| // types.cc -- Go frontend types. |
| |
| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| #include "go-system.h" |
| |
| #include <ostream> |
| |
| #include "go-c.h" |
| #include "gogo.h" |
| #include "go-diagnostics.h" |
| #include "go-encode-id.h" |
| #include "operator.h" |
| #include "expressions.h" |
| #include "statements.h" |
| #include "export.h" |
| #include "import.h" |
| #include "backend.h" |
| #include "types.h" |
| |
| // Forward declarations so that we don't have to make types.h #include |
| // backend.h. |
| |
| static void |
| get_backend_struct_fields(Gogo* gogo, const Struct_field_list* fields, |
| bool use_placeholder, |
| std::vector<Backend::Btyped_identifier>* bfields); |
| |
| static void |
| get_backend_slice_fields(Gogo* gogo, Array_type* type, bool use_placeholder, |
| std::vector<Backend::Btyped_identifier>* bfields); |
| |
| static void |
| get_backend_interface_fields(Gogo* gogo, Interface_type* type, |
| bool use_placeholder, |
| std::vector<Backend::Btyped_identifier>* bfields); |
| |
| // Class Type. |
| |
| Type::Type(Type_classification classification) |
| : classification_(classification), btype_(NULL), type_descriptor_var_(NULL), |
| gc_symbol_var_(NULL) |
| { |
| } |
| |
| Type::~Type() |
| { |
| } |
| |
| // Get the base type for a type--skip names and forward declarations. |
| |
| Type* |
| Type::base() |
| { |
| switch (this->classification_) |
| { |
| case TYPE_NAMED: |
| return this->named_type()->named_base(); |
| case TYPE_FORWARD: |
| return this->forward_declaration_type()->real_type()->base(); |
| default: |
| return this; |
| } |
| } |
| |
| const Type* |
| Type::base() const |
| { |
| switch (this->classification_) |
| { |
| case TYPE_NAMED: |
| return this->named_type()->named_base(); |
| case TYPE_FORWARD: |
| return this->forward_declaration_type()->real_type()->base(); |
| default: |
| return this; |
| } |
| } |
| |
| // Skip defined forward declarations. |
| |
| Type* |
| Type::forwarded() |
| { |
| Type* t = this; |
| Forward_declaration_type* ftype = t->forward_declaration_type(); |
| while (ftype != NULL && ftype->is_defined()) |
| { |
| t = ftype->real_type(); |
| ftype = t->forward_declaration_type(); |
| } |
| return t; |
| } |
| |
| const Type* |
| Type::forwarded() const |
| { |
| const Type* t = this; |
| const Forward_declaration_type* ftype = t->forward_declaration_type(); |
| while (ftype != NULL && ftype->is_defined()) |
| { |
| t = ftype->real_type(); |
| ftype = t->forward_declaration_type(); |
| } |
| return t; |
| } |
| |
| // Skip alias definitions. |
| |
| Type* |
| Type::unalias() |
| { |
| Type* t = this->forwarded(); |
| Named_type* nt = t->named_type(); |
| while (nt != NULL && nt->is_alias()) |
| { |
| t = nt->real_type()->forwarded(); |
| nt = t->named_type(); |
| } |
| return t; |
| } |
| |
| const Type* |
| Type::unalias() const |
| { |
| const Type* t = this->forwarded(); |
| const Named_type* nt = t->named_type(); |
| while (nt != NULL && nt->is_alias()) |
| { |
| t = nt->real_type()->forwarded(); |
| nt = t->named_type(); |
| } |
| return t; |
| } |
| |
| // If this is a named type, return it. Otherwise, return NULL. |
| |
| Named_type* |
| Type::named_type() |
| { |
| return this->forwarded()->convert_no_base<Named_type, TYPE_NAMED>(); |
| } |
| |
| const Named_type* |
| Type::named_type() const |
| { |
| return this->forwarded()->convert_no_base<const Named_type, TYPE_NAMED>(); |
| } |
| |
| // Return true if this type is not defined. |
| |
| bool |
| Type::is_undefined() const |
| { |
| return this->forwarded()->forward_declaration_type() != NULL; |
| } |
| |
| // Return true if this is a basic type: a type which is not composed |
| // of other types, and is not void. |
| |
| bool |
| Type::is_basic_type() const |
| { |
| switch (this->classification_) |
| { |
| case TYPE_INTEGER: |
| case TYPE_FLOAT: |
| case TYPE_COMPLEX: |
| case TYPE_BOOLEAN: |
| case TYPE_STRING: |
| case TYPE_NIL: |
| return true; |
| |
| case TYPE_ERROR: |
| case TYPE_VOID: |
| case TYPE_FUNCTION: |
| case TYPE_POINTER: |
| case TYPE_STRUCT: |
| case TYPE_ARRAY: |
| case TYPE_MAP: |
| case TYPE_CHANNEL: |
| case TYPE_INTERFACE: |
| return false; |
| |
| case TYPE_NAMED: |
| case TYPE_FORWARD: |
| return this->base()->is_basic_type(); |
| |
| default: |
| go_unreachable(); |
| } |
| } |
| |
| // Return true if this is an abstract type. |
| |
| bool |
| Type::is_abstract() const |
| { |
| switch (this->classification()) |
| { |
| case TYPE_INTEGER: |
| return this->integer_type()->is_abstract(); |
| case TYPE_FLOAT: |
| return this->float_type()->is_abstract(); |
| case TYPE_COMPLEX: |
| return this->complex_type()->is_abstract(); |
| case TYPE_STRING: |
| return this->is_abstract_string_type(); |
| case TYPE_BOOLEAN: |
| return this->is_abstract_boolean_type(); |
| default: |
| return false; |
| } |
| } |
| |
| // Return a non-abstract version of an abstract type. |
| |
| Type* |
| Type::make_non_abstract_type() |
| { |
| go_assert(this->is_abstract()); |
| switch (this->classification()) |
| { |
| case TYPE_INTEGER: |
| if (this->integer_type()->is_rune()) |
| return Type::lookup_integer_type("int32"); |
| else |
| return Type::lookup_integer_type("int"); |
| case TYPE_FLOAT: |
| return Type::lookup_float_type("float64"); |
| case TYPE_COMPLEX: |
| return Type::lookup_complex_type("complex128"); |
| case TYPE_STRING: |
| return Type::lookup_string_type(); |
| case TYPE_BOOLEAN: |
| return Type::lookup_bool_type(); |
| default: |
| go_unreachable(); |
| } |
| } |
| |
| // Return true if this is an error type. Don't give an error if we |
| // try to dereference an undefined forwarding type, as this is called |
| // in the parser when the type may legitimately be undefined. |
| |
| bool |
| Type::is_error_type() const |
| { |
| const Type* t = this->forwarded(); |
| // Note that we return false for an undefined forward type. |
| switch (t->classification_) |
| { |
| case TYPE_ERROR: |
| return true; |
| case TYPE_NAMED: |
| return t->named_type()->is_named_error_type(); |
| default: |
| return false; |
| } |
| } |
| |
| // If this is a pointer type, return the type to which it points. |
| // Otherwise, return NULL. |
| |
| Type* |
| Type::points_to() const |
| { |
| const Pointer_type* ptype = this->convert<const Pointer_type, |
| TYPE_POINTER>(); |
| return ptype == NULL ? NULL : ptype->points_to(); |
| } |
| |
| // Return whether this is a slice type. |
| |
| bool |
| Type::is_slice_type() const |
| { |
| return this->array_type() != NULL && this->array_type()->length() == NULL; |
| } |
| |
| // Return whether this is the predeclared constant nil being used as a |
| // type. |
| |
| bool |
| Type::is_nil_constant_as_type() const |
| { |
| const Type* t = this->forwarded(); |
| if (t->forward_declaration_type() != NULL) |
| { |
| const Named_object* no = t->forward_declaration_type()->named_object(); |
| if (no->is_unknown()) |
| no = no->unknown_value()->real_named_object(); |
| if (no != NULL |
| && no->is_const() |
| && no->const_value()->expr()->is_nil_expression()) |
| return true; |
| } |
| return false; |
| } |
| |
| // Traverse a type. |
| |
| int |
| Type::traverse(Type* type, Traverse* traverse) |
| { |
| go_assert((traverse->traverse_mask() & Traverse::traverse_types) != 0 |
| || (traverse->traverse_mask() |
| & Traverse::traverse_expressions) != 0); |
| if (traverse->remember_type(type)) |
| { |
| // We have already traversed this type. |
| return TRAVERSE_CONTINUE; |
| } |
| if ((traverse->traverse_mask() & Traverse::traverse_types) != 0) |
| { |
| int t = traverse->type(type); |
| if (t == TRAVERSE_EXIT) |
| return TRAVERSE_EXIT; |
| else if (t == TRAVERSE_SKIP_COMPONENTS) |
| return TRAVERSE_CONTINUE; |
| } |
| // An array type has an expression which we need to traverse if |
| // traverse_expressions is set. |
| if (type->do_traverse(traverse) == TRAVERSE_EXIT) |
| return TRAVERSE_EXIT; |
| return TRAVERSE_CONTINUE; |
| } |
| |
| // Default implementation for do_traverse for child class. |
| |
| int |
| Type::do_traverse(Traverse*) |
| { |
| return TRAVERSE_CONTINUE; |
| } |
| |
| // Return whether two types are identical. If ERRORS_ARE_IDENTICAL, |
| // then return true for all erroneous types; this is used to avoid |
| // cascading errors. If REASON is not NULL, optionally set *REASON to |
| // the reason the types are not identical. |
| |
| bool |
| Type::are_identical(const Type* t1, const Type* t2, bool errors_are_identical, |
| std::string* reason) |
| { |
| return Type::are_identical_cmp_tags(t1, t2, COMPARE_TAGS, |
| errors_are_identical, reason); |
| } |
| |
| // Like are_identical, but with a CMP_TAGS parameter. |
| |
| bool |
| Type::are_identical_cmp_tags(const Type* t1, const Type* t2, Cmp_tags cmp_tags, |
| bool errors_are_identical, std::string* reason) |
| { |
| if (t1 == NULL || t2 == NULL) |
| { |
| // Something is wrong. |
| return errors_are_identical ? true : t1 == t2; |
| } |
| |
| // Skip defined forward declarations. Ignore aliases. |
| t1 = t1->unalias(); |
| t2 = t2->unalias(); |
| |
| if (t1 == t2) |
| return true; |
| |
| // An undefined forward declaration is an error. |
| if (t1->forward_declaration_type() != NULL |
| || t2->forward_declaration_type() != NULL) |
| return errors_are_identical; |
| |
| // Avoid cascading errors with error types. |
| if (t1->is_error_type() || t2->is_error_type()) |
| { |
| if (errors_are_identical) |
| return true; |
| return t1->is_error_type() && t2->is_error_type(); |
| } |
| |
| // Get a good reason for the sink type. Note that the sink type on |
| // the left hand side of an assignment is handled in are_assignable. |
| if (t1->is_sink_type() || t2->is_sink_type()) |
| { |
| if (reason != NULL) |
| *reason = "invalid use of _"; |
| return false; |
| } |
| |
| // A named type is only identical to itself. |
| if (t1->named_type() != NULL || t2->named_type() != NULL) |
| return false; |
| |
| // Check type shapes. |
| if (t1->classification() != t2->classification()) |
| return false; |
| |
| switch (t1->classification()) |
| { |
| case TYPE_VOID: |
| case TYPE_BOOLEAN: |
| case TYPE_STRING: |
| case TYPE_NIL: |
| // These types are always identical. |
| return true; |
| |
| case TYPE_INTEGER: |
| return t1->integer_type()->is_identical(t2->integer_type()); |
| |
| case TYPE_FLOAT: |
| return t1->float_type()->is_identical(t2->float_type()); |
| |
| case TYPE_COMPLEX: |
| return t1->complex_type()->is_identical(t2->complex_type()); |
| |
| case TYPE_FUNCTION: |
| return t1->function_type()->is_identical(t2->function_type(), |
| false, |
| cmp_tags, |
| errors_are_identical, |
| reason); |
| |
| case TYPE_POINTER: |
| return Type::are_identical_cmp_tags(t1->points_to(), t2->points_to(), |
| cmp_tags, errors_are_identical, |
| reason); |
| |
| case TYPE_STRUCT: |
| return t1->struct_type()->is_identical(t2->struct_type(), cmp_tags, |
| errors_are_identical); |
| |
| case TYPE_ARRAY: |
| return t1->array_type()->is_identical(t2->array_type(), cmp_tags, |
| errors_are_identical); |
| |
| case TYPE_MAP: |
| return t1->map_type()->is_identical(t2->map_type(), cmp_tags, |
| errors_are_identical); |
| |
| case TYPE_CHANNEL: |
| return t1->channel_type()->is_identical(t2->channel_type(), cmp_tags, |
| errors_are_identical); |
| |
| case TYPE_INTERFACE: |
| return t1->interface_type()->is_identical(t2->interface_type(), cmp_tags, |
| errors_are_identical); |
| |
| case TYPE_CALL_MULTIPLE_RESULT: |
| if (reason != NULL) |
| *reason = "invalid use of multiple-value function call"; |
| return false; |
| |
| default: |
| go_unreachable(); |
| } |
| } |
| |
| // Return true if it's OK to have a binary operation with types LHS |
| // and RHS. This is not used for shifts or comparisons. |
| |
| bool |
| Type::are_compatible_for_binop(const Type* lhs, const Type* rhs) |
| { |
| if (Type::are_identical(lhs, rhs, true, NULL)) |
| return true; |
| |
| // A constant of abstract bool type may be mixed with any bool type. |
| if ((rhs->is_abstract_boolean_type() && lhs->is_boolean_type()) |
| || (lhs->is_abstract_boolean_type() && rhs->is_boolean_type())) |
| return true; |
| |
| // A constant of abstract string type may be mixed with any string |
| // type. |
| if ((rhs->is_abstract_string_type() && lhs->is_string_type()) |
| || (lhs->is_abstract_string_type() && rhs->is_string_type())) |
| return true; |
| |
| lhs = lhs->base(); |
| rhs = rhs->base(); |
| |
| // A constant of abstract integer, float, or complex type may be |
| // mixed with an integer, float, or complex type. |
| if ((rhs->is_abstract() |
| && (rhs->integer_type() != NULL |
| || rhs->float_type() != NULL |
| || rhs->complex_type() != NULL) |
| && (lhs->integer_type() != NULL |
| || lhs->float_type() != NULL |
| || lhs->complex_type() != NULL)) |
| || (lhs->is_abstract() |
| && (lhs->integer_type() != NULL |
| || lhs->float_type() != NULL |
| || lhs->complex_type() != NULL) |
| && (rhs->integer_type() != NULL |
| || rhs->float_type() != NULL |
| || rhs->complex_type() != NULL))) |
| return true; |
| |
| // The nil type may be compared to a pointer, an interface type, a |
| // slice type, a channel type, a map type, or a function type. |
| if (lhs->is_nil_type() |
| && (rhs->points_to() != NULL |
| || rhs->interface_type() != NULL |
| || rhs->is_slice_type() |
| || rhs->map_type() != NULL |
| || rhs->channel_type() != NULL |
| || rhs->function_type() != NULL)) |
| return true; |
| if (rhs->is_nil_type() |
| && (lhs->points_to() != NULL |
| || lhs->interface_type() != NULL |
| || lhs->is_slice_type() |
| || lhs->map_type() != NULL |
| || lhs->channel_type() != NULL |
| || lhs->function_type() != NULL)) |
| return true; |
| |
| return false; |
| } |
| |
| // Return true if a value with type T1 may be compared with a value of |
| // type T2. IS_EQUALITY_OP is true for == or !=, false for <, etc. |
| |
| bool |
| Type::are_compatible_for_comparison(bool is_equality_op, const Type *t1, |
| const Type *t2, std::string *reason) |
| { |
| if (t1 != t2 |
| && !Type::are_assignable(t1, t2, NULL) |
| && !Type::are_assignable(t2, t1, NULL)) |
| { |
| if (reason != NULL) |
| *reason = "incompatible types in binary expression"; |
| return false; |
| } |
| |
| if (!is_equality_op) |
| { |
| if (t1->integer_type() == NULL |
| && t1->float_type() == NULL |
| && !t1->is_string_type()) |
| { |
| if (reason != NULL) |
| *reason = _("invalid comparison of non-ordered type"); |
| return false; |
| } |
| } |
| else if (t1->is_slice_type() |
| || t1->map_type() != NULL |
| || t1->function_type() != NULL |
| || t2->is_slice_type() |
| || t2->map_type() != NULL |
| || t2->function_type() != NULL) |
| { |
| if (!t1->is_nil_type() && !t2->is_nil_type()) |
| { |
| if (reason != NULL) |
| { |
| if (t1->is_slice_type() || t2->is_slice_type()) |
| *reason = _("slice can only be compared to nil"); |
| else if (t1->map_type() != NULL || t2->map_type() != NULL) |
| *reason = _("map can only be compared to nil"); |
| else |
| *reason = _("func can only be compared to nil"); |
| |
| // Match 6g error messages. |
| if (t1->interface_type() != NULL || t2->interface_type() != NULL) |
| { |
| char buf[200]; |
| snprintf(buf, sizeof buf, _("invalid operation (%s)"), |
| reason->c_str()); |
| *reason = buf; |
| } |
| } |
| return false; |
| } |
| } |
| else |
| { |
| if (!t1->is_boolean_type() |
| && t1->integer_type() == NULL |
| && t1->float_type() == NULL |
| && t1->complex_type() == NULL |
| && !t1->is_string_type() |
| && t1->points_to() == NULL |
| && t1->channel_type() == NULL |
| && t1->interface_type() == NULL |
| && t1->struct_type() == NULL |
| && t1->array_type() == NULL |
| && !t1->is_nil_type()) |
| { |
| if (reason != NULL) |
| *reason = _("invalid comparison of non-comparable type"); |
| return false; |
| } |
| |
| if (t1->unalias()->named_type() != NULL) |
| return t1->unalias()->named_type()->named_type_is_comparable(reason); |
| else if (t2->unalias()->named_type() != NULL) |
| return t2->unalias()->named_type()->named_type_is_comparable(reason); |
| else if (t1->struct_type() != NULL) |
| { |
| if (t1->struct_type()->is_struct_incomparable()) |
| { |
| if (reason != NULL) |
| *reason = _("invalid comparison of generated struct"); |
| return false; |
| } |
| const Struct_field_list* fields = t1->struct_type()->fields(); |
| for (Struct_field_list::const_iterator p = fields->begin(); |
| p != fields->end(); |
| ++p) |
| { |
| if (!p->type()->is_comparable()) |
| { |
| if (reason != NULL) |
| *reason = _("invalid comparison of non-comparable struct"); |
| return false; |
| } |
| } |
| } |
| else if (t1->array_type() != NULL) |
| { |
| if (t1->array_type()->is_array_incomparable()) |
| { |
| if (reason != NULL) |
| *reason = _("invalid comparison of generated array"); |
| return false; |
| } |
| if (t1->array_type()->length()->is_nil_expression() |
| || !t1->array_type()->element_type()->is_comparable()) |
| { |
| if (reason != NULL) |
| *reason = _("invalid comparison of non-comparable array"); |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| // Return true if a value with type RHS may be assigned to a variable |
| // with type LHS. If REASON is not NULL, set *REASON to the reason |
| // the types are not assignable. |
| |
| bool |
| Type::are_assignable(const Type* lhs, const Type* rhs, std::string* reason) |
| { |
| // Do some checks first. Make sure the types are defined. |
