) | 
|  | if err != nil { | 
|  | t.Error(tc.filename, err) | 
|  | continue | 
|  | } | 
|  | if m0.Bounds() != m1.Bounds() { | 
|  | t.Errorf("%s, bounds differ: %v and %v", tc.filename, m0.Bounds(), m1.Bounds()) | 
|  | continue | 
|  | } | 
|  | // Compare the average delta to the tolerance level. | 
|  | if averageDelta(m0, m1) > tc.tolerance { | 
|  | t.Errorf("%s, quality=%d: average delta is too high", tc.filename, tc.quality) | 
|  | continue | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // TestWriteGrayscale tests that a grayscale images survives a round-trip | 
|  | // through encode/decode cycle. | 
|  | func TestWriteGrayscale(t *testing.T) { | 
|  | m0 := image.NewGray(image.Rect(0, 0, 32, 32)) | 
|  | for i := range m0.Pix { | 
|  | m0.Pix[i] = uint8(i) | 
|  | } | 
|  | var buf bytes.Buffer | 
|  | if err := Encode(&buf, m0, nil); err != nil { | 
|  | t.Fatal(err) | 
|  | } | 
|  | m1, err := Decode(&buf) | 
|  | if err != nil { | 
|  | t.Fatal(err) | 
|  | } | 
|  | if m0.Bounds() != m1.Bounds() { | 
|  | t.Fatalf("bounds differ: %v and %v", m0.Bounds(), m1.Bounds()) | 
|  | } | 
|  | if _, ok := m1.(*image.Gray); !ok { | 
|  | t.Errorf("got %T, want *image.Gray", m1) | 
|  | } | 
|  | // Compare the average delta to the tolerance level. | 
|  | want := int64(2 << 8) | 
|  | if got := averageDelta(m0, m1); got > want { | 
|  | t.Errorf("average delta too high; got %d, want <= %d", got, want) | 
|  | } | 
|  | } | 
|  |  | 
|  | // averageDelta returns the average delta in RGB space. The two images must | 
|  | // have the same bounds. | 
|  | func averageDelta(m0, m1 image.Image) int64 { | 
|  | b := m0.Bounds() | 
|  | var sum, n int64 | 
|  | for y := b.Min.Y; y < b.Max.Y; y++ { | 
|  | for x := b.Min.X; x < b.Max.X; x++ { | 
|  | c0 := m0.At(x, y) | 
|  | c1 := m1.At(x, y) | 
|  | r0, g0, b0, _ := c0.RGBA() | 
|  | r1, g1, b1, _ := c1.RGBA() | 
|  | sum += delta(r0, r1) | 
|  | sum += delta(g0, g1) | 
|  | sum += delta(b0, b1) | 
|  | n += 3 | 
|  | } | 
|  | } | 
|  | return sum / n | 
|  | } | 
|  |  | 
|  | func TestEncodeYCbCr(t *testing.T) { | 
|  | bo := image.Rect(0, 0, 640, 480) | 
|  | imgRGBA := image.NewRGBA(bo) | 
|  | // Must use 444 subsampling to avoid lossy RGBA to YCbCr conversion. | 
|  | imgYCbCr := image.NewYCbCr(bo, image.YCbCrSubsampleRatio444) | 
|  | rnd := rand.New(rand.NewSource(123)) | 
|  | // Create identical rgba and ycbcr images. | 
|  | for y := bo.Min.Y; y < bo.Max.Y; y++ { | 
|  | for x := bo.Min.X; x < bo.Max.X; x++ { | 
|  | col := color.RGBA{ | 
|  | uint8(rnd.Intn(256)), | 
|  | uint8(rnd.Intn(256)), | 
|  | uint8(rnd.Intn(256)), | 
|  | 255, | 
|  | } | 
|  | imgRGBA.SetRGBA(x, y, col) | 
|  | yo := imgYCbCr.YOffset(x, y) | 
|  | co := imgYCbCr.COffset(x, y) | 
|  | cy, ccr, ccb := color.RGBToYCbCr(col.R, col.G, col.B) | 
|  | imgYCbCr.Y[yo] = cy | 
|  | imgYCbCr.Cb[co] = ccr | 
|  | imgYCbCr.Cr[co] = ccb | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now check that both images are identical after an encode. | 
|  | var bufRGBA, bufYCbCr bytes.Buffer | 
|  | Encode(&bufRGBA, imgRGBA, nil) | 
|  | Encode(&bufYCbCr, imgYCbCr, nil) | 
|  | if !bytes.Equal(bufRGBA.Bytes(), bufYCbCr.Bytes()) { | 
|  | t.Errorf("RGBA and YCbCr encoded bytes differ") | 
|  | } | 
|  | } | 
|  |  | 
|  | func BenchmarkEncodeRGBA(b *testing.B) { | 
|  | img := image.NewRGBA(image.Rect(0, 0, 640, 480)) | 
|  | bo := img.Bounds() | 
|  | rnd := rand.New(rand.NewSource(123)) | 
|  | for y := bo.Min.Y; y < bo.Max.Y; y++ { | 
|  | for x := bo.Min.X; x < bo.Max.X; x++ { | 
|  | img.SetRGBA(x, y, color.RGBA{ | 
|  | uint8(rnd.Intn(256)), | 
|  | uint8(rnd.Intn(256)), | 
|  | uint8(rnd.Intn(256)), | 
|  | 255, | 
|  | }) | 
|  | } | 
|  | } | 
|  | b.SetBytes(640 * 480 * 4) | 
|  | b.ReportAllocs() | 
|  | b.ResetTimer() | 
|  | options := &Options{Quality: 90} | 
|  | for i := 0; i < b.N; i++ { | 
|  | Encode(ioutil.Discard, img, options) | 
|  | } | 
|  | } | 
|  |  | 
|  | func BenchmarkEncodeYCbCr(b *testing.B) { | 
|  | img := image.NewYCbCr(image.Rect(0, 0, 640, 480), image.YCbCrSubsampleRatio420) | 
|  | bo := img.Bounds() | 
|  | rnd := rand.New(rand.NewSource(123)) | 
|  | for y := bo.Min.Y; y < bo.Max.Y; y++ { | 
|  | for x := bo.Min.X; x < bo.Max.X; x++ { | 
|  | cy := img.YOffset(x, y) | 
|  | ci := img.COffset(x, y) | 
|  | img.Y[cy] = uint8(rnd.Intn(256)) | 
|  | img.Cb[ci] = uint8(rnd.Intn(256)) | 
|  | img.Cr[ci] = uint8(rnd.Intn(256)) | 
|  | } | 
|  | } | 
|  | b.SetBytes(640 * 480 * 3) | 
|  | b.ReportAllocs() | 
|  | b.ResetTimer() | 
|  | options := &Options{Quality: 90} | 
|  | for i := 0; i < b.N; i++ { | 
|  | Encode(ioutil.Discard, img, options) | 
|  | } | 
|  | } |