| if (rhs != NULL && !rhs->is_undefined()) |
| { |
| if (rhs->is_void_type()) |
| { |
| if (reason != NULL) |
| *reason = "non-value used as value"; |
| return false; |
| } |
| if (rhs->is_call_multiple_result_type()) |
| { |
| if (reason != NULL) |
| reason->assign(_("multiple-value function call in " |
| "single-value context")); |
| return false; |
| } |
| } |
| |
| // Any value may be assigned to the blank identifier. |
| if (lhs != NULL |
| && !lhs->is_undefined() |
| && lhs->is_sink_type()) |
| return true; |
| |
| // Identical types are assignable. |
| if (Type::are_identical(lhs, rhs, true, reason)) |
| return true; |
| |
| // Ignore aliases, except for error messages. |
| const Type* lhs_orig = lhs; |
| const Type* rhs_orig = rhs; |
| lhs = lhs->unalias(); |
| rhs = rhs->unalias(); |
| |
| // The types are assignable if they have identical underlying types |
| // and either LHS or RHS is not a named type. |
| if (((lhs->named_type() != NULL && rhs->named_type() == NULL) |
| || (rhs->named_type() != NULL && lhs->named_type() == NULL)) |
| && Type::are_identical(lhs->base(), rhs->base(), true, reason)) |
| return true; |
| |
| // The types are assignable if LHS is an interface type and RHS |
| // implements the required methods. |
| const Interface_type* lhs_interface_type = lhs->interface_type(); |
| if (lhs_interface_type != NULL) |
| { |
| if (lhs_interface_type->implements_interface(rhs, reason)) |
| return true; |
| const Interface_type* rhs_interface_type = rhs->interface_type(); |
| if (rhs_interface_type != NULL |
| && lhs_interface_type->is_compatible_for_assign(rhs_interface_type, |
| reason)) |
| return true; |
| } |
| |
| // The type are assignable if RHS is a bidirectional channel type, |
| // LHS is a channel type, they have identical element types, and |
| // either LHS or RHS is not a named type. |
| if (lhs->channel_type() != NULL |
| && rhs->channel_type() != NULL |
| && rhs->channel_type()->may_send() |
| && rhs->channel_type()->may_receive() |
| && (lhs->named_type() == NULL || rhs->named_type() == NULL) |
| && Type::are_identical(lhs->channel_type()->element_type(), |
| rhs->channel_type()->element_type(), |
| true, |
| reason)) |
| return true; |
| |
| // The nil type may be assigned to a pointer, function, slice, map, |
| // channel, or interface type. |
| if (rhs->is_nil_type() |
| && (lhs->points_to() != NULL |
| || lhs->function_type() != NULL |
| || lhs->is_slice_type() |
| || lhs->map_type() != NULL |
| || lhs->channel_type() != NULL |
| || lhs->interface_type() != NULL)) |
| return true; |
| |
| // An untyped numeric constant may be assigned to a numeric type if |
| // it is representable in that type. |
| if ((rhs->is_abstract() |
| && (rhs->integer_type() != NULL |
| || rhs->float_type() != NULL |
| || rhs->complex_type() != NULL)) |
| && (lhs->integer_type() != NULL |
| || lhs->float_type() != NULL |
| || lhs->complex_type() != NULL)) |
| return true; |
| |
| // Give some better error messages. |
| if (reason != NULL && reason->empty()) |
| { |
| if (rhs->interface_type() != NULL) |
| reason->assign(_("need explicit conversion")); |
| else if (lhs_orig->named_type() != NULL |
| && rhs_orig->named_type() != NULL) |
| { |
| size_t len = (lhs_orig->named_type()->name().length() |
| + rhs_orig->named_type()->name().length() |
| + 100); |
| char* buf = new char[len]; |
| snprintf(buf, len, _("cannot use type %s as type %s"), |
| rhs_orig->named_type()->message_name().c_str(), |
| lhs_orig->named_type()->message_name().c_str()); |
| reason->assign(buf); |
| delete[] buf; |
| } |
| } |
| |
| return false; |
| } |
| |
| // Return true if a value with type RHS may be converted to type LHS. |
| // If REASON is not NULL, set *REASON to the reason the types are not |
| // convertible. |
| |
| bool |
| Type::are_convertible(const Type* lhs, const Type* rhs, std::string* reason) |
| { |
| // The types are convertible if they are assignable. |
| if (Type::are_assignable(lhs, rhs, reason)) |
| return true; |
| |
| // Ignore aliases. |
| lhs = lhs->unalias(); |
| rhs = rhs->unalias(); |
| |
| // A pointer to a regular type may not be converted to a pointer to |
| // a type that may not live in the heap, except when converting from |
| // unsafe.Pointer. |
| if (lhs->points_to() != NULL |
| && rhs->points_to() != NULL |
| && !lhs->points_to()->in_heap() |
| && rhs->points_to()->in_heap() |
| && !rhs->is_unsafe_pointer_type()) |
| { |
| if (reason != NULL) |
| reason->assign(_("conversion from normal type to notinheap type")); |
| return false; |
| } |
| |
| // The types are convertible if they have identical underlying |
| // types, ignoring struct field tags. |
| if ((lhs->named_type() != NULL || rhs->named_type() != NULL) |
| && Type::are_identical_cmp_tags(lhs->base(), rhs->base(), IGNORE_TAGS, |
| true, reason)) |
| return true; |
| |
| // The types are convertible if they are both unnamed pointer types |
| // and their pointer base types have identical underlying types, |
| // ignoring struct field tags. |
| if (lhs->named_type() == NULL |
| && rhs->named_type() == NULL |
| && lhs->points_to() != NULL |
| && rhs->points_to() != NULL |
| && (lhs->points_to()->named_type() != NULL |
| || rhs->points_to()->named_type() != NULL) |
| && Type::are_identical_cmp_tags(lhs->points_to()->base(), |
| rhs->points_to()->base(), |
| IGNORE_TAGS, |
| true, |
| reason)) |
| return true; |
| |
| // Integer and floating point types are convertible to each other. |
| if ((lhs->integer_type() != NULL || lhs->float_type() != NULL) |
| && (rhs->integer_type() != NULL || rhs->float_type() != NULL)) |
| return true; |
| |
| // Complex types are convertible to each other. |
| if (lhs->complex_type() != NULL && rhs->complex_type() != NULL) |
| return true; |
| |
| // An integer, or []byte, or []rune, may be converted to a string. |
| if (lhs->is_string_type()) |
| { |
| if (rhs->integer_type() != NULL) |
| return true; |
| if (rhs->is_slice_type()) |
| { |
| const Type* e = rhs->array_type()->element_type()->forwarded(); |
| if (e->integer_type() != NULL |
| && (e->integer_type()->is_byte() |
| || e->integer_type()->is_rune())) |
| return true; |
| } |
| } |
| |
| // A string may be converted to []byte or []rune. |
| if (rhs->is_string_type() && lhs->is_slice_type()) |
| { |
| const Type* e = lhs->array_type()->element_type()->forwarded(); |
| if (e->integer_type() != NULL |
| && (e->integer_type()->is_byte() || e->integer_type()->is_rune())) |
| return true; |
| } |
| |
| // An unsafe.Pointer type may be converted to any pointer type or to |
| // a type whose underlying type is uintptr, and vice-versa. |
| if (lhs->is_unsafe_pointer_type() |
| && (rhs->points_to() != NULL |
| || (rhs->integer_type() != NULL |
| && rhs->integer_type() == Type::lookup_integer_type("uintptr")->real_type()))) |
| return true; |
| if (rhs->is_unsafe_pointer_type() |
| && (lhs->points_to() != NULL |
| || (lhs->integer_type() != NULL |
| && lhs->integer_type() == Type::lookup_integer_type("uintptr")->real_type()))) |
| return true; |
| |
| // Give a better error message. |
| if (reason != NULL) |
| { |
| if (reason->empty()) |
| *reason = "invalid type conversion"; |
| else |
| { |
| std::string s = "invalid type conversion ("; |
| s += *reason; |
| s += ')'; |
| *reason = s; |
| } |
| } |
| |
| return false; |
| } |
| |
| // Copy expressions if it may change the size. |
| // |
| // The only type that has an expression is an array type. The only |
| // types whose size can be changed by the size of an array type are an |
| // array type itself, or a struct type with an array field. |
| Type* |
| Type::copy_expressions() |
| { |
| // This is run during parsing, so types may not be valid yet. |
| // We only have to worry about array type literals. |
| switch (this->classification_) |
| { |
| default: |
| return this; |
| |
| case TYPE_ARRAY: |
| { |
| Array_type* at = this->array_type(); |
| if (at->length() == NULL) |
| return this; |
| Expression* len = at->length()->copy(); |
| if (at->length() == len) |
| return this; |
| return Type::make_array_type(at->element_type(), len); |
| } |
| |
| case TYPE_STRUCT: |
| { |
| Struct_type* st = this->struct_type(); |
| const Struct_field_list* sfl = st->fields(); |
| if (sfl == NULL) |
| return this; |
| bool changed = false; |
| Struct_field_list *nsfl = new Struct_field_list(); |
| for (Struct_field_list::const_iterator pf = sfl->begin(); |
| pf != sfl->end(); |
| ++pf) |
| { |
| Type* ft = pf->type()->copy_expressions(); |
| Struct_field nf(Typed_identifier((pf->is_anonymous() |
| ? "" |
| : pf->field_name()), |
| ft, |
| pf->location())); |
| if (pf->has_tag()) |
| nf.set_tag(pf->tag()); |
| nsfl->push_back(nf); |
| if (ft != pf->type()) |
| changed = true; |
| } |
| if (!changed) |
| { |
| delete(nsfl); |
| return this; |
| } |
| return Type::make_struct_type(nsfl, st->location()); |
| } |
| } |
| |
| go_unreachable(); |
| } |
| |
| // Return a hash code for the type to be used for method lookup. |
| |
| unsigned int |
| Type::hash_for_method(Gogo* gogo) const |
| { |
| if (this->named_type() != NULL && this->named_type()->is_alias()) |
| return this->named_type()->real_type()->hash_for_method(gogo); |
| unsigned int ret = 0; |
| if (this->classification_ != TYPE_FORWARD) |
| ret += this->classification_; |
| return ret + this->do_hash_for_method(gogo); |
| } |
| |
| // Default implementation of do_hash_for_method. This is appropriate |
| // for types with no subfields. |
| |
| unsigned int |
| Type::do_hash_for_method(Gogo*) const |
| { |
| return 0; |
| } |
| |
| // Return a hash code for a string, given a starting hash. |
| |
| unsigned int |
| Type::hash_string(const std::string& s, unsigned int h) |
| { |
| const char* p = s.data(); |
| size_t len = s.length(); |
| for (; len > 0; --len) |
| { |
| h ^= *p++; |
| h*= 16777619; |
| } |
| return h; |
| } |
| |
| // A hash table mapping unnamed types to the backend representation of |
| // those types. |
| |
| Type::Type_btypes Type::type_btypes; |
| |
| // Return the backend representation for this type. |
| |
| Btype* |
| Type::get_backend(Gogo* gogo) |
| { |
| if (this->btype_ != NULL) |
| return this->btype_; |
| |
| if (this->forward_declaration_type() != NULL |
| || this->named_type() != NULL) |
| return this->get_btype_without_hash(gogo); |
| |
| if (this->is_error_type()) |
| return gogo->backend()->error_type(); |
| |
| // To avoid confusing the backend, translate all identical Go types |
| // to the same backend representation. We use a hash table to do |
| // that. There is no need to use the hash table for named types, as |
| // named types are only identical to themselves. |
| |
| std::pair<Type*, Type_btype_entry> val; |
| val.first = this; |
| val.second.btype = NULL; |
| val.second.is_placeholder = false; |
| std::pair<Type_btypes::iterator, bool> ins = |
| Type::type_btypes.insert(val); |
| if (!ins.second && ins.first->second.btype != NULL) |
| { |
| // Note that GOGO can be NULL here, but only when the GCC |
| // middle-end is asking for a frontend type. That will only |
| // happen for simple types, which should never require |
| // placeholders. |
| if (!ins.first->second.is_placeholder) |
| this->btype_ = ins.first->second.btype; |
| else if (gogo->named_types_are_converted()) |
| { |
| this->finish_backend(gogo, ins.first->second.btype); |
| ins.first->second.is_placeholder = false; |
| } |
| |
| return ins.first->second.btype; |
| } |
| |
| Btype* bt = this->get_btype_without_hash(gogo); |
| |
| if (ins.first->second.btype == NULL) |
| { |
| ins.first->second.btype = bt; |
| ins.first->second.is_placeholder = false; |
| } |
| else |
| { |
| // We have already created a backend representation for this |
| // type. This can happen when an unnamed type is defined using |
| // a named type which in turns uses an identical unnamed type. |
| // Use the representation we created earlier and ignore the one we just |
| // built. |
| if (this->btype_ == bt) |
| this->btype_ = ins.first->second.btype; |
| bt = ins.first->second.btype; |
| } |
| |
| return bt; |
| } |
| |
| // Return the backend representation for a type without looking in the |
| // hash table for identical types. This is used for named types, |
| // since a named type is never identical to any other type. |
| |
| Btype* |
| Type::get_btype_without_hash(Gogo* gogo) |
| { |
| if (this->btype_ == NULL) |
| { |
| Btype* bt = this->do_get_backend(gogo); |
| |
| // For a recursive function or pointer type, we will temporarily |
| // return a circular pointer type during the recursion. We |
| // don't want to record that for a forwarding type, as it may |
| // confuse us later. |
| if (this->forward_declaration_type() != NULL |
| && gogo->backend()->is_circular_pointer_type(bt)) |
| return bt; |
| |
| if (gogo == NULL || !gogo->named_types_are_converted()) |
| return bt; |
| |
| this->btype_ = bt; |
| } |
| return this->btype_; |
| } |
| |
| // Get the backend representation of a type without forcing the |
| // creation of the backend representation of all supporting types. |
| // This will return a backend type that has the correct size but may |
| // be incomplete. E.g., a pointer will just be a placeholder pointer, |
| // and will not contain the final representation of the type to which |
| // it points. This is used while converting all named types to the |
| // backend representation, to avoid problems with indirect references |
| // to types which are not yet complete. When this is called, the |
| // sizes of all direct references (e.g., a struct field) should be |
| // known, but the sizes of indirect references (e.g., the type to |
| // which a pointer points) may not. |
| |
| Btype* |
| Type::get_backend_placeholder(Gogo* gogo) |
| { |
| if (gogo->named_types_are_converted()) |
| return this->get_backend(gogo); |
| if (this->btype_ != NULL) |
| return this->btype_; |
| |
| Btype* bt; |
| switch (this->classification_) |
| { |
| case TYPE_ERROR: |
| case TYPE_VOID: |
| case TYPE_BOOLEAN: |
| case TYPE_INTEGER: |
| case TYPE_FLOAT: |
| case TYPE_COMPLEX: |
| case TYPE_STRING: |
| case TYPE_NIL: |
| // These are simple types that can just be created directly. |
| return this->get_backend(gogo); |
| |
| case TYPE_MAP: |
| case TYPE_CHANNEL: |
| // All maps and channels have the same backend representation. |
| return this->get_backend(gogo); |
| |
| case TYPE_NAMED: |
| case TYPE_FORWARD: |
| // Named types keep track of their own dependencies and manage |
| // their own placeholders. |
| return this->get_backend(gogo); |
| |
| case TYPE_INTERFACE: |
| if (this->interface_type()->is_empty()) |
| return Interface_type::get_backend_empty_interface_type(gogo); |
| break; |
| |
| default: |
| break; |
| } |
| |
| std::pair<Type*, Type_btype_entry> val; |
| val.first = this; |
| val.second.btype = NULL; |
| val.second.is_placeholder = false; |
| std::pair<Type_btypes::iterator, bool> ins = |
| Type::type_btypes.insert(val); |
| if (!ins.second && ins.first->second.btype != NULL) |
| return ins.first->second.btype; |
| |
| switch (this->classification_) |
| { |
| case TYPE_FUNCTION: |
| { |
| // A Go function type is a pointer to a struct type. |
| Location loc = this->function_type()->location(); |
| bt = gogo->backend()->placeholder_pointer_type("", loc, false); |
| } |
| break; |
| |
| case TYPE_POINTER: |
| { |
| Location loc = Linemap::unknown_location(); |
| bt = gogo->backend()->placeholder_pointer_type("", loc, false); |
| Pointer_type* pt = this->convert<Pointer_type, TYPE_POINTER>(); |
| Type::placeholder_pointers.push_back(pt); |
| } |
| break; |
| |
| case TYPE_STRUCT: |
| // We don't have to make the struct itself be a placeholder. We |
| // are promised that we know the sizes of the struct fields. |
| // But we may have to use a placeholder for any particular |
| // struct field. |
| { |
| std::vector<Backend::Btyped_identifier> bfields; |
| get_backend_struct_fields(gogo, this->struct_type()->fields(), |
| true, &bfields); |
| bt = gogo->backend()->struct_type(bfields); |
| } |
| break; |
| |
| case TYPE_ARRAY: |
| if (this->is_slice_type()) |
| { |
| std::vector<Backend::Btyped_identifier> bfields; |
| get_backend_slice_fields(gogo, this->array_type(), true, &bfields); |
| bt = gogo->backend()->struct_type(bfields); |
| } |
| else |
| { |
| Btype* element = this->array_type()->get_backend_element(gogo, true); |
| Bexpression* len = this->array_type()->get_backend_length(gogo); |
| bt = gogo->backend()->array_type(element, len); |
| } |
| break; |
| |
| case TYPE_INTERFACE: |
| { |
| go_assert(!this->interface_type()->is_empty()); |
| std::vector<Backend::Btyped_identifier> bfields; |
| get_backend_interface_fields(gogo, this->interface_type(), true, |
| &bfields); |
| bt = gogo->backend()->struct_type(bfields); |
| } |
| break; |
| |
| case TYPE_SINK: |
| case TYPE_CALL_MULTIPLE_RESULT: |
| /* Note that various classifications were handled in the earlier |
| switch. */ |
| default: |
| go_unreachable(); |
| } |
| |
| if (ins.first->second.btype == NULL) |
| { |
| ins.first->second.btype = bt; |
| ins.first->second.is_placeholder = true; |
| } |
| else |
| { |
| // A placeholder for this type got created along the way. Use |
| // that one and ignore the one we just built. |
| bt = ins.first->second.btype; |
| } |
| |
| return bt; |
| } |
| |
| // Complete the backend representation. This is called for a type |
| // using a placeholder type. |
| |
| void |
| Type::finish_backend(Gogo* gogo, Btype *placeholder) |
| { |
| switch (this->classification_) |
| { |
| case TYPE_ERROR: |
| case TYPE_VOID: |
| case TYPE_BOOLEAN: |
| case TYPE_INTEGER: |
| case TYPE_FLOAT: |
| case TYPE_COMPLEX: |
| case TYPE_STRING: |
| case TYPE_NIL: |
| go_unreachable(); |
| |
| case TYPE_FUNCTION: |
| { |
| Btype* bt = this->do_get_backend(gogo); |
| if (!gogo->backend()->set_placeholder_pointer_type(placeholder, bt)) |
| go_assert(saw_errors()); |
| } |
| break; |
| |
| case TYPE_POINTER: |
| { |
| Btype* bt = this->do_get_backend(gogo); |
| if (!gogo->backend()->set_placeholder_pointer_type(placeholder, bt)) |
| go_assert(saw_errors()); |
| } |
| break; |
| |
| case TYPE_STRUCT: |
| // The struct type itself is done, but we have to make sure that |
| // all the field types are converted. |
| this->struct_type()->finish_backend_fields(gogo); |
| break; |
| |
| case TYPE_ARRAY: |
| // The array type itself is done, but make sure the element type |
| // is converted. |
| this->array_type()->finish_backend_element(gogo); |
| break; |
| |
| case TYPE_MAP: |
| case TYPE_CHANNEL: |
| go_unreachable(); |
| |
| case TYPE_INTERFACE: |
| // The interface type itself is done, but make sure the method |
| // types are converted. |
| this->interface_type()->finish_backend_methods(gogo); |
| break; |
| |
| case TYPE_NAMED: |
| case TYPE_FORWARD: |
| go_unreachable(); |
| |
| case TYPE_SINK: |
| case TYPE_CALL_MULTIPLE_RESULT: |
| default: |
| go_unreachable(); |
| } |
| |
| this->btype_ = placeholder; |
| } |
| |
| // Return a pointer to the type descriptor for this type. |
| |
| Bexpression* |
| Type::type_descriptor_pointer(Gogo* gogo, Location location) |
| { |
| Type* t = this->unalias(); |
| if (t->type_descriptor_var_ == NULL) |
| { |
| t->make_type_descriptor_var(gogo); |
| go_assert(t->type_descriptor_var_ != NULL); |
| } |
| Bexpression* var_expr = |
| gogo->backend()->var_expression(t->type_descriptor_var_, location); |
| Bexpression* var_addr = |
| gogo->backend()->address_expression(var_expr, location); |
| Type* td_type = Type::make_type_descriptor_type(); |
| Btype* td_btype = td_type->get_backend(gogo); |
| Btype* ptd_btype = gogo->backend()->pointer_type(td_btype); |
| return gogo->backend()->convert_expression(ptd_btype, var_addr, location); |
| } |
| |
| // A mapping from unnamed types to type descriptor variables. |
| |
| Type::Type_descriptor_vars Type::type_descriptor_vars; |
| |
| // Build the type descriptor for this type. |
| |
| void |
| Type::make_type_descriptor_var(Gogo* gogo) |
| { |
| go_assert(this->type_descriptor_var_ == NULL); |
| |
| Named_type* nt = this->named_type(); |
| |
| // We can have multiple instances of unnamed types, but we only want |
| // to emit the type descriptor once. We use a hash table. This is |
| // not necessary for named types, as they are unique, and we store |
| // the type descriptor in the type itself. |
| Bvariable** phash = NULL; |
| if (nt == NULL) |
| { |
| Bvariable* bvnull = NULL; |
| std::pair<Type_descriptor_vars::iterator, bool> ins = |
| Type::type_descriptor_vars.insert(std::make_pair(this, bvnull)); |
| if (!ins.second) |
| { |
| // We've already built a type descriptor for this type. |
| this->type_descriptor_var_ = ins.first->second; |
| return; |
| } |
| phash = &ins.first->second; |
| } |
| |
| // The type descriptor symbol for the unsafe.Pointer type is defined in |
| // libgo/go-unsafe-pointer.c, so we just return a reference to that |
| // symbol if necessary. |
| if (this->is_unsafe_pointer_type()) |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| Type* td_type = Type::make_type_descriptor_type(); |
| Btype* td_btype = td_type->get_backend(gogo); |
| std::string name = gogo->type_descriptor_name(this, nt); |
| std::string asm_name(go_selectively_encode_id(name)); |
| this->type_descriptor_var_ = |
| gogo->backend()->immutable_struct_reference(name, asm_name, |
| td_btype, |
| bloc); |
| |
| if (phash != NULL) |
| *phash = this->type_descriptor_var_; |
| return; |
| } |
| |
| std::string var_name = gogo->type_descriptor_name(this, nt); |
| |
| // Build the contents of the type descriptor. |
| Expression* initializer = this->do_type_descriptor(gogo, NULL); |
| |
| Btype* initializer_btype = initializer->type()->get_backend(gogo); |
| |
| Location loc = nt == NULL ? Linemap::predeclared_location() : nt->location(); |
| |
| const Package* dummy; |
| if (this->type_descriptor_defined_elsewhere(nt, &dummy)) |
| { |
| std::string asm_name(go_selectively_encode_id(var_name)); |
| this->type_descriptor_var_ = |
| gogo->backend()->immutable_struct_reference(var_name, asm_name, |
| initializer_btype, |
| loc); |
| if (phash != NULL) |
| *phash = this->type_descriptor_var_; |
| return; |
| } |
| |
| // See if this type descriptor can appear in multiple packages. |
| bool is_common = false; |
| if (nt != NULL) |
| { |
| // We create the descriptor for a builtin type whenever we need |
| // it. |
| is_common = nt->is_builtin(); |
| } |
| else |
| { |
| // This is an unnamed type. The descriptor could be defined in |
| // any package where it is needed, and the linker will pick one |
| // descriptor to keep. |
| is_common = true; |
| } |
| |
| // We are going to build the type descriptor in this package. We |
| // must create the variable before we convert the initializer to the |
| // backend representation, because the initializer may refer to the |
| // type descriptor of this type. By setting type_descriptor_var_ we |
| // ensure that type_descriptor_pointer will work if called while |
| // converting INITIALIZER. |
| |
| std::string asm_name(go_selectively_encode_id(var_name)); |
| this->type_descriptor_var_ = |
| gogo->backend()->immutable_struct(var_name, asm_name, false, is_common, |
| initializer_btype, loc); |
| if (phash != NULL) |
| *phash = this->type_descriptor_var_; |
| |
| Translate_context context(gogo, NULL, NULL, NULL); |
| context.set_is_const(); |
| Bexpression* binitializer = initializer->get_backend(&context); |
| |
| gogo->backend()->immutable_struct_set_init(this->type_descriptor_var_, |
| var_name, false, is_common, |
| initializer_btype, loc, |
| binitializer); |
| } |
| |
| // Return true if this type descriptor is defined in a different |
| // package. If this returns true it sets *PACKAGE to the package. |
| |
| bool |
| Type::type_descriptor_defined_elsewhere(Named_type* nt, |
| const Package** package) |
| { |
| if (nt != NULL) |
| { |
| if (nt->named_object()->package() != NULL) |
| { |
| // This is a named type defined in a different package. The |
| // type descriptor should be defined in that package. |
| *package = nt->named_object()->package(); |
| return true; |
| } |
| } |
| else |
| { |
| if (this->points_to() != NULL |
| && this->points_to()->named_type() != NULL |
| && this->points_to()->named_type()->named_object()->package() != NULL) |
| { |
| // This is an unnamed pointer to a named type defined in a |
| // different package. The descriptor should be defined in |
| // that package. |
| *package = this->points_to()->named_type()->named_object()->package(); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // Return a composite literal for a type descriptor. |
| |
| Expression* |
| Type::type_descriptor(Gogo* gogo, Type* type) |
| { |
| return type->do_type_descriptor(gogo, NULL); |
| } |
| |
| // Return a composite literal for a type descriptor with a name. |
| |
| Expression* |
| Type::named_type_descriptor(Gogo* gogo, Type* type, Named_type* name) |
| { |
| go_assert(name != NULL && type->named_type() != name); |
| return type->do_type_descriptor(gogo, name); |
| } |
| |
| // Make a builtin struct type from a list of fields. The fields are |
| // pairs of a name and a type. |
| |
| Struct_type* |
| Type::make_builtin_struct_type(int nfields, ...) |
| { |
| va_list ap; |
| va_start(ap, nfields); |
| |
| Location bloc = Linemap::predeclared_location(); |
| Struct_field_list* sfl = new Struct_field_list(); |
| for (int i = 0; i < nfields; i++) |
| { |
| const char* field_name = va_arg(ap, const char *); |
| Type* type = va_arg(ap, Type*); |
| sfl->push_back(Struct_field(Typed_identifier(field_name, type, bloc))); |
| } |
| |
| va_end(ap); |
| |
| Struct_type* ret = Type::make_struct_type(sfl, bloc); |
| ret->set_is_struct_incomparable(); |
| return ret; |
| } |
| |
| // A list of builtin named types. |
| |
| std::vector<Named_type*> Type::named_builtin_types; |
| |
| // Make a builtin named type. |
| |
| Named_type* |
| Type::make_builtin_named_type(const char* name, Type* type) |
| { |
| Location bloc = Linemap::predeclared_location(); |
| Named_object* no = Named_object::make_type(name, NULL, type, bloc); |
| Named_type* ret = no->type_value(); |
| Type::named_builtin_types.push_back(ret); |
| return ret; |
| } |
| |
| // Convert the named builtin types. |
| |
| void |
| Type::convert_builtin_named_types(Gogo* gogo) |
| { |
| for (std::vector<Named_type*>::const_iterator p = |
| Type::named_builtin_types.begin(); |
| p != Type::named_builtin_types.end(); |
| ++p) |
| { |
| bool r = (*p)->verify(); |
| go_assert(r); |
| (*p)->convert(gogo); |
| } |
| } |
| |
| // Return the type of a type descriptor. We should really tie this to |
| // runtime.Type rather than copying it. This must match the struct "_type" |
| // declared in libgo/go/runtime/type.go. |
| |
| Type* |
| Type::make_type_descriptor_type() |
| { |
| static Type* ret; |
| if (ret == NULL) |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| Type* uint8_type = Type::lookup_integer_type("uint8"); |
| Type* pointer_uint8_type = Type::make_pointer_type(uint8_type); |
| Type* uint32_type = Type::lookup_integer_type("uint32"); |
| Type* uintptr_type = Type::lookup_integer_type("uintptr"); |
| Type* string_type = Type::lookup_string_type(); |
| Type* pointer_string_type = Type::make_pointer_type(string_type); |
| |
| // This is an unnamed version of unsafe.Pointer. Perhaps we |
| // should use the named version instead, although that would |
| // require us to create the unsafe package if it has not been |
| // imported. It probably doesn't matter. |
| Type* void_type = Type::make_void_type(); |
| Type* unsafe_pointer_type = Type::make_pointer_type(void_type); |
| |
| Typed_identifier_list *params = new Typed_identifier_list(); |
| params->push_back(Typed_identifier("key", unsafe_pointer_type, bloc)); |
| params->push_back(Typed_identifier("seed", uintptr_type, bloc)); |
| |
| Typed_identifier_list* results = new Typed_identifier_list(); |
| results->push_back(Typed_identifier("", uintptr_type, bloc)); |
| |
| Type* hash_fntype = Type::make_function_type(NULL, params, results, |
| bloc); |
| |
| params = new Typed_identifier_list(); |
| params->push_back(Typed_identifier("key1", unsafe_pointer_type, bloc)); |
| params->push_back(Typed_identifier("key2", unsafe_pointer_type, bloc)); |
| |
| results = new Typed_identifier_list(); |
| results->push_back(Typed_identifier("", Type::lookup_bool_type(), bloc)); |
| |
| Type* equal_fntype = Type::make_function_type(NULL, params, results, |
| bloc); |
| |
| // Forward declaration for the type descriptor type. |
| Named_object* named_type_descriptor_type = |
| Named_object::make_type_declaration("_type", NULL, bloc); |
| Type* ft = Type::make_forward_declaration(named_type_descriptor_type); |
| Type* pointer_type_descriptor_type = Type::make_pointer_type(ft); |
| |
| // The type of a method on a concrete type. |
| Struct_type* method_type = |
| Type::make_builtin_struct_type(5, |
| "name", pointer_string_type, |
| "pkgPath", pointer_string_type, |
| "mtyp", pointer_type_descriptor_type, |
| "typ", pointer_type_descriptor_type, |
| "tfn", unsafe_pointer_type); |
| Named_type* named_method_type = |
| Type::make_builtin_named_type("method", method_type); |
| |
| // Information for types with a name or methods. |
| Type* slice_named_method_type = |
| Type::make_array_type(named_method_type, NULL); |
| Struct_type* uncommon_type = |
| Type::make_builtin_struct_type(3, |
| "name", pointer_string_type, |
| "pkgPath", pointer_string_type, |
| "methods", slice_named_method_type); |
| Named_type* named_uncommon_type = |
| Type::make_builtin_named_type("uncommonType", uncommon_type); |
| |
| Type* pointer_uncommon_type = |
| Type::make_pointer_type(named_uncommon_type); |
| |
| // The type descriptor type. |
| |
| Struct_type* type_descriptor_type = |
| Type::make_builtin_struct_type(12, |
| "size", uintptr_type, |
| "ptrdata", uintptr_type, |
| "hash", uint32_type, |
| "kind", uint8_type, |
| "align", uint8_type, |
| "fieldAlign", uint8_type, |
| "hashfn", hash_fntype, |
| "equalfn", equal_fntype, |
| "gcdata", pointer_uint8_type, |
| "string", pointer_string_type, |
| "", pointer_uncommon_type, |
| "ptrToThis", |
| pointer_type_descriptor_type); |
| |
| Named_type* named = Type::make_builtin_named_type("_type", |
| type_descriptor_type); |
| |
| named_type_descriptor_type->set_type_value(named); |
| |
| ret = named; |
| } |
| |
| return ret; |
| } |
| |
| // Make the type of a pointer to a type descriptor as represented in |
| // Go. |
| |
| Type* |
| Type::make_type_descriptor_ptr_type() |
| { |
| static Type* ret; |
| if (ret == NULL) |
| ret = Type::make_pointer_type(Type::make_type_descriptor_type()); |
| return ret; |
| } |
| |
| // Return the alignment required by the memequalN function. N is a |
| // type size: 16, 32, 64, or 128. The memequalN functions are defined |
| // in libgo/go/runtime/alg.go. |
| |
| int64_t |
| Type::memequal_align(Gogo* gogo, int size) |
| { |
| const char* tn; |
| switch (size) |
| { |
| case 16: |
| tn = "int16"; |
| break; |
| case 32: |
| tn = "int32"; |
| break; |
| case 64: |
| tn = "int64"; |
| break; |
| case 128: |
| // The code uses [2]int64, which must have the same alignment as |
| // int64. |
| tn = "int64"; |
| break; |
| default: |
| go_unreachable(); |
| } |
| |
| Type* t = Type::lookup_integer_type(tn); |
| |
| int64_t ret; |
| if (!t->backend_type_align(gogo, &ret)) |
| go_unreachable(); |
| return ret; |
| } |
| |
| // Return whether this type needs specially built type functions. |
| // This returns true for types that are comparable and either can not |
| // use an identity comparison, or are a non-standard size. |
| |
| bool |
| Type::needs_specific_type_functions(Gogo* gogo) |
| { |
| Named_type* nt = this->named_type(); |
| if (nt != NULL && nt->is_alias()) |
| return false; |
| if (!this->is_comparable()) |
| return false; |
| if (!this->compare_is_identity(gogo)) |
| return true; |
| |
| // We create a few predeclared types for type descriptors; they are |
| // really just for the backend and don't need hash or equality |
| // functions. |
| if (nt != NULL && Linemap::is_predeclared_location(nt->location())) |
| return false; |
| |
| int64_t size, align; |
| if (!this->backend_type_size(gogo, &size) |
| || !this->backend_type_align(gogo, &align)) |
| { |
| go_assert(saw_errors()); |
| return false; |
| } |
| // This switch matches the one in Type::type_functions. |
| switch (size) |
| { |
| case 0: |
| case 1: |
| case 2: |
| return align < Type::memequal_align(gogo, 16); |
| case 4: |
| return align < Type::memequal_align(gogo, 32); |
| case 8: |
| return align < Type::memequal_align(gogo, 64); |
| case 16: |
| return align < Type::memequal_align(gogo, 128); |
| default: |
| return true; |
| } |
| } |
| |
| // Set *HASH_FN and *EQUAL_FN to the runtime functions which compute a |
| // hash code for this type and which compare whether two values of |
| // this type are equal. If NAME is not NULL it is the name of this |
| // type. HASH_FNTYPE and EQUAL_FNTYPE are the types of these |
| // functions, for convenience; they may be NULL. |
| |
| void |
| Type::type_functions(Gogo* gogo, Named_type* name, Function_type* hash_fntype, |
| Function_type* equal_fntype, Named_object** hash_fn, |
| Named_object** equal_fn) |
| { |
| // If the unaliased type is not a named type, then the type does not |
| // have a name after all. |
| if (name != NULL) |
| name = name->unalias()->named_type(); |
| |
| if (!this->is_comparable()) |
| { |
| *hash_fn = NULL; |
| *equal_fn = NULL; |
| return; |
| } |
| |
| if (hash_fntype == NULL || equal_fntype == NULL) |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| Type* uintptr_type = Type::lookup_integer_type("uintptr"); |
| Type* void_type = Type::make_void_type(); |
| Type* unsafe_pointer_type = Type::make_pointer_type(void_type); |
| |
| if (hash_fntype == NULL) |
| { |
| Typed_identifier_list* params = new Typed_identifier_list(); |
| params->push_back(Typed_identifier("key", unsafe_pointer_type, |
| bloc)); |
| params->push_back(Typed_identifier("seed", uintptr_type, bloc)); |
| |
| Typed_identifier_list* results = new Typed_identifier_list(); |
| results->push_back(Typed_identifier("", uintptr_type, bloc)); |
| |
| hash_fntype = Type::make_function_type(NULL, params, results, bloc); |
| } |
| if (equal_fntype == NULL) |
| { |
| Typed_identifier_list* params = new Typed_identifier_list(); |
| params->push_back(Typed_identifier("key1", unsafe_pointer_type, |
| bloc)); |
| params->push_back(Typed_identifier("key2", unsafe_pointer_type, |
| bloc)); |
| |
| Typed_identifier_list* results = new Typed_identifier_list(); |
| results->push_back(Typed_identifier("", Type::lookup_bool_type(), |
| bloc)); |
| |
| equal_fntype = Type::make_function_type(NULL, params, results, bloc); |
| } |
| } |
| |
| const char* hash_fnname; |
| const char* equal_fnname; |
| if (this->compare_is_identity(gogo)) |
| { |
| int64_t size, align; |
| if (!this->backend_type_size(gogo, &size) |
| || !this->backend_type_align(gogo, &align)) |
| { |
| go_assert(saw_errors()); |
| return; |
| } |
| bool build_functions = false; |
| // This switch matches the one in Type::needs_specific_type_functions. |
| // The alignment tests are because of the memequal functions, |
| // which assume that the values are aligned as required for an |
| // integer of that size. |
| switch (size) |
| { |
| case 0: |
| hash_fnname = "runtime.memhash0"; |
| equal_fnname = "runtime.memequal0"; |
| break; |
| case 1: |
| hash_fnname = "runtime.memhash8"; |
| equal_fnname = "runtime.memequal8"; |
| break; |
| case 2: |
| if (align < Type::memequal_align(gogo, 16)) |
| build_functions = true; |
| else |
| { |
| hash_fnname = "runtime.memhash16"; |
| equal_fnname = "runtime.memequal16"; |
| } |
| break; |
| case 4: |
| if (align < Type::memequal_align(gogo, 32)) |
| build_functions = true; |
| else |
| { |
| hash_fnname = "runtime.memhash32"; |
| equal_fnname = "runtime.memequal32"; |
| } |
| break; |
| case 8: |
| if (align < Type::memequal_align(gogo, 64)) |
| build_functions = true; |
| else |
| { |
| hash_fnname = "runtime.memhash64"; |
| equal_fnname = "runtime.memequal64"; |
| } |
| break; |
| case 16: |
| if (align < Type::memequal_align(gogo, 128)) |
| build_functions = true; |
| else |
| { |
| hash_fnname = "runtime.memhash128"; |
| equal_fnname = "runtime.memequal128"; |
| } |
| break; |
| default: |
| build_functions = true; |
| break; |
| } |
| if (build_functions) |
| { |
| // We don't have a built-in function for a type of this size |
| // and alignment. Build a function to use that calls the |
| // generic hash/equality functions for identity, passing the size. |
| this->specific_type_functions(gogo, name, size, hash_fntype, |
| equal_fntype, hash_fn, equal_fn); |
| return; |
| } |
| } |
| else |
| { |
| switch (this->base()->classification()) |
| { |
| case Type::TYPE_ERROR: |
| case Type::TYPE_VOID: |
| case Type::TYPE_NIL: |
| case Type::TYPE_FUNCTION: |
| case Type::TYPE_MAP: |
| // For these types is_comparable should have returned false. |
| go_unreachable(); |
| |
| case Type::TYPE_BOOLEAN: |
| case Type::TYPE_INTEGER: |
| case Type::TYPE_POINTER: |
| case Type::TYPE_CHANNEL: |
| // For these types compare_is_identity should have returned true. |
| go_unreachable(); |
| |
| case Type::TYPE_FLOAT: |
| switch (this->float_type()->bits()) |
| { |
| case 32: |
| hash_fnname = "runtime.f32hash"; |
| equal_fnname = "runtime.f32equal"; |
| break; |
| case 64: |
| hash_fnname = "runtime.f64hash"; |
| equal_fnname = "runtime.f64equal"; |
| break; |
| default: |
| go_unreachable(); |
| } |
| break; |
| |
| case Type::TYPE_COMPLEX: |
| switch (this->complex_type()->bits()) |
| { |
| case 64: |
| hash_fnname = "runtime.c64hash"; |
| equal_fnname = "runtime.c64equal"; |
| break; |
| case 128: |
| hash_fnname = "runtime.c128hash"; |
| equal_fnname = "runtime.c128equal"; |
| break; |
| default: |
| go_unreachable(); |
| } |
| break; |
| |
| case Type::TYPE_STRING: |
| hash_fnname = "runtime.strhash"; |
| equal_fnname = "runtime.strequal"; |
| break; |
| |
| case Type::TYPE_STRUCT: |
| { |
| // This is a struct which can not be compared using a |
| // simple identity function. We need to build a function |
| // for comparison. |
| this->specific_type_functions(gogo, name, -1, hash_fntype, |
| equal_fntype, hash_fn, equal_fn); |
| return; |
| } |
| |
| case Type::TYPE_ARRAY: |
| if (this->is_slice_type()) |
| { |
| // Type::is_compatible_for_comparison should have |
| // returned false. |
| go_unreachable(); |
| } |
| else |
| { |
| // This is an array which can not be compared using a |
| // simple identity function. We need to build a |
| // function for comparison. |
| this->specific_type_functions(gogo, name, -1, hash_fntype, |
| equal_fntype, hash_fn, equal_fn); |
| return; |
| } |
| break; |
| |
| case Type::TYPE_INTERFACE: |
| if (this->interface_type()->is_empty()) |
| { |
| hash_fnname = "runtime.nilinterhash"; |
| equal_fnname = "runtime.nilinterequal"; |
| } |
| else |
| { |
| hash_fnname = "runtime.interhash"; |
| equal_fnname = "runtime.interequal"; |
| } |
| break; |
| |
| case Type::TYPE_NAMED: |
| case Type::TYPE_FORWARD: |
| go_unreachable(); |
| |
| default: |
| go_unreachable(); |
| } |
| } |
| |
| |
| Location bloc = Linemap::predeclared_location(); |
| *hash_fn = Named_object::make_function_declaration(hash_fnname, NULL, |
| hash_fntype, bloc); |
| (*hash_fn)->func_declaration_value()->set_asm_name(hash_fnname); |
| *equal_fn = Named_object::make_function_declaration(equal_fnname, NULL, |
| equal_fntype, bloc); |
| (*equal_fn)->func_declaration_value()->set_asm_name(equal_fnname); |
| } |
| |
| // A hash table mapping types to the specific hash functions. |
| |
| Type::Type_functions Type::type_functions_table; |
| |
| // Handle a type function which is specific to a type: if SIZE == -1, |
| // this is a struct or array that can not use an identity comparison. |
| // Otherwise, it is a type that uses an identity comparison but is not |
| // one of the standard supported sizes. |
| |
| void |
| Type::specific_type_functions(Gogo* gogo, Named_type* name, int64_t size, |
| Function_type* hash_fntype, |
| Function_type* equal_fntype, |
| Named_object** hash_fn, |
| Named_object** equal_fn) |
| { |
| Hash_equal_fn fnull(NULL, NULL); |
| std::pair<Type*, Hash_equal_fn> val(name != NULL ? name : this, fnull); |
| std::pair<Type_functions::iterator, bool> ins = |
| Type::type_functions_table.insert(val); |
| if (!ins.second) |
| { |
| // We already have functions for this type |
| *hash_fn = ins.first->second.first; |
| *equal_fn = ins.first->second.second; |
| return; |
| } |
| |
| std::string hash_name; |
| std::string equal_name; |
| gogo->specific_type_function_names(this, name, &hash_name, &equal_name); |
| |
| Location bloc = Linemap::predeclared_location(); |
| |
| const Package* package = NULL; |
| bool is_defined_elsewhere = |
| this->type_descriptor_defined_elsewhere(name, &package); |
| if (is_defined_elsewhere) |
| { |
| *hash_fn = Named_object::make_function_declaration(hash_name, package, |
| hash_fntype, bloc); |
| *equal_fn = Named_object::make_function_declaration(equal_name, package, |
| equal_fntype, bloc); |
| } |
| else |
| { |
| *hash_fn = gogo->declare_package_function(hash_name, hash_fntype, bloc); |
| *equal_fn = gogo->declare_package_function(equal_name, equal_fntype, |
| bloc); |
| } |
| |
| ins.first->second.first = *hash_fn; |
| ins.first->second.second = *equal_fn; |
| |
| if (!is_defined_elsewhere) |
| { |
| if (gogo->in_global_scope()) |
| this->write_specific_type_functions(gogo, name, size, hash_name, |
| hash_fntype, equal_name, |
| equal_fntype); |
| else |
| gogo->queue_specific_type_function(this, name, size, hash_name, |
| hash_fntype, equal_name, |
| equal_fntype); |
| } |
| } |
| |
| // Write the hash and equality functions for a type which needs to be |
| // written specially. |
| |
| void |
| Type::write_specific_type_functions(Gogo* gogo, Named_type* name, int64_t size, |
| const std::string& hash_name, |
| Function_type* hash_fntype, |
| const std::string& equal_name, |
| Function_type* equal_fntype) |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| if (gogo->specific_type_functions_are_written()) |
| { |
| go_assert(saw_errors()); |
| return; |
| } |
| |
| go_assert(this->is_comparable()); |
| |
| Named_object* hash_fn = gogo->start_function(hash_name, hash_fntype, false, |
| bloc); |
| hash_fn->func_value()->set_is_type_specific_function(); |
| gogo->start_block(bloc); |
| |
| if (size != -1) |
| this->write_identity_hash(gogo, size); |
| else if (name != NULL && name->real_type()->named_type() != NULL) |
| this->write_named_hash(gogo, name, hash_fntype, equal_fntype); |
| else if (this->struct_type() != NULL) |
| this->struct_type()->write_hash_function(gogo, name, hash_fntype, |
| equal_fntype); |
| else if (this->array_type() != NULL) |
| this->array_type()->write_hash_function(gogo, name, hash_fntype, |
| equal_fntype); |
| else |
| go_unreachable(); |
| |
| Block* b = gogo->finish_block(bloc); |
| gogo->add_block(b, bloc); |
| gogo->lower_block(hash_fn, b); |
| gogo->finish_function(bloc); |
| |
| Named_object *equal_fn = gogo->start_function(equal_name, equal_fntype, |
| false, bloc); |
| equal_fn->func_value()->set_is_type_specific_function(); |
| gogo->start_block(bloc); |
| |
| if (size != -1) |
| this->write_identity_equal(gogo, size); |
| else if (name != NULL && name->real_type()->named_type() != NULL) |
| this->write_named_equal(gogo, name); |
| else if (this->struct_type() != NULL) |
| this->struct_type()->write_equal_function(gogo, name); |
| else if (this->array_type() != NULL) |
| this->array_type()->write_equal_function(gogo, name); |
| else |
| go_unreachable(); |
| |
| b = gogo->finish_block(bloc); |
| gogo->add_block(b, bloc); |
| gogo->lower_block(equal_fn, b); |
| gogo->finish_function(bloc); |
| |
| // Build the function descriptors for the type descriptor to refer to. |
| hash_fn->func_value()->descriptor(gogo, hash_fn); |
| equal_fn->func_value()->descriptor(gogo, equal_fn); |
| } |
| |
| // Write a hash function for a type that can use an identity hash but |
| // is not one of the standard supported sizes. For example, this |
| // would be used for the type [3]byte. This builds a return statement |
| // that returns a call to the memhash function, passing the key and |
| // seed from the function arguments (already constructed before this |
| // is called), and the constant size. |
| |
| void |
| Type::write_identity_hash(Gogo* gogo, int64_t size) |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| Type* unsafe_pointer_type = Type::make_pointer_type(Type::make_void_type()); |
| Type* uintptr_type = Type::lookup_integer_type("uintptr"); |
| |
| Typed_identifier_list* params = new Typed_identifier_list(); |
| params->push_back(Typed_identifier("key", unsafe_pointer_type, bloc)); |
| params->push_back(Typed_identifier("seed", uintptr_type, bloc)); |
| params->push_back(Typed_identifier("size", uintptr_type, bloc)); |
| |
| Typed_identifier_list* results = new Typed_identifier_list(); |
| results->push_back(Typed_identifier("", uintptr_type, bloc)); |
| |
| Function_type* memhash_fntype = Type::make_function_type(NULL, params, |
| results, bloc); |
| |
| Named_object* memhash = |
| Named_object::make_function_declaration("runtime.memhash", NULL, |
| memhash_fntype, bloc); |
| memhash->func_declaration_value()->set_asm_name("runtime.memhash"); |
| |
| Named_object* key_arg = gogo->lookup("key", NULL); |
| go_assert(key_arg != NULL); |
| Named_object* seed_arg = gogo->lookup("seed", NULL); |
| go_assert(seed_arg != NULL); |
| |
| Expression* key_ref = Expression::make_var_reference(key_arg, bloc); |
| Expression* seed_ref = Expression::make_var_reference(seed_arg, bloc); |
| Expression* size_arg = Expression::make_integer_int64(size, uintptr_type, |
| bloc); |
| Expression_list* args = new Expression_list(); |
| args->push_back(key_ref); |
| args->push_back(seed_ref); |
| args->push_back(size_arg); |
| Expression* func = Expression::make_func_reference(memhash, NULL, bloc); |
| Expression* call = Expression::make_call(func, args, false, bloc); |
| |
| Expression_list* vals = new Expression_list(); |
| vals->push_back(call); |
| Statement* s = Statement::make_return_statement(vals, bloc); |
| gogo->add_statement(s); |
| } |
| |
| // Write an equality function for a type that can use an identity |
| // equality comparison but is not one of the standard supported sizes. |
| // For example, this would be used for the type [3]byte. This builds |
| // a return statement that returns a call to the memequal function, |
| // passing the two keys from the function arguments (already |
| // constructed before this is called), and the constant size. |
| |
| void |
| Type::write_identity_equal(Gogo* gogo, int64_t size) |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| Type* unsafe_pointer_type = Type::make_pointer_type(Type::make_void_type()); |
| Type* uintptr_type = Type::lookup_integer_type("uintptr"); |
| |
| Typed_identifier_list* params = new Typed_identifier_list(); |
| params->push_back(Typed_identifier("key1", unsafe_pointer_type, bloc)); |
| params->push_back(Typed_identifier("key2", unsafe_pointer_type, bloc)); |
| params->push_back(Typed_identifier("size", uintptr_type, bloc)); |
| |
| Typed_identifier_list* results = new Typed_identifier_list(); |
| results->push_back(Typed_identifier("", Type::lookup_bool_type(), bloc)); |
| |
| Function_type* memequal_fntype = Type::make_function_type(NULL, params, |
| results, bloc); |
| |
| Named_object* memequal = |
| Named_object::make_function_declaration("runtime.memequal", NULL, |
| memequal_fntype, bloc); |
| memequal->func_declaration_value()->set_asm_name("runtime.memequal"); |
| |
| Named_object* key1_arg = gogo->lookup("key1", NULL); |
| go_assert(key1_arg != NULL); |
| Named_object* key2_arg = gogo->lookup("key2", NULL); |
| go_assert(key2_arg != NULL); |
| |
| Expression* key1_ref = Expression::make_var_reference(key1_arg, bloc); |
| Expression* key2_ref = Expression::make_var_reference(key2_arg, bloc); |
| Expression* size_arg = Expression::make_integer_int64(size, uintptr_type, |
| bloc); |
| Expression_list* args = new Expression_list(); |
| args->push_back(key1_ref); |
| args->push_back(key2_ref); |
| args->push_back(size_arg); |
| Expression* func = Expression::make_func_reference(memequal, NULL, bloc); |
| Expression* call = Expression::make_call(func, args, false, bloc); |
| |
| Expression_list* vals = new Expression_list(); |
| vals->push_back(call); |
| Statement* s = Statement::make_return_statement(vals, bloc); |
| gogo->add_statement(s); |
| } |
| |
| // Write a hash function that simply calls the hash function for a |
| // named type. This is used when one named type is defined as |
| // another. This ensures that this case works when the other named |
| // type is defined in another package and relies on calling hash |
| // functions defined only in that package. |
| |
| void |
| Type::write_named_hash(Gogo* gogo, Named_type* name, |
| Function_type* hash_fntype, Function_type* equal_fntype) |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| Named_type* base_type = name->real_type()->named_type(); |
| while (base_type->is_alias()) |
| { |
| base_type = base_type->real_type()->named_type(); |
| go_assert(base_type != NULL); |
| } |
| go_assert(base_type != NULL); |
| |
| // The pointer to the type we are going to hash. This is an |
| // unsafe.Pointer. |
| Named_object* key_arg = gogo->lookup("key", NULL); |
| go_assert(key_arg != NULL); |
| |
| // The seed argument to the hash function. |
| Named_object* seed_arg = gogo->lookup("seed", NULL); |
| go_assert(seed_arg != NULL); |
| |
| Named_object* hash_fn; |
| Named_object* equal_fn; |
| name->real_type()->type_functions(gogo, base_type, hash_fntype, equal_fntype, |
| &hash_fn, &equal_fn); |
| |
| // Call the hash function for the base type. |
| Expression* key_ref = Expression::make_var_reference(key_arg, bloc); |
| Expression* seed_ref = Expression::make_var_reference(seed_arg, bloc); |
| Expression_list* args = new Expression_list(); |
| args->push_back(key_ref); |
| args->push_back(seed_ref); |
| Expression* func = Expression::make_func_reference(hash_fn, NULL, bloc); |
| Expression* call = Expression::make_call(func, args, false, bloc); |
| |
| // Return the hash of the base type. |
| Expression_list* vals = new Expression_list(); |
| vals->push_back(call); |
| Statement* s = Statement::make_return_statement(vals, bloc); |
| gogo->add_statement(s); |
| } |
| |
| // Write an equality function that simply calls the equality function |
| // for a named type. This is used when one named type is defined as |
| // another. This ensures that this case works when the other named |
| // type is defined in another package and relies on calling equality |
| // functions defined only in that package. |
| |
| void |
| Type::write_named_equal(Gogo* gogo, Named_type* name) |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| // The pointers to the types we are going to compare. These have |
| // type unsafe.Pointer. |
| Named_object* key1_arg = gogo->lookup("key1", NULL); |
| Named_object* key2_arg = gogo->lookup("key2", NULL); |
| go_assert(key1_arg != NULL && key2_arg != NULL); |
| |
| Named_type* base_type = name->real_type()->named_type(); |
| go_assert(base_type != NULL); |
| |
| // Build temporaries with the base type. |
| Type* pt = Type::make_pointer_type(base_type); |
| |
| Expression* ref = Expression::make_var_reference(key1_arg, bloc); |
| ref = Expression::make_cast(pt, ref, bloc); |
| Temporary_statement* p1 = Statement::make_temporary(pt, ref, bloc); |
| gogo->add_statement(p1); |
| |
| ref = Expression::make_var_reference(key2_arg, bloc); |
| ref = Expression::make_cast(pt, ref, bloc); |
| Temporary_statement* p2 = Statement::make_temporary(pt, ref, bloc); |
| gogo->add_statement(p2); |
| |
| // Compare the values for equality. |
| Expression* t1 = Expression::make_temporary_reference(p1, bloc); |
| t1 = Expression::make_dereference(t1, Expression::NIL_CHECK_NOT_NEEDED, bloc); |
| |
| Expression* t2 = Expression::make_temporary_reference(p2, bloc); |
| t2 = Expression::make_dereference(t2, Expression::NIL_CHECK_NOT_NEEDED, bloc); |
| |
| Expression* cond = Expression::make_binary(OPERATOR_EQEQ, t1, t2, bloc); |
| |
| // Return the equality comparison. |
| Expression_list* vals = new Expression_list(); |
| vals->push_back(cond); |
| Statement* s = Statement::make_return_statement(vals, bloc); |
| gogo->add_statement(s); |
| } |
| |
| // Return a composite literal for the type descriptor for a plain type |
| // of kind RUNTIME_TYPE_KIND named NAME. |
| |
| Expression* |
| Type::type_descriptor_constructor(Gogo* gogo, int runtime_type_kind, |
| Named_type* name, const Methods* methods, |
| bool only_value_methods) |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| Type* td_type = Type::make_type_descriptor_type(); |
| const Struct_field_list* fields = td_type->struct_type()->fields(); |
| |
| Expression_list* vals = new Expression_list(); |
| vals->reserve(12); |
| |
| if (!this->has_pointer()) |
| runtime_type_kind |= RUNTIME_TYPE_KIND_NO_POINTERS; |
| if (this->points_to() != NULL) |
| runtime_type_kind |= RUNTIME_TYPE_KIND_DIRECT_IFACE; |
| int64_t ptrsize; |
| int64_t ptrdata; |
| if (this->needs_gcprog(gogo, &ptrsize, &ptrdata)) |
| runtime_type_kind |= RUNTIME_TYPE_KIND_GC_PROG; |
| |
| Struct_field_list::const_iterator p = fields->begin(); |
| go_assert(p->is_field_name("size")); |
| Expression::Type_info type_info = Expression::TYPE_INFO_SIZE; |
| vals->push_back(Expression::make_type_info(this, type_info)); |
| |
| ++p; |
| go_assert(p->is_field_name("ptrdata")); |
| type_info = Expression::TYPE_INFO_DESCRIPTOR_PTRDATA; |
| vals->push_back(Expression::make_type_info(this, type_info)); |
| |
| ++p; |
| go_assert(p->is_field_name("hash")); |
| unsigned int h; |
| if (name != NULL) |
| h = name->hash_for_method(gogo); |
| else |
| h = this->hash_for_method(gogo); |
| vals->push_back(Expression::make_integer_ul(h, p->type(), bloc)); |
| |
| ++p; |
| go_assert(p->is_field_name("kind")); |
| vals->push_back(Expression::make_integer_ul(runtime_type_kind, p->type(), |
| bloc)); |
| |
| ++p; |
| go_assert(p->is_field_name("align")); |
| type_info = Expression::TYPE_INFO_ALIGNMENT; |
| vals->push_back(Expression::make_type_info(this, type_info)); |
| |
| ++p; |
| go_assert(p->is_field_name("fieldAlign")); |
| type_info = Expression::TYPE_INFO_FIELD_ALIGNMENT; |
| vals->push_back(Expression::make_type_info(this, type_info)); |
| |
| ++p; |
| go_assert(p->is_field_name("hashfn")); |
| Function_type* hash_fntype = p->type()->function_type(); |
| |
| ++p; |
| go_assert(p->is_field_name("equalfn")); |
| Function_type* equal_fntype = p->type()->function_type(); |
| |
| Named_object* hash_fn; |
| Named_object* equal_fn; |
| this->type_functions(gogo, name, hash_fntype, equal_fntype, &hash_fn, |
| &equal_fn); |
| if (hash_fn == NULL) |
| vals->push_back(Expression::make_cast(hash_fntype, |
| Expression::make_nil(bloc), |
| bloc)); |
| else |
| vals->push_back(Expression::make_func_reference(hash_fn, NULL, bloc)); |
| if (equal_fn == NULL) |
| vals->push_back(Expression::make_cast(equal_fntype, |
| Expression::make_nil(bloc), |
| bloc)); |
| else |
| vals->push_back(Expression::make_func_reference(equal_fn, NULL, bloc)); |
| |
| ++p; |
| go_assert(p->is_field_name("gcdata")); |
| vals->push_back(Expression::make_gc_symbol(this)); |
| |
| ++p; |
| go_assert(p->is_field_name("string")); |
| Expression* s = Expression::make_string((name != NULL |
| ? name->reflection(gogo) |
| : this->reflection(gogo)), |
| bloc); |
| vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); |
| |
| ++p; |
| go_assert(p->is_field_name("uncommonType")); |
| if (name == NULL && methods == NULL) |
| vals->push_back(Expression::make_nil(bloc)); |
| else |
| { |
| if (methods == NULL) |
| methods = name->methods(); |
| vals->push_back(this->uncommon_type_constructor(gogo, |
| p->type()->deref(), |
| name, methods, |
| only_value_methods)); |
| } |
| |
| ++p; |
| go_assert(p->is_field_name("ptrToThis")); |
| if (name == NULL && methods == NULL) |
| vals->push_back(Expression::make_nil(bloc)); |
| else |
| { |
| Type* pt; |
| if (name != NULL) |
| pt = Type::make_pointer_type(name); |
| else |
| pt = Type::make_pointer_type(this); |
| vals->push_back(Expression::make_type_descriptor(pt, bloc)); |
| } |
| |
| ++p; |
| go_assert(p == fields->end()); |
| |
| return Expression::make_struct_composite_literal(td_type, vals, bloc); |
| } |
| |
| // The maximum length of a GC ptrmask bitmap. This corresponds to the |
| // length used by the gc toolchain, and also appears in |
| // libgo/go/reflect/type.go. |
| |
| static const int64_t max_ptrmask_bytes = 2048; |
| |
| // Return a pointer to the Garbage Collection information for this type. |
| |
| Bexpression* |
| Type::gc_symbol_pointer(Gogo* gogo) |
| { |
| Type* t = this->unalias(); |
| |
| if (!t->has_pointer()) |
| return gogo->backend()->nil_pointer_expression(); |
| |
| if (t->gc_symbol_var_ == NULL) |
| { |
| t->make_gc_symbol_var(gogo); |
| go_assert(t->gc_symbol_var_ != NULL); |
| } |
| Location bloc = Linemap::predeclared_location(); |
| Bexpression* var_expr = |
| gogo->backend()->var_expression(t->gc_symbol_var_, bloc); |
| Bexpression* addr_expr = |
| gogo->backend()->address_expression(var_expr, bloc); |
| |
| Type* uint8_type = Type::lookup_integer_type("uint8"); |
| Type* pointer_uint8_type = Type::make_pointer_type(uint8_type); |
| Btype* ubtype = pointer_uint8_type->get_backend(gogo); |
| return gogo->backend()->convert_expression(ubtype, addr_expr, bloc); |
| } |
| |
| // A mapping from unnamed types to GC symbol variables. |
| |
| Type::GC_symbol_vars Type::gc_symbol_vars; |
| |
| // Build the GC symbol for this type. |
| |
| void |
| Type::make_gc_symbol_var(Gogo* gogo) |
| { |
| go_assert(this->gc_symbol_var_ == NULL); |
| |
| Named_type* nt = this->named_type(); |
| |
| // We can have multiple instances of unnamed types and similar to type |
| // descriptors, we only want to the emit the GC data once, so we use a |
| // hash table. |
| Bvariable** phash = NULL; |
| if (nt == NULL) |
| { |
| Bvariable* bvnull = NULL; |
| std::pair<GC_symbol_vars::iterator, bool> ins = |
| Type::gc_symbol_vars.insert(std::make_pair(this, bvnull)); |
| if (!ins.second) |
| { |
| // We've already built a gc symbol for this type. |
| this->gc_symbol_var_ = ins.first->second; |
| return; |
| } |
| phash = &ins.first->second; |
| } |
| |
| int64_t ptrsize; |
| int64_t ptrdata; |
| if (!this->needs_gcprog(gogo, &ptrsize, &ptrdata)) |
| { |
| this->gc_symbol_var_ = this->gc_ptrmask_var(gogo, ptrsize, ptrdata); |
| if (phash != NULL) |
| *phash = this->gc_symbol_var_; |
| return; |
| } |
| |
| std::string sym_name = gogo->gc_symbol_name(this); |
| |
| // Build the contents of the gc symbol. |
| Expression* sym_init = this->gcprog_constructor(gogo, ptrsize, ptrdata); |
| Btype* sym_btype = sym_init->type()->get_backend(gogo); |
| |
| // If the type descriptor for this type is defined somewhere else, so is the |
| // GC symbol. |
| const Package* dummy; |
| if (this->type_descriptor_defined_elsewhere(nt, &dummy)) |
| { |
| std::string asm_name(go_selectively_encode_id(sym_name)); |
| this->gc_symbol_var_ = |
| gogo->backend()->implicit_variable_reference(sym_name, asm_name, |
| sym_btype); |
| if (phash != NULL) |
| *phash = this->gc_symbol_var_; |
| return; |
| } |
| |
| // See if this gc symbol can appear in multiple packages. |
| bool is_common = false; |
| if (nt != NULL) |
| { |
| // We create the symbol for a builtin type whenever we need |
| // it. |
| is_common = nt->is_builtin(); |
| } |
| else |
| { |
| // This is an unnamed type. The descriptor could be defined in |
| // any package where it is needed, and the linker will pick one |
| // descriptor to keep. |
| is_common = true; |
| } |
| |
| // Since we are building the GC symbol in this package, we must create the |
| // variable before converting the initializer to its backend representation |
| // because the initializer may refer to the GC symbol for this type. |
| std::string asm_name(go_selectively_encode_id(sym_name)); |
| this->gc_symbol_var_ = |
| gogo->backend()->implicit_variable(sym_name, asm_name, |
| sym_btype, false, true, is_common, 0); |
| if (phash != NULL) |
| *phash = this->gc_symbol_var_; |
| |
| Translate_context context(gogo, NULL, NULL, NULL); |
| context.set_is_const(); |
| Bexpression* sym_binit = sym_init->get_backend(&context); |
| gogo->backend()->implicit_variable_set_init(this->gc_symbol_var_, sym_name, |
| sym_btype, false, true, is_common, |
| sym_binit); |
| } |
| |
| // Return whether this type needs a GC program, and set *PTRDATA to |
| // the size of the pointer data in bytes and *PTRSIZE to the size of a |
| // pointer. |
| |
| bool |
| Type::needs_gcprog(Gogo* gogo, int64_t* ptrsize, int64_t* ptrdata) |
| { |
| Type* voidptr = Type::make_pointer_type(Type::make_void_type()); |
| if (!voidptr->backend_type_size(gogo, ptrsize)) |
| go_unreachable(); |
| |
| if (!this->backend_type_ptrdata(gogo, ptrdata)) |
| { |
| go_assert(saw_errors()); |
| return false; |
| } |
| |
| return *ptrdata / *ptrsize > max_ptrmask_bytes; |
| } |
| |
| // A simple class used to build a GC ptrmask for a type. |
| |
| class Ptrmask |
| { |
| public: |
| Ptrmask(size_t count) |
| : bits_((count + 7) / 8, 0) |
| {} |
| |
| void |
| set_from(Gogo*, Type*, int64_t ptrsize, int64_t offset); |
| |
| std::string |
| symname() const; |
| |
| Expression* |
| constructor(Gogo* gogo) const; |
| |
| private: |
| void |
| set(size_t index) |
| { this->bits_.at(index / 8) |= 1 << (index % 8); } |
| |
| // The actual bits. |
| std::vector<unsigned char> bits_; |
| }; |
| |
| // Set bits in ptrmask starting from OFFSET based on TYPE. OFFSET |
| // counts in bytes. PTRSIZE is the size of a pointer on the target |
| // system. |
| |
| void |
| Ptrmask::set_from(Gogo* gogo, Type* type, int64_t ptrsize, int64_t offset) |
| { |
| switch (type->base()->classification()) |
| { |
| default: |
| case Type::TYPE_NIL: |
| case Type::TYPE_CALL_MULTIPLE_RESULT: |
| case Type::TYPE_NAMED: |
| case Type::TYPE_FORWARD: |
| go_unreachable(); |
| |
| case Type::TYPE_ERROR: |
| case Type::TYPE_VOID: |
| case Type::TYPE_BOOLEAN: |
| case Type::TYPE_INTEGER: |
| case Type::TYPE_FLOAT: |
| case Type::TYPE_COMPLEX: |
| case Type::TYPE_SINK: |
| break; |
| |
| case Type::TYPE_FUNCTION: |
| case Type::TYPE_POINTER: |
| case Type::TYPE_MAP: |
| case Type::TYPE_CHANNEL: |
| // These types are all a single pointer. |
| go_assert((offset % ptrsize) == 0); |
| this->set(offset / ptrsize); |
| break; |
| |
| case Type::TYPE_STRING: |
| // A string starts with a single pointer. |
| go_assert((offset % ptrsize) == 0); |
| this->set(offset / ptrsize); |
| break; |
| |
| case Type::TYPE_INTERFACE: |
| // An interface is two pointers. |
| go_assert((offset % ptrsize) == 0); |
| this->set(offset / ptrsize); |
| this->set((offset / ptrsize) + 1); |
| break; |
| |
| case Type::TYPE_STRUCT: |
| { |
| if (!type->has_pointer()) |
| return; |
| |
| const Struct_field_list* fields = type->struct_type()->fields(); |
| int64_t soffset = 0; |
| for (Struct_field_list::const_iterator pf = fields->begin(); |
| pf != fields->end(); |
| ++pf) |
| { |
| int64_t field_align; |
| if (!pf->type()->backend_type_field_align(gogo, &field_align)) |
| { |
| go_assert(saw_errors()); |
| return; |
| } |
| soffset = (soffset + (field_align - 1)) &~ (field_align - 1); |
| |
| this->set_from(gogo, pf->type(), ptrsize, offset + soffset); |
| |
| int64_t field_size; |
| if (!pf->type()->backend_type_size(gogo, &field_size)) |
| { |
| go_assert(saw_errors()); |
| return; |
| } |
| soffset += field_size; |
| } |
| } |
| break; |
| |
| case Type::TYPE_ARRAY: |
| if (type->is_slice_type()) |
| { |
| // A slice starts with a single pointer. |
| go_assert((offset % ptrsize) == 0); |
| this->set(offset / ptrsize); |
| break; |
| } |
| else |
| { |
| if (!type->has_pointer()) |
| return; |
| |
| int64_t len; |
| if (!type->array_type()->int_length(&len)) |
| { |
| go_assert(saw_errors()); |
| return; |
| } |
| |
| Type* element_type = type->array_type()->element_type(); |
| int64_t ele_size; |
| if (!element_type->backend_type_size(gogo, &ele_size)) |
| { |
| go_assert(saw_errors()); |
| return; |
| } |
| |
| int64_t eoffset = 0; |
| for (int64_t i = 0; i < len; i++, eoffset += ele_size) |
| this->set_from(gogo, element_type, ptrsize, offset + eoffset); |
| break; |
| } |
| } |
| } |
| |
| // Return a symbol name for this ptrmask. This is used to coalesce |
| // identical ptrmasks, which are common. The symbol name must use |
| // only characters that are valid in symbols. It's nice if it's |
| // short. We convert it to a string that uses only 32 characters, |
| // avoiding digits and u and U. |
| |
| std::string |
| Ptrmask::symname() const |
| { |
| const char chars[33] = "abcdefghijklmnopqrstvwxyzABCDEFG"; |
| go_assert(chars[32] == '\0'); |
| std::string ret; |
| unsigned int b = 0; |
| int remaining = 0; |
| for (std::vector<unsigned char>::const_iterator p = this->bits_.begin(); |
| p != this->bits_.end(); |
| ++p) |
| { |
| b |= *p << remaining; |
| remaining += 8; |
| while (remaining >= 5) |
| { |
| ret += chars[b & 0x1f]; |
| b >>= 5; |
| remaining -= 5; |
| } |
| } |
| while (remaining > 0) |
| { |
| ret += chars[b & 0x1f]; |
| b >>= 5; |
| remaining -= 5; |
| } |
| return ret; |
| } |
| |
| // Return a constructor for this ptrmask. This will be used to |
| // initialize the runtime ptrmask value. |
| |
| Expression* |
| Ptrmask::constructor(Gogo* gogo) const |
| { |
| Location bloc = Linemap::predeclared_location(); |
| Type* byte_type = gogo->lookup_global("byte")->type_value(); |
| Expression* len = Expression::make_integer_ul(this->bits_.size(), NULL, |
| bloc); |
| Array_type* at = Type::make_array_type(byte_type, len); |
| Expression_list* vals = new Expression_list(); |
| vals->reserve(this->bits_.size()); |
| for (std::vector<unsigned char>::const_iterator p = this->bits_.begin(); |
| p != this->bits_.end(); |
| ++p) |
| vals->push_back(Expression::make_integer_ul(*p, byte_type, bloc)); |
| return Expression::make_array_composite_literal(at, vals, bloc); |
| } |
| |
| // The hash table mapping a ptrmask symbol name to the ptrmask variable. |
| Type::GC_gcbits_vars Type::gc_gcbits_vars; |
| |
| // Return a ptrmask variable for a type. For a type descriptor this |
| // is only used for variables that are small enough to not need a |
| // gcprog, but for a global variable this is used for a variable of |
| // any size. PTRDATA is the number of bytes of the type that contain |
| // pointer data. PTRSIZE is the size of a pointer on the target |
| // system. |
| |
| Bvariable* |
| Type::gc_ptrmask_var(Gogo* gogo, int64_t ptrsize, int64_t ptrdata) |
| { |
| Ptrmask ptrmask(ptrdata / ptrsize); |
| if (ptrdata >= ptrsize) |
| ptrmask.set_from(gogo, this, ptrsize, 0); |
| else |
| { |
| // This can happen in error cases. Just build an empty gcbits. |
| go_assert(saw_errors()); |
| } |
| |
| std::string sym_name = gogo->ptrmask_symbol_name(ptrmask.symname()); |
| Bvariable* bvnull = NULL; |
| std::pair<GC_gcbits_vars::iterator, bool> ins = |
| Type::gc_gcbits_vars.insert(std::make_pair(sym_name, bvnull)); |
| if (!ins.second) |
| { |
| // We've already built a GC symbol for this set of gcbits. |
| return ins.first->second; |
| } |
| |
| Expression* val = ptrmask.constructor(gogo); |
| Translate_context context(gogo, NULL, NULL, NULL); |
| context.set_is_const(); |
| Bexpression* bval = val->get_backend(&context); |
| |
| std::string asm_name(go_selectively_encode_id(sym_name)); |
| Btype *btype = val->type()->get_backend(gogo); |
| Bvariable* ret = gogo->backend()->implicit_variable(sym_name, asm_name, |
| btype, false, true, |
| true, 0); |
| gogo->backend()->implicit_variable_set_init(ret, sym_name, btype, false, |
| true, true, bval); |
| ins.first->second = ret; |
| return ret; |
| } |
| |
| // A GCProg is used to build a program for the garbage collector. |
| // This is used for types with a lot of pointer data, to reduce the |
| // size of the data in the compiled program. The program is expanded |
| // at runtime. For the format, see runGCProg in libgo/go/runtime/mbitmap.go. |
| |
| class GCProg |
| { |
| public: |
| GCProg() |
| : bytes_(), index_(0), nb_(0) |
| {} |
| |
| // The number of bits described so far. |
| int64_t |
| bit_index() const |
| { return this->index_; } |
| |
| void |
| set_from(Gogo*, Type*, int64_t ptrsize, int64_t offset); |
| |
| void |
| end(); |
| |
| Expression* |
| constructor(Gogo* gogo) const; |
| |
| private: |
| void |
| ptr(int64_t); |
| |
| bool |
| should_repeat(int64_t, int64_t); |
| |
| void |
| repeat(int64_t, int64_t); |
| |
| void |
| zero_until(int64_t); |
| |
| void |
| lit(unsigned char); |
| |
| void |
| varint(int64_t); |
| |
| void |
| flushlit(); |
| |
| // Add a byte to the program. |
| void |
| byte(unsigned char x) |
| { this->bytes_.push_back(x); } |
| |
| // The maximum number of bytes of literal bits. |
| static const int max_literal = 127; |
| |
| // The program. |
| std::vector<unsigned char> bytes_; |
| // The index of the last bit described. |
| int64_t index_; |
| // The current set of literal bits. |
| unsigned char b_[max_literal]; |
| // The current number of literal bits. |
| int nb_; |
| }; |
| |
| // Set data in gcprog starting from OFFSET based on TYPE. OFFSET |
| // counts in bytes. PTRSIZE is the size of a pointer on the target |
| // system. |
| |
| void |
| GCProg::set_from(Gogo* gogo, Type* type, int64_t ptrsize, int64_t offset) |
| { |
| switch (type->base()->classification()) |
| { |
| default: |
| case Type::TYPE_NIL: |
| case Type::TYPE_CALL_MULTIPLE_RESULT: |
| case Type::TYPE_NAMED: |
| case Type::TYPE_FORWARD: |
| go_unreachable(); |
| |
| case Type::TYPE_ERROR: |
| case Type::TYPE_VOID: |
| case Type::TYPE_BOOLEAN: |
| case Type::TYPE_INTEGER: |
| case Type::TYPE_FLOAT: |
| case Type::TYPE_COMPLEX: |
| case Type::TYPE_SINK: |
| break; |
| |
| case Type::TYPE_FUNCTION: |
| case Type::TYPE_POINTER: |
| case Type::TYPE_MAP: |
| case Type::TYPE_CHANNEL: |
| // These types are all a single pointer. |
| go_assert((offset % ptrsize) == 0); |
| this->ptr(offset / ptrsize); |
| break; |
| |
| case Type::TYPE_STRING: |
| // A string starts with a single pointer. |
| go_assert((offset % ptrsize) == 0); |
| this->ptr(offset / ptrsize); |
| break; |
| |
| case Type::TYPE_INTERFACE: |
| // An interface is two pointers. |
| go_assert((offset % ptrsize) == 0); |
| this->ptr(offset / ptrsize); |
| this->ptr((offset / ptrsize) + 1); |
| break; |
| |
| case Type::TYPE_STRUCT: |
| { |
| if (!type->has_pointer()) |
| return; |
| |
| const Struct_field_list* fields = type->struct_type()->fields(); |
| int64_t soffset = 0; |
| for (Struct_field_list::const_iterator pf = fields->begin(); |
| pf != fields->end(); |
| ++pf) |
| { |
| int64_t field_align; |
| if (!pf->type()->backend_type_field_align(gogo, &field_align)) |
| { |
| go_assert(saw_errors()); |
| return; |
| } |
| soffset = (soffset + (field_align - 1)) &~ (field_align - 1); |
| |
| this->set_from(gogo, pf->type(), ptrsize, offset + soffset); |
| |
| int64_t field_size; |
| if (!pf->type()->backend_type_size(gogo, &field_size)) |
| { |
| go_assert(saw_errors()); |
| return; |
| } |
| soffset += field_size; |
| } |
| } |
| break; |
| |
| case Type::TYPE_ARRAY: |
| if (type->is_slice_type()) |
| { |
| // A slice starts with a single pointer. |
| go_assert((offset % ptrsize) == 0); |
| this->ptr(offset / ptrsize); |
| break; |
| } |
| else |
| { |
| if (!type->has_pointer()) |
| return; |
| |
| int64_t len; |
| if (!type->array_type()->int_length(&len)) |
| { |
| go_assert(saw_errors()); |
| return; |
| } |
| |
| Type* element_type = type->array_type()->element_type(); |
| |
| // Flatten array of array to a big array by multiplying counts. |
| while (element_type->array_type() != NULL |
| && !element_type->is_slice_type()) |
| { |
| int64_t ele_len; |
| if (!element_type->array_type()->int_length(&ele_len)) |
| { |
| go_assert(saw_errors()); |
| return; |
| } |
| |
| len *= ele_len; |
| element_type = element_type->array_type()->element_type(); |
| } |
| |
| int64_t ele_size; |
| if (!element_type->backend_type_size(gogo, &ele_size)) |
| { |
| go_assert(saw_errors()); |
| return; |
| } |
| |
| go_assert(len > 0 && ele_size > 0); |
| |
| if (!this->should_repeat(ele_size / ptrsize, len)) |
| { |
| // Cheaper to just emit the bits. |
| int64_t eoffset = 0; |
| for (int64_t i = 0; i < len; i++, eoffset += ele_size) |
| this->set_from(gogo, element_type, ptrsize, offset + eoffset); |
| } |
| else |
| { |
| go_assert((offset % ptrsize) == 0); |
| go_assert((ele_size % ptrsize) == 0); |
| this->set_from(gogo, element_type, ptrsize, offset); |
| this->zero_until((offset + ele_size) / ptrsize); |
| this->repeat(ele_size / ptrsize, len - 1); |
| } |
| |
| break; |
| } |
| } |
| } |
| |
| // Emit a 1 into the bit stream of a GC program at the given bit index. |
| |
| void |
| GCProg::ptr(int64_t index) |
| { |
| go_assert(index >= this->index_); |
| this->zero_until(index); |
| this->lit(1); |
| } |
| |
| // Return whether it is worthwhile to use a repeat to describe c |
| // elements of n bits each, compared to just emitting c copies of the |
| // n-bit description. |
| |
| bool |
| GCProg::should_repeat(int64_t n, int64_t c) |
| { |
| // Repeat if there is more than 1 item and if the total data doesn't |
| // fit into four bytes. |
| return c > 1 && c * n > 4 * 8; |
| } |
| |
| // Emit an instruction to repeat the description of the last n words c |
| // times (including the initial description, so c + 1 times in total). |
| |
| void |
| GCProg::repeat(int64_t n, int64_t c) |
| { |
| if (n == 0 || c == 0) |
| return; |
| this->flushlit(); |
| if (n < 128) |
| this->byte(0x80 | static_cast<unsigned char>(n & 0x7f)); |
| else |
| { |
| this->byte(0x80); |
| this->varint(n); |
| } |
| this->varint(c); |
| this->index_ += n * c; |
| } |
| |
| // Add zeros to the bit stream up to the given index. |
| |
| void |
| GCProg::zero_until(int64_t index) |
| { |
| go_assert(index >= this->index_); |
| int64_t skip = index - this->index_; |
| if (skip == 0) |
| return; |
| if (skip < 4 * 8) |
| { |
| for (int64_t i = 0; i < skip; ++i) |
| this->lit(0); |
| return; |
| } |
| this->lit(0); |
| this->flushlit(); |
| this->repeat(1, skip - 1); |
| } |
| |
| // Add a single literal bit to the program. |
| |
| void |
| GCProg::lit(unsigned char x) |
| { |
| if (this->nb_ == GCProg::max_literal) |
| this->flushlit(); |
| this->b_[this->nb_] = x; |
| ++this->nb_; |
| ++this->index_; |
| } |
| |
| // Emit the varint encoding of x. |
| |
| void |
| GCProg::varint(int64_t x) |
| { |
| go_assert(x >= 0); |
| while (x >= 0x80) |
| { |
| this->byte(0x80 | static_cast<unsigned char>(x & 0x7f)); |
| x >>= 7; |
| } |
| this->byte(static_cast<unsigned char>(x & 0x7f)); |
| } |
| |
| // Flush any pending literal bits. |
| |
| void |
| GCProg::flushlit() |
| { |
| if (this->nb_ == 0) |
| return; |
| this->byte(static_cast<unsigned char>(this->nb_)); |
| unsigned char bits = 0; |
| for (int i = 0; i < this->nb_; ++i) |
| { |
| bits |= this->b_[i] << (i % 8); |
| if ((i + 1) % 8 == 0) |
| { |
| this->byte(bits); |
| bits = 0; |
| } |
| } |
| if (this->nb_ % 8 != 0) |
| this->byte(bits); |
| this->nb_ = 0; |
| } |
| |
| // Mark the end of a GC program. |
| |
| void |
| GCProg::end() |
| { |
| this->flushlit(); |
| this->byte(0); |
| } |
| |
| // Return an Expression for the bytes in a GC program. |
| |
| Expression* |
| GCProg::constructor(Gogo* gogo) const |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| // The first four bytes are the length of the program in target byte |
| // order. Build a struct whose first type is uint32 to make this |
| // work. |
| |
| Type* uint32_type = Type::lookup_integer_type("uint32"); |
| |
| Type* byte_type = gogo->lookup_global("byte")->type_value(); |
| Expression* len = Expression::make_integer_ul(this->bytes_.size(), NULL, |
| bloc); |
| Array_type* at = Type::make_array_type(byte_type, len); |
| |
| Struct_type* st = Type::make_builtin_struct_type(2, "len", uint32_type, |
| "bytes", at); |
| |
| Expression_list* vals = new Expression_list(); |
| vals->reserve(this->bytes_.size()); |
| for (std::vector<unsigned char>::const_iterator p = this->bytes_.begin(); |
| p != this->bytes_.end(); |
| ++p) |
| vals->push_back(Expression::make_integer_ul(*p, byte_type, bloc)); |
| Expression* bytes = Expression::make_array_composite_literal(at, vals, bloc); |
| |
| vals = new Expression_list(); |
| vals->push_back(Expression::make_integer_ul(this->bytes_.size(), uint32_type, |
| bloc)); |
| vals->push_back(bytes); |
| |
| return Expression::make_struct_composite_literal(st, vals, bloc); |
| } |
| |
| // Return a composite literal for the garbage collection program for |
| // this type. This is only used for types that are too large to use a |
| // ptrmask. |
| |
| Expression* |
| Type::gcprog_constructor(Gogo* gogo, int64_t ptrsize, int64_t ptrdata) |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| GCProg prog; |
| prog.set_from(gogo, this, ptrsize, 0); |
| int64_t offset = prog.bit_index() * ptrsize; |
| prog.end(); |
| |
| int64_t type_size; |
| if (!this->backend_type_size(gogo, &type_size)) |
| { |
| go_assert(saw_errors()); |
| return Expression::make_error(bloc); |
| } |
| |
| go_assert(offset >= ptrdata && offset <= type_size); |
| |
| return prog.constructor(gogo); |
| } |
| |
| // Return a composite literal for the uncommon type information for |
| // this type. UNCOMMON_STRUCT_TYPE is the type of the uncommon type |
| // struct. If name is not NULL, it is the name of the type. If |
| // METHODS is not NULL, it is the list of methods. ONLY_VALUE_METHODS |
| // is true if only value methods should be included. At least one of |
| // NAME and METHODS must not be NULL. |
| |
| Expression* |
| Type::uncommon_type_constructor(Gogo* gogo, Type* uncommon_type, |
| Named_type* name, const Methods* methods, |
| bool only_value_methods) const |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| const Struct_field_list* fields = uncommon_type->struct_type()->fields(); |
| |
| Expression_list* vals = new Expression_list(); |
| vals->reserve(3); |
| |
| Struct_field_list::const_iterator p = fields->begin(); |
| go_assert(p->is_field_name("name")); |
| |
| ++p; |
| go_assert(p->is_field_name("pkgPath")); |
| |
| if (name == NULL) |
| { |
| vals->push_back(Expression::make_nil(bloc)); |
| vals->push_back(Expression::make_nil(bloc)); |
| } |
| else |
| { |
| Named_object* no = name->named_object(); |
| std::string n = Gogo::unpack_hidden_name(no->name()); |
| Expression* s = Expression::make_string(n, bloc); |
| vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); |
| |
| if (name->is_builtin()) |
| vals->push_back(Expression::make_nil(bloc)); |
| else |
| { |
| const Package* package = no->package(); |
| const std::string& pkgpath(package == NULL |
| ? gogo->pkgpath() |
| : package->pkgpath()); |
| s = Expression::make_string(pkgpath, bloc); |
| vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); |
| } |
| } |
| |
| ++p; |
| go_assert(p->is_field_name("methods")); |
| vals->push_back(this->methods_constructor(gogo, p->type(), methods, |
| only_value_methods)); |
| |
| ++p; |
| go_assert(p == fields->end()); |
| |
| Expression* r = Expression::make_struct_composite_literal(uncommon_type, |
| vals, bloc); |
| return Expression::make_unary(OPERATOR_AND, r, bloc); |
| } |
| |
| // Sort methods by name. |
| |
| class Sort_methods |
| { |
| public: |
| bool |
| operator()(const std::pair<std::string, const Method*>& m1, |
| const std::pair<std::string, const Method*>& m2) const |
| { |
| return (Gogo::unpack_hidden_name(m1.first) |
| < Gogo::unpack_hidden_name(m2.first)); |
| } |
| }; |
| |
| // Return a composite literal for the type method table for this type. |
| // METHODS_TYPE is the type of the table, and is a slice type. |
| // METHODS is the list of methods. If ONLY_VALUE_METHODS is true, |
| // then only value methods are used. |
| |
| Expression* |
| Type::methods_constructor(Gogo* gogo, Type* methods_type, |
| const Methods* methods, |
| bool only_value_methods) const |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| std::vector<std::pair<std::string, const Method*> > smethods; |
| if (methods != NULL) |
| { |
| smethods.reserve(methods->count()); |
| for (Methods::const_iterator p = methods->begin(); |
| p != methods->end(); |
| ++p) |
| { |
| if (p->second->is_ambiguous()) |
| continue; |
| if (only_value_methods && !p->second->is_value_method()) |
| continue; |
| |
| // This is where we implement the magic //go:nointerface |
| // comment. If we saw that comment, we don't add this |
| // method to the type descriptor. |
| if (p->second->nointerface()) |
| continue; |
| |
| smethods.push_back(std::make_pair(p->first, p->second)); |
| } |
| } |
| |
| if (smethods.empty()) |
| return Expression::make_slice_composite_literal(methods_type, NULL, bloc); |
| |
| std::sort(smethods.begin(), smethods.end(), Sort_methods()); |
| |
| Type* method_type = methods_type->array_type()->element_type(); |
| |
| Expression_list* vals = new Expression_list(); |
| vals->reserve(smethods.size()); |
| for (std::vector<std::pair<std::string, const Method*> >::const_iterator p |
| = smethods.begin(); |
| p != smethods.end(); |
| ++p) |
| vals->push_back(this->method_constructor(gogo, method_type, p->first, |
| p->second, only_value_methods)); |
| |
| return Expression::make_slice_composite_literal(methods_type, vals, bloc); |
| } |
| |
| // Return a composite literal for a single method. METHOD_TYPE is the |
| // type of the entry. METHOD_NAME is the name of the method and M is |
| // the method information. |
| |
| Expression* |
| Type::method_constructor(Gogo*, Type* method_type, |
| const std::string& method_name, |
| const Method* m, |
| bool only_value_methods) const |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| const Struct_field_list* fields = method_type->struct_type()->fields(); |
| |
| Expression_list* vals = new Expression_list(); |
| vals->reserve(5); |
| |
| Struct_field_list::const_iterator p = fields->begin(); |
| go_assert(p->is_field_name("name")); |
| const std::string n = Gogo::unpack_hidden_name(method_name); |
| Expression* s = Expression::make_string(n, bloc); |
| vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); |
| |
| ++p; |
| go_assert(p->is_field_name("pkgPath")); |
| if (!Gogo::is_hidden_name(method_name)) |
| vals->push_back(Expression::make_nil(bloc)); |
| else |
| { |
| s = Expression::make_string(Gogo::hidden_name_pkgpath(method_name), |
| bloc); |
| vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); |
| } |
| |
| Named_object* no = (m->needs_stub_method() |
| ? m->stub_object() |
| : m->named_object()); |
| |
| Function_type* mtype; |
| if (no->is_function()) |
| mtype = no->func_value()->type(); |
| else |
| mtype = no->func_declaration_value()->type(); |
| go_assert(mtype->is_method()); |
| Type* nonmethod_type = mtype->copy_without_receiver(); |
| |
| ++p; |
| go_assert(p->is_field_name("mtyp")); |
| vals->push_back(Expression::make_type_descriptor(nonmethod_type, bloc)); |
| |
| ++p; |
| go_assert(p->is_field_name("typ")); |
| bool want_pointer_receiver = !only_value_methods && m->is_value_method(); |
| nonmethod_type = mtype->copy_with_receiver_as_param(want_pointer_receiver); |
| vals->push_back(Expression::make_type_descriptor(nonmethod_type, bloc)); |
| |
| ++p; |
| go_assert(p->is_field_name("tfn")); |
| vals->push_back(Expression::make_func_code_reference(no, bloc)); |
| |
| ++p; |
| go_assert(p == fields->end()); |
| |
| return Expression::make_struct_composite_literal(method_type, vals, bloc); |
| } |
| |
| // Return a composite literal for the type descriptor of a plain type. |
| // RUNTIME_TYPE_KIND is the value of the kind field. If NAME is not |
| // NULL, it is the name to use as well as the list of methods. |
| |
| Expression* |
| Type::plain_type_descriptor(Gogo* gogo, int runtime_type_kind, |
| Named_type* name) |
| { |
| return this->type_descriptor_constructor(gogo, runtime_type_kind, |
| name, NULL, true); |
| } |
| |
| // Return the type reflection string for this type. |
| |
| std::string |
| Type::reflection(Gogo* gogo) const |
| { |
| std::string ret; |
| |
| // The do_reflection virtual function should set RET to the |
| // reflection string. |
| this->do_reflection(gogo, &ret); |
| |
| return ret; |
| } |
| |
| // Return whether the backend size of the type is known. |
| |
| bool |
| Type::is_backend_type_size_known(Gogo* gogo) |
| { |
| switch (this->classification_) |
| { |
| case TYPE_ERROR: |
| case TYPE_VOID: |
| case TYPE_BOOLEAN: |
| case TYPE_INTEGER: |
| case TYPE_FLOAT: |
| case TYPE_COMPLEX: |
| case TYPE_STRING: |
| case TYPE_FUNCTION: |
| case TYPE_POINTER: |
| case TYPE_NIL: |
| case TYPE_MAP: |
| case TYPE_CHANNEL: |
| case TYPE_INTERFACE: |
| return true; |
| |
| case TYPE_STRUCT: |
| { |
| const Struct_field_list* fields = this->struct_type()->fields(); |
| for (Struct_field_list::const_iterator pf = fields->begin(); |
| pf != fields->end(); |
| ++pf) |
| if (!pf->type()->is_backend_type_size_known(gogo)) |
| return false; |
| return true; |
| } |
| |
| case TYPE_ARRAY: |
| { |
| const Array_type* at = this->array_type(); |
| if (at->length() == NULL) |
| return true; |
| else |
| { |
| Numeric_constant nc; |
| if (!at->length()->numeric_constant_value(&nc)) |
| return false; |
| mpz_t ival; |
| if (!nc.to_int(&ival)) |
| return false; |
| mpz_clear(ival); |
| return at->element_type()->is_backend_type_size_known(gogo); |
| } |
| } |
| |
| case TYPE_NAMED: |
| this->named_type()->convert(gogo); |
| return this->named_type()->is_named_backend_type_size_known(); |
| |
| case TYPE_FORWARD: |
| { |
| Forward_declaration_type* fdt = this->forward_declaration_type(); |
| return fdt->real_type()->is_backend_type_size_known(gogo); |
| } |
| |
| case TYPE_SINK: |
| case TYPE_CALL_MULTIPLE_RESULT: |
| go_unreachable(); |
| |
| default: |
| go_unreachable(); |
| } |
| } |
| |
| // If the size of the type can be determined, set *PSIZE to the size |
| // in bytes and return true. Otherwise, return false. This queries |
| // the backend. |
| |
| bool |
| Type::backend_type_size(Gogo* gogo, int64_t *psize) |
| { |
| if (!this->is_backend_type_size_known(gogo)) |
| return false; |
| if (this->is_error_type()) |
| return false; |
| Btype* bt = this->get_backend_placeholder(gogo); |
| *psize = gogo->backend()->type_size(bt); |
| if (*psize == -1) |
| { |
| if (this->named_type() != NULL) |
| go_error_at(this->named_type()->location(), |
| "type %s larger than address space", |
| Gogo::message_name(this->named_type()->name()).c_str()); |
| else |
| go_error_at(Linemap::unknown_location(), |
| "type %s larger than address space", |
| this->reflection(gogo).c_str()); |
| |
| // Make this an error type to avoid knock-on errors. |
| this->classification_ = TYPE_ERROR; |
| return false; |
| } |
| return true; |
| } |
| |
| // If the alignment of the type can be determined, set *PALIGN to |
| // the alignment in bytes and return true. Otherwise, return false. |
| |
| bool |
| Type::backend_type_align(Gogo* gogo, int64_t *palign) |
| { |
| if (!this->is_backend_type_size_known(gogo)) |
| return false; |
| Btype* bt = this->get_backend_placeholder(gogo); |
| *palign = gogo->backend()->type_alignment(bt); |
| return true; |
| } |
| |
| // Like backend_type_align, but return the alignment when used as a |
| // field. |
| |
| bool |
| Type::backend_type_field_align(Gogo* gogo, int64_t *palign) |
| { |
| if (!this->is_backend_type_size_known(gogo)) |
| return false; |
| Btype* bt = this->get_backend_placeholder(gogo); |
| *palign = gogo->backend()->type_field_alignment(bt); |
| return true; |
| } |
| |
| // Get the ptrdata value for a type. This is the size of the prefix |
| // of the type that contains all pointers. Store the ptrdata in |
| // *PPTRDATA and return whether we found it. |
| |
| bool |
| Type::backend_type_ptrdata(Gogo* gogo, int64_t* pptrdata) |
| { |
| *pptrdata = 0; |
| |
| if (!this->has_pointer()) |
| return true; |
| |
| if (!this->is_backend_type_size_known(gogo)) |
| return false; |
| |
| switch (this->classification_) |
| { |
| case TYPE_ERROR: |
| return true; |
| |
| case TYPE_FUNCTION: |
| case TYPE_POINTER: |
| case TYPE_MAP: |
| case TYPE_CHANNEL: |
| // These types are nothing but a pointer. |
| return this->backend_type_size(gogo, pptrdata); |
| |
| case TYPE_INTERFACE: |
| // An interface is a struct of two pointers. |
| return this->backend_type_size(gogo, pptrdata); |
| |
| case TYPE_STRING: |
| { |
| // A string is a struct whose first field is a pointer, and |
| // whose second field is not. |
| Type* uint8_type = Type::lookup_integer_type("uint8"); |
| Type* ptr = Type::make_pointer_type(uint8_type); |
| return ptr->backend_type_size(gogo, pptrdata); |
| } |
| |
| case TYPE_NAMED: |
| case TYPE_FORWARD: |
| return this->base()->backend_type_ptrdata(gogo, pptrdata); |
| |
| case TYPE_STRUCT: |
| { |
| const Struct_field_list* fields = this->struct_type()->fields(); |
| int64_t offset = 0; |
| const Struct_field *ptr = NULL; |
| int64_t ptr_offset = 0; |
| for (Struct_field_list::const_iterator pf = fields->begin(); |
| pf != fields->end(); |
| ++pf) |
| { |
| int64_t field_align; |
| if (!pf->type()->backend_type_field_align(gogo, &field_align)) |
| return false; |
| offset = (offset + (field_align - 1)) &~ (field_align - 1); |
| |
| if (pf->type()->has_pointer()) |
| { |
| ptr = &*pf; |
| ptr_offset = offset; |
| } |
| |
| int64_t field_size; |
| if (!pf->type()->backend_type_size(gogo, &field_size)) |
| return false; |
| offset += field_size; |
| } |
| |
| if (ptr != NULL) |
| { |
| int64_t ptr_ptrdata; |
| if (!ptr->type()->backend_type_ptrdata(gogo, &ptr_ptrdata)) |
| return false; |
| *pptrdata = ptr_offset + ptr_ptrdata; |
| } |
| return true; |
| } |
| |
| case TYPE_ARRAY: |
| if (this->is_slice_type()) |
| { |
| // A slice is a struct whose first field is a pointer, and |
| // whose remaining fields are not. |
| Type* element_type = this->array_type()->element_type(); |
| Type* ptr = Type::make_pointer_type(element_type); |
| return ptr->backend_type_size(gogo, pptrdata); |
| } |
| else |
| { |
| Numeric_constant nc; |
| if (!this->array_type()->length()->numeric_constant_value(&nc)) |
| return false; |
| int64_t len; |
| if (!nc.to_memory_size(&len)) |
| return false; |
| |
| Type* element_type = this->array_type()->element_type(); |
| int64_t ele_size; |
| int64_t ele_ptrdata; |
| if (!element_type->backend_type_size(gogo, &ele_size) |
| || !element_type->backend_type_ptrdata(gogo, &ele_ptrdata)) |
| return false; |
| go_assert(ele_size > 0 && ele_ptrdata > 0); |
| |
| *pptrdata = (len - 1) * ele_size + ele_ptrdata; |
| return true; |
| } |
| |
| default: |
| case TYPE_VOID: |
| case TYPE_BOOLEAN: |
| case TYPE_INTEGER: |
| case TYPE_FLOAT: |
| case TYPE_COMPLEX: |
| case TYPE_SINK: |
| case TYPE_NIL: |
| case TYPE_CALL_MULTIPLE_RESULT: |
| go_unreachable(); |
| } |
| } |
| |
| // Get the ptrdata value to store in a type descriptor. This is |
| // normally the same as backend_type_ptrdata, but for a type that is |
| // large enough to use a gcprog we may need to store a different value |
| // if it ends with an array. If the gcprog uses a repeat descriptor |
| // for the array, and if the array element ends with non-pointer data, |
| // then the gcprog will produce a value that describes the complete |
| // array where the backend ptrdata will omit the non-pointer elements |
| // of the final array element. This is a subtle difference but the |
| // run time code checks it to verify that it has expanded a gcprog as |
| // expected. |
| |
| bool |
| Type::descriptor_ptrdata(Gogo* gogo, int64_t* pptrdata) |
| { |
| int64_t backend_ptrdata; |
| if (!this->backend_type_ptrdata(gogo, &backend_ptrdata)) |
| return false; |
| |
| int64_t ptrsize; |
| if (!this->needs_gcprog(gogo, &ptrsize, &backend_ptrdata)) |
| { |
| *pptrdata = backend_ptrdata; |
| return true; |
| } |
| |
| GCProg prog; |
| prog.set_from(gogo, this, ptrsize, 0); |
| int64_t offset = prog.bit_index() * ptrsize; |
| |
| go_assert(offset >= backend_ptrdata); |
| *pptrdata = offset; |
| return true; |
| } |
| |
| // Default function to export a type. |
| |
| void |
| Type::do_export(Export*) const |
| { |
| go_unreachable(); |
| } |
| |
| // Import a type. |
| |
| Type* |
| Type::import_type(Import* imp) |
| { |
| if (imp->match_c_string("(")) |
| return Function_type::do_import(imp); |
| else if (imp->match_c_string("*")) |
| return Pointer_type::do_import(imp); |
| else if (imp->match_c_string("struct ")) |
| return Struct_type::do_import(imp); |
| else if (imp->match_c_string("[")) |
| return Array_type::do_import(imp); |
| else if (imp->match_c_string("map ")) |
| return Map_type::do_import(imp); |
| else if (imp->match_c_string("chan ")) |
| return Channel_type::do_import(imp); |
| else if (imp->match_c_string("interface")) |
| return Interface_type::do_import(imp); |
| else |
| { |
| go_error_at(imp->location(), "import error: expected type"); |
| return Type::make_error_type(); |
| } |
| } |
| |
| // Class Error_type. |
| |
| // Return the backend representation of an Error type. |
| |
| Btype* |
| Error_type::do_get_backend(Gogo* gogo) |
| { |
| return gogo->backend()->error_type(); |
| } |
| |
| // Return an expression for the type descriptor for an error type. |
| |
| |
| Expression* |
| Error_type::do_type_descriptor(Gogo*, Named_type*) |
| { |
| return Expression::make_error(Linemap::predeclared_location()); |
| } |
| |
| // We should not be asked for the reflection string for an error type. |
| |
| void |
| Error_type::do_reflection(Gogo*, std::string*) const |
| { |
| go_assert(saw_errors()); |
| } |
| |
| Type* |
| Type::make_error_type() |
| { |
| static Error_type singleton_error_type; |
| return &singleton_error_type; |
| } |
| |
| // Class Void_type. |
| |
| // Get the backend representation of a void type. |
| |
| Btype* |
| Void_type::do_get_backend(Gogo* gogo) |
| { |
| return gogo->backend()->void_type(); |
| } |
| |
| Type* |
| Type::make_void_type() |
| { |
| static Void_type singleton_void_type; |
| return &singleton_void_type; |
| } |
| |
| // Class Boolean_type. |
| |
| // Return the backend representation of the boolean type. |
| |
| Btype* |
| Boolean_type::do_get_backend(Gogo* gogo) |
| { |
| return gogo->backend()->bool_type(); |
| } |
| |
| // Make the type descriptor. |
| |
| Expression* |
| Boolean_type::do_type_descriptor(Gogo* gogo, Named_type* name) |
| { |
| if (name != NULL) |
| return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_BOOL, name); |
| else |
| { |
| Named_object* no = gogo->lookup_global("bool"); |
| go_assert(no != NULL); |
| return Type::type_descriptor(gogo, no->type_value()); |
| } |
| } |
| |
| Type* |
| Type::make_boolean_type() |
| { |
| static Boolean_type boolean_type; |
| return &boolean_type; |
| } |
| |
| // The named type "bool". |
| |
| static Named_type* named_bool_type; |
| |
| // Get the named type "bool". |
| |
| Named_type* |
| Type::lookup_bool_type() |
| { |
| return named_bool_type; |
| } |
| |
| // Make the named type "bool". |
| |
| Named_type* |
| Type::make_named_bool_type() |
| { |
| Type* bool_type = Type::make_boolean_type(); |
| Named_object* named_object = |
| Named_object::make_type("bool", NULL, bool_type, |
| Linemap::predeclared_location()); |
| Named_type* named_type = named_object->type_value(); |
| named_bool_type = named_type; |
| return named_type; |
| } |
| |
| // Class Integer_type. |
| |
| Integer_type::Named_integer_types Integer_type::named_integer_types; |
| |
| // Create a new integer type. Non-abstract integer types always have |
| // names. |
| |
| Named_type* |
| Integer_type::create_integer_type(const char* name, bool is_unsigned, |
| int bits, int runtime_type_kind) |
| { |
| Integer_type* integer_type = new Integer_type(false, is_unsigned, bits, |
| runtime_type_kind); |
| std::string sname(name); |
| Named_object* named_object = |
| Named_object::make_type(sname, NULL, integer_type, |
| Linemap::predeclared_location()); |
| Named_type* named_type = named_object->type_value(); |
| std::pair<Named_integer_types::iterator, bool> ins = |
| Integer_type::named_integer_types.insert(std::make_pair(sname, named_type)); |
| go_assert(ins.second); |
| return named_type; |
| } |
| |
| // Look up an existing integer type. |
| |
| Named_type* |
| Integer_type::lookup_integer_type(const char* name) |
| { |
| Named_integer_types::const_iterator p = |
| Integer_type::named_integer_types.find(name); |
| go_assert(p != Integer_type::named_integer_types.end()); |
| return p->second; |
| } |
| |
| // Create a new abstract integer type. |
| |
| Integer_type* |
| Integer_type::create_abstract_integer_type() |
| { |
| static Integer_type* abstract_type; |
| if (abstract_type == NULL) |
| { |
| Type* int_type = Type::lookup_integer_type("int"); |
| abstract_type = new Integer_type(true, false, |
| int_type->integer_type()->bits(), |
| RUNTIME_TYPE_KIND_INT); |
| } |
| return abstract_type; |
| } |
| |
| // Create a new abstract character type. |
| |
| Integer_type* |
| Integer_type::create_abstract_character_type() |
| { |
| static Integer_type* abstract_type; |
| if (abstract_type == NULL) |
| { |
| abstract_type = new Integer_type(true, false, 32, |
| RUNTIME_TYPE_KIND_INT32); |
| abstract_type->set_is_rune(); |
| } |
| return abstract_type; |
| } |
| |
| // Integer type compatibility. |
| |
| bool |
| Integer_type::is_identical(const Integer_type* t) const |
| { |
| if (this->is_unsigned_ != t->is_unsigned_ || this->bits_ != t->bits_) |
| return false; |
| return this->is_abstract_ == t->is_abstract_; |
| } |
| |
| // Hash code. |
| |
| unsigned int |
| Integer_type::do_hash_for_method(Gogo*) const |
| { |
| return ((this->bits_ << 4) |
| + ((this->is_unsigned_ ? 1 : 0) << 8) |
| + ((this->is_abstract_ ? 1 : 0) << 9)); |
| } |
| |
| // Convert an Integer_type to the backend representation. |
| |
| Btype* |
| Integer_type::do_get_backend(Gogo* gogo) |
| { |
| if (this->is_abstract_) |
| { |
| go_assert(saw_errors()); |
| return gogo->backend()->error_type(); |
| } |
| return gogo->backend()->integer_type(this->is_unsigned_, this->bits_); |
| } |
| |
| // The type descriptor for an integer type. Integer types are always |
| // named. |
| |
| Expression* |
| Integer_type::do_type_descriptor(Gogo* gogo, Named_type* name) |
| { |
| go_assert(name != NULL || saw_errors()); |
| return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name); |
| } |
| |
| // We should not be asked for the reflection string of a basic type. |
| |
| void |
| Integer_type::do_reflection(Gogo*, std::string*) const |
| { |
| go_assert(saw_errors()); |
| } |
| |
| // Make an integer type. |
| |
| Named_type* |
| Type::make_integer_type(const char* name, bool is_unsigned, int bits, |
| int runtime_type_kind) |
| { |
| return Integer_type::create_integer_type(name, is_unsigned, bits, |
| runtime_type_kind); |
| } |
| |
| // Make an abstract integer type. |
| |
| Integer_type* |
| Type::make_abstract_integer_type() |
| { |
| return Integer_type::create_abstract_integer_type(); |
| } |
| |
| // Make an abstract character type. |
| |
| Integer_type* |
| Type::make_abstract_character_type() |
| { |
| return Integer_type::create_abstract_character_type(); |
| } |
| |
| // Look up an integer type. |
| |
| Named_type* |
| Type::lookup_integer_type(const char* name) |
| { |
| return Integer_type::lookup_integer_type(name); |
| } |
| |
| // Class Float_type. |
| |
| Float_type::Named_float_types Float_type::named_float_types; |
| |
| // Create a new float type. Non-abstract float types always have |
| // names. |
| |
| Named_type* |
| Float_type::create_float_type(const char* name, int bits, |
| int runtime_type_kind) |
| { |
| Float_type* float_type = new Float_type(false, bits, runtime_type_kind); |
| std::string sname(name); |
| Named_object* named_object = |
| Named_object::make_type(sname, NULL, float_type, |
| Linemap::predeclared_location()); |
| Named_type* named_type = named_object->type_value(); |
| std::pair<Named_float_types::iterator, bool> ins = |
| Float_type::named_float_types.insert(std::make_pair(sname, named_type)); |
| go_assert(ins.second); |
| return named_type; |
| } |
| |
| // Look up an existing float type. |
| |
| Named_type* |
| Float_type::lookup_float_type(const char* name) |
| { |
| Named_float_types::const_iterator p = |
| Float_type::named_float_types.find(name); |
| go_assert(p != Float_type::named_float_types.end()); |
| return p->second; |
| } |
| |
| // Create a new abstract float type. |
| |
| Float_type* |
| Float_type::create_abstract_float_type() |
| { |
| static Float_type* abstract_type; |
| if (abstract_type == NULL) |
| abstract_type = new Float_type(true, 64, RUNTIME_TYPE_KIND_FLOAT64); |
| return abstract_type; |
| } |
| |
| // Whether this type is identical with T. |
| |
| bool |
| Float_type::is_identical(const Float_type* t) const |
| { |
| if (this->bits_ != t->bits_) |
| return false; |
| return this->is_abstract_ == t->is_abstract_; |
| } |
| |
| // Hash code. |
| |
| unsigned int |
| Float_type::do_hash_for_method(Gogo*) const |
| { |
| return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8); |
| } |
| |
| // Convert to the backend representation. |
| |
| Btype* |
| Float_type::do_get_backend(Gogo* gogo) |
| { |
| return gogo->backend()->float_type(this->bits_); |
| } |
| |
| // The type descriptor for a float type. Float types are always named. |
| |
| Expression* |
| Float_type::do_type_descriptor(Gogo* gogo, Named_type* name) |
| { |
| go_assert(name != NULL || saw_errors()); |
| return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name); |
| } |
| |
| // We should not be asked for the reflection string of a basic type. |
| |
| void |
| Float_type::do_reflection(Gogo*, std::string*) const |
| { |
| go_assert(saw_errors()); |
| } |
| |
| // Make a floating point type. |
| |
| Named_type* |
| Type::make_float_type(const char* name, int bits, int runtime_type_kind) |
| { |
| return Float_type::create_float_type(name, bits, runtime_type_kind); |
| } |
| |
| // Make an abstract float type. |
| |
| Float_type* |
| Type::make_abstract_float_type() |
| { |
| return Float_type::create_abstract_float_type(); |
| } |
| |
| // Look up a float type. |
| |
| Named_type* |
| Type::lookup_float_type(const char* name) |
| { |
| return Float_type::lookup_float_type(name); |
| } |
| |
| // Class Complex_type. |
| |
| Complex_type::Named_complex_types Complex_type::named_complex_types; |
| |
| // Create a new complex type. Non-abstract complex types always have |
| // names. |
| |
| Named_type* |
| Complex_type::create_complex_type(const char* name, int bits, |
| int runtime_type_kind) |
| { |
| Complex_type* complex_type = new Complex_type(false, bits, |
| runtime_type_kind); |
| std::string sname(name); |
| Named_object* named_object = |
| Named_object::make_type(sname, NULL, complex_type, |
| Linemap::predeclared_location()); |
| Named_type* named_type = named_object->type_value(); |
| std::pair<Named_complex_types::iterator, bool> ins = |
| Complex_type::named_complex_types.insert(std::make_pair(sname, |
| named_type)); |
| go_assert(ins.second); |
| return named_type; |
| } |
| |
| // Look up an existing complex type. |
| |
| Named_type* |
| Complex_type::lookup_complex_type(const char* name) |
| { |
| Named_complex_types::const_iterator p = |
| Complex_type::named_complex_types.find(name); |
| go_assert(p != Complex_type::named_complex_types.end()); |
| return p->second; |
| } |
| |
| // Create a new abstract complex type. |
| |
| Complex_type* |
| Complex_type::create_abstract_complex_type() |
| { |
| static Complex_type* abstract_type; |
| if (abstract_type == NULL) |
| abstract_type = new Complex_type(true, 128, RUNTIME_TYPE_KIND_COMPLEX128); |
| return abstract_type; |
| } |
| |
| // Whether this type is identical with T. |
| |
| bool |
| Complex_type::is_identical(const Complex_type *t) const |
| { |
| if (this->bits_ != t->bits_) |
| return false; |
| return this->is_abstract_ == t->is_abstract_; |
| } |
| |
| // Hash code. |
| |
| unsigned int |
| Complex_type::do_hash_for_method(Gogo*) const |
| { |
| return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8); |
| } |
| |
| // Convert to the backend representation. |
| |
| Btype* |
| Complex_type::do_get_backend(Gogo* gogo) |
| { |
| return gogo->backend()->complex_type(this->bits_); |
| } |
| |
| // The type descriptor for a complex type. Complex types are always |
| // named. |
| |
| Expression* |
| Complex_type::do_type_descriptor(Gogo* gogo, Named_type* name) |
| { |
| go_assert(name != NULL || saw_errors()); |
| return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name); |
| } |
| |
| // We should not be asked for the reflection string of a basic type. |
| |
| void |
| Complex_type::do_reflection(Gogo*, std::string*) const |
| { |
| go_assert(saw_errors()); |
| } |
| |
| // Make a complex type. |
| |
| Named_type* |
| Type::make_complex_type(const char* name, int bits, int runtime_type_kind) |
| { |
| return Complex_type::create_complex_type(name, bits, runtime_type_kind); |
| } |
| |
| // Make an abstract complex type. |
| |
| Complex_type* |
| Type::make_abstract_complex_type() |
| { |
| return Complex_type::create_abstract_complex_type(); |
| } |
| |
| // Look up a complex type. |
| |
| Named_type* |
| Type::lookup_complex_type(const char* name) |
| { |
| return Complex_type::lookup_complex_type(name); |
| } |
| |
| // Class String_type. |
| |
| // Convert String_type to the backend representation. A string is a |
| // struct with two fields: a pointer to the characters and a length. |
| |
| Btype* |
| String_type::do_get_backend(Gogo* gogo) |
| { |
| static Btype* backend_string_type; |
| if (backend_string_type == NULL) |
| { |
| std::vector<Backend::Btyped_identifier> fields(2); |
| |
| Type* b = gogo->lookup_global("byte")->type_value(); |
| Type* pb = Type::make_pointer_type(b); |
| |
| // We aren't going to get back to this field to finish the |
| // backend representation, so force it to be finished now. |
| if (!gogo->named_types_are_converted()) |
| { |
| Btype* bt = pb->get_backend_placeholder(gogo); |
| pb->finish_backend(gogo, bt); |
| } |
| |
| fields[0].name = "__data"; |
| fields[0].btype = pb->get_backend(gogo); |
| fields[0].location = Linemap::predeclared_location(); |
| |
| Type* int_type = Type::lookup_integer_type("int"); |
| fields[1].name = "__length"; |
| fields[1].btype = int_type->get_backend(gogo); |
| fields[1].location = fields[0].location; |
| |
| backend_string_type = gogo->backend()->struct_type(fields); |
| } |
| return backend_string_type; |
| } |
| |
| // The type descriptor for the string type. |
| |
| Expression* |
| String_type::do_type_descriptor(Gogo* gogo, Named_type* name) |
| { |
| if (name != NULL) |
| return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_STRING, name); |
| else |
| { |
| Named_object* no = gogo->lookup_global("string"); |
| go_assert(no != NULL); |
| return Type::type_descriptor(gogo, no->type_value()); |
| } |
| } |
| |
| // We should not be asked for the reflection string of a basic type. |
| |
| void |
| String_type::do_reflection(Gogo*, std::string* ret) const |
| { |
| ret->append("string"); |
| } |
| |
| // Make a string type. |
| |
| Type* |
| Type::make_string_type() |
| { |
| static String_type string_type; |
| return &string_type; |
| } |
| |
| // The named type "string". |
| |
| static Named_type* named_string_type; |
| |
| // Get the named type "string". |
| |
| Named_type* |
| Type::lookup_string_type() |
| { |
| return named_string_type; |
| } |
| |
| // Make the named type string. |
| |
| Named_type* |
| Type::make_named_string_type() |
| { |
| Type* string_type = Type::make_string_type(); |
| Named_object* named_object = |
| Named_object::make_type("string", NULL, string_type, |
| Linemap::predeclared_location()); |
| Named_type* named_type = named_object->type_value(); |
| named_string_type = named_type; |
| return named_type; |
| } |
| |
| // The sink type. This is the type of the blank identifier _. Any |
| // type may be assigned to it. |
| |
| class Sink_type : public Type |
| { |
| public: |
| Sink_type() |
| : Type(TYPE_SINK) |
| { } |
| |
| protected: |
| bool |
| do_compare_is_identity(Gogo*) |
| { return false; } |
| |
| Btype* |
| do_get_backend(Gogo*) |
| { go_unreachable(); } |
| |
| Expression* |
| do_type_descriptor(Gogo*, Named_type*) |
| { go_unreachable(); } |
| |
| void |
| do_reflection(Gogo*, std::string*) const |
| { go_unreachable(); } |
| |
| void |
| do_mangled_name(Gogo*, std::string*) const |
| { go_unreachable(); } |
| }; |
| |
| // Make the sink type. |
| |
| Type* |
| Type::make_sink_type() |
| { |
| static Sink_type sink_type; |
| return &sink_type; |
| } |
| |
| // Class Function_type. |
| |
| // Traversal. |
| |
| int |
| Function_type::do_traverse(Traverse* traverse) |
| { |
| if (this->receiver_ != NULL |
| && Type::traverse(this->receiver_->type(), traverse) == TRAVERSE_EXIT) |
| return TRAVERSE_EXIT; |
| if (this->parameters_ != NULL |
| && this->parameters_->traverse(traverse) == TRAVERSE_EXIT) |
| return TRAVERSE_EXIT; |
| if (this->results_ != NULL |
| && this->results_->traverse(traverse) == TRAVERSE_EXIT) |
| return TRAVERSE_EXIT; |
| return TRAVERSE_CONTINUE; |
| } |
| |
| // Returns whether T is a valid redeclaration of this type. If this |
| // returns false, and REASON is not NULL, *REASON may be set to a |
| // brief explanation of why it returned false. |
| |
| bool |
| Function_type::is_valid_redeclaration(const Function_type* t, |
| std::string* reason) const |
| { |
| if (!this->is_identical(t, false, COMPARE_TAGS, true, reason)) |
| return false; |
| |
| // A redeclaration of a function is required to use the same names |
| // for the receiver and parameters. |
| if (this->receiver() != NULL |
| && this->receiver()->name() != t->receiver()->name()) |
| { |
| if (reason != NULL) |
| *reason = "receiver name changed"; |
| return false; |
| } |
| |
| const Typed_identifier_list* parms1 = this->parameters(); |
| const Typed_identifier_list* parms2 = t->parameters(); |
| if (parms1 != NULL) |
| { |
| Typed_identifier_list::const_iterator p1 = parms1->begin(); |
| for (Typed_identifier_list::const_iterator p2 = parms2->begin(); |
| p2 != parms2->end(); |
| ++p2, ++p1) |
| { |
| if (p1->name() != p2->name()) |
| { |
| if (reason != NULL) |
| *reason = "parameter name changed"; |
| return false; |
| } |
| |
| // This is called at parse time, so we may have unknown |
| // types. |
| Type* t1 = p1->type()->forwarded(); |
| Type* t2 = p2->type()->forwarded(); |
| if (t1 != t2 |
| && t1->forward_declaration_type() != NULL |
| && (t2->forward_declaration_type() == NULL |
| || (t1->forward_declaration_type()->named_object() |
| != t2->forward_declaration_type()->named_object()))) |
| return false; |
| } |
| } |
| |
| const Typed_identifier_list* results1 = this->results(); |
| const Typed_identifier_list* results2 = t->results(); |
| if (results1 != NULL) |
| { |
| Typed_identifier_list::const_iterator res1 = results1->begin(); |
| for (Typed_identifier_list::const_iterator res2 = results2->begin(); |
| res2 != results2->end(); |
| ++res2, ++res1) |
| { |
| if (res1->name() != res2->name()) |
| { |
| if (reason != NULL) |
| *reason = "result name changed"; |
| return false; |
| } |
| |
| // This is called at parse time, so we may have unknown |
| // types. |
| Type* t1 = res1->type()->forwarded(); |
| Type* t2 = res2->type()->forwarded(); |
| if (t1 != t2 |
| && t1->forward_declaration_type() != NULL |
| && (t2->forward_declaration_type() == NULL |
| || (t1->forward_declaration_type()->named_object() |
| != t2->forward_declaration_type()->named_object()))) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| // Check whether T is the same as this type. |
| |
| bool |
| Function_type::is_identical(const Function_type* t, bool ignore_receiver, |
| Cmp_tags cmp_tags, bool errors_are_identical, |
| std::string* reason) const |
| { |
| if (this->is_backend_function_type() != t->is_backend_function_type()) |
| return false; |
| |
| if (!ignore_receiver) |
| { |
| const Typed_identifier* r1 = this->receiver(); |
| const Typed_identifier* r2 = t->receiver(); |
| if ((r1 != NULL) != (r2 != NULL)) |
| { |
| if (reason != NULL) |
| *reason = _("different receiver types"); |
| return false; |
| } |
| if (r1 != NULL) |
| { |
| if (!Type::are_identical_cmp_tags(r1->type(), r2->type(), cmp_tags, |
| errors_are_identical, reason)) |
| { |
| if (reason != NULL && !reason->empty()) |
| *reason = "receiver: " + *reason; |
| return false; |
| } |
| } |
| } |
| |
| const Typed_identifier_list* parms1 = this->parameters(); |
| if (parms1 != NULL && parms1->empty()) |
| parms1 = NULL; |
| const Typed_identifier_list* parms2 = t->parameters(); |
| if (parms2 != NULL && parms2->empty()) |
| parms2 = NULL; |
| if ((parms1 != NULL) != (parms2 != NULL)) |
| { |
| if (reason != NULL) |
| *reason = _("different number of parameters"); |
| return false; |
| } |
| if (parms1 != NULL) |
| { |
| Typed_identifier_list::const_iterator p1 = parms1->begin(); |
| for (Typed_identifier_list::const_iterator p2 = parms2->begin(); |
| p2 != parms2->end(); |
| ++p2, ++p1) |
| { |
| if (p1 == parms1->end()) |
| { |
| if (reason != NULL) |
| *reason = _("different number of parameters"); |
| return false; |
| } |
| |
| if (!Type::are_identical_cmp_tags(p1->type(), p2->type(), cmp_tags, |
| errors_are_identical, NULL)) |
| { |
| if (reason != NULL) |
| *reason = _("different parameter types"); |
| return false; |
| } |
| } |
| if (p1 != parms1->end()) |
| { |
| if (reason != NULL) |
| *reason = _("different number of parameters"); |
| return false; |
| } |
| } |
| |
| if (this->is_varargs() != t->is_varargs()) |
| { |
| if (reason != NULL) |
| *reason = _("different varargs"); |
| return false; |
| } |
| |
| const Typed_identifier_list* results1 = this->results(); |
| if (results1 != NULL && results1->empty()) |
| results1 = NULL; |
| const Typed_identifier_list* results2 = t->results(); |
| if (results2 != NULL && results2->empty()) |
| results2 = NULL; |
| if ((results1 != NULL) != (results2 != NULL)) |
| { |
| if (reason != NULL) |
| *reason = _("different number of results"); |
| return false; |
| } |
| if (results1 != NULL) |
| { |
| Typed_identifier_list::const_iterator res1 = results1->begin(); |
| for (Typed_identifier_list::const_iterator res2 = results2->begin(); |
| res2 != results2->end(); |
| ++res2, ++res1) |
| { |
| if (res1 == results1->end()) |
| { |
| if (reason != NULL) |
| *reason = _("different number of results"); |
| return false; |
| } |
| |
| if (!Type::are_identical_cmp_tags(res1->type(), res2->type(), |
| cmp_tags, errors_are_identical, |
| NULL)) |
| { |
| if (reason != NULL) |
| *reason = _("different result types"); |
| return false; |
| } |
| } |
| if (res1 != results1->end()) |
| { |
| if (reason != NULL) |
| *reason = _("different number of results"); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| // Hash code. |
| |
| unsigned int |
| Function_type::do_hash_for_method(Gogo* gogo) const |
| { |
| unsigned int ret = 0; |
| // We ignore the receiver type for hash codes, because we need to |
| // get the same hash code for a method in an interface and a method |
| // declared for a type. The former will not have a receiver. |
| if (this->parameters_ != NULL) |
| { |
| int shift = 1; |
| for (Typed_identifier_list::const_iterator p = this->parameters_->begin(); |
| p != this->parameters_->end(); |
| ++p, ++shift) |
| ret += p->type()->hash_for_method(gogo) << shift; |
| } |
| if (this->results_ != NULL) |
| { |
| int shift = 2; |
| for (Typed_identifier_list::const_iterator p = this->results_->begin(); |
| p != this->results_->end(); |
| ++p, ++shift) |
| ret += p->type()->hash_for_method(gogo) << shift; |
| } |
| if (this->is_varargs_) |
| ret += 1; |
| ret <<= 4; |
| return ret; |
| } |
| |
| // Hash result parameters. |
| |
| unsigned int |
| Function_type::Results_hash::operator()(const Typed_identifier_list* t) const |
| { |
| unsigned int hash = 0; |
| for (Typed_identifier_list::const_iterator p = t->begin(); |
| p != t->end(); |
| ++p) |
| { |
| hash <<= 2; |
| hash = Type::hash_string(p->name(), hash); |
| hash += p->type()->hash_for_method(NULL); |
| } |
| return hash; |
| } |
| |
| // Compare result parameters so that can map identical result |
| // parameters to a single struct type. |
| |
| bool |
| Function_type::Results_equal::operator()(const Typed_identifier_list* a, |
| const Typed_identifier_list* b) const |
| { |
| if (a->size() != b->size()) |
| return false; |
| Typed_identifier_list::const_iterator pa = a->begin(); |
| for (Typed_identifier_list::const_iterator pb = b->begin(); |
| pb != b->end(); |
| ++pa, ++pb) |
| { |
| if (pa->name() != pb->name() |
| || !Type::are_identical(pa->type(), pb->type(), true, NULL)) |
| return false; |
| } |
| return true; |
| } |
| |
| // Hash from results to a backend struct type. |
| |
| Function_type::Results_structs Function_type::results_structs; |
| |
| // Get the backend representation for a function type. |
| |
| Btype* |
| Function_type::get_backend_fntype(Gogo* gogo) |
| { |
| if (this->fnbtype_ == NULL) |
| { |
| Backend::Btyped_identifier breceiver; |
| if (this->receiver_ != NULL) |
| { |
| breceiver.name = Gogo::unpack_hidden_name(this->receiver_->name()); |
| |
| // We always pass the address of the receiver parameter, in |
| // order to make interface calls work with unknown types. |
| Type* rtype = this->receiver_->type(); |
| if (rtype->points_to() == NULL) |
| rtype = Type::make_pointer_type(rtype); |
| breceiver.btype = rtype->get_backend(gogo); |
| breceiver.location = this->receiver_->location(); |
| } |
| |
| std::vector<Backend::Btyped_identifier> bparameters; |
| if (this->parameters_ != NULL) |
| { |
| bparameters.resize(this->parameters_->size()); |
| size_t i = 0; |
| for (Typed_identifier_list::const_iterator p = |
| this->parameters_->begin(); p != this->parameters_->end(); |
| ++p, ++i) |
| { |
| bparameters[i].name = Gogo::unpack_hidden_name(p->name()); |
| bparameters[i].btype = p->type()->get_backend(gogo); |
| bparameters[i].location = p->location(); |
| } |
| go_assert(i == bparameters.size()); |
| } |
| |
| std::vector<Backend::Btyped_identifier> bresults; |
| Btype* bresult_struct = NULL; |
| if (this->results_ != NULL) |
| { |
| bresults.resize(this->results_->size()); |
| size_t i = 0; |
| for (Typed_identifier_list::const_iterator p = |
| this->results_->begin(); |
| p != this->results_->end(); |
| ++p, ++i) |
| { |
| bresults[i].name = Gogo::unpack_hidden_name(p->name()); |
| bresults[i].btype = p->type()->get_backend(gogo); |
| bresults[i].location = p->location(); |
| } |
| go_assert(i == bresults.size()); |
| |
| if (this->results_->size() > 1) |
| { |
| // Use the same results struct for all functions that |
| // return the same set of results. This is useful to |
| // unify calls to interface methods with other calls. |
| std::pair<Typed_identifier_list*, Btype*> val; |
| val.first = this->results_; |
| val.second = NULL; |
| std::pair<Results_structs::iterator, bool> ins = |
| Function_type::results_structs.insert(val); |
| if (ins.second) |
| { |
| // Build a new struct type. |
| Struct_field_list* sfl = new Struct_field_list; |
| for (Typed_identifier_list::const_iterator p = |
| this->results_->begin(); |
| p != this->results_->end(); |
| ++p) |
| { |
| Typed_identifier tid = *p; |
| if (tid.name().empty()) |
| tid = Typed_identifier("UNNAMED", tid.type(), |
| tid.location()); |
| sfl->push_back(Struct_field(tid)); |
| } |
| Struct_type* st = Type::make_struct_type(sfl, |
| this->location()); |
| st->set_is_struct_incomparable(); |
| ins.first->second = st->get_backend(gogo); |
| } |
| bresult_struct = ins.first->second; |
| } |
| } |
| |
| this->fnbtype_ = gogo->backend()->function_type(breceiver, bparameters, |
| bresults, bresult_struct, |
| this->location()); |
| |
| } |
| |
| return this->fnbtype_; |
| } |
| |
| // Get the backend representation for a Go function type. |
| |
| Btype* |
| Function_type::do_get_backend(Gogo* gogo) |
| { |
| // When we do anything with a function value other than call it, it |
| // is represented as a pointer to a struct whose first field is the |
| // actual function. So that is what we return as the type of a Go |
| // function. |
| |
| Location loc = this->location(); |
| Btype* struct_type = |
| gogo->backend()->placeholder_struct_type("__go_descriptor", loc); |
| Btype* ptr_struct_type = gogo->backend()->pointer_type(struct_type); |
| |
| std::vector<Backend::Btyped_identifier> fields(1); |
| fields[0].name = "code"; |
| fields[0].btype = this->get_backend_fntype(gogo); |
| fields[0].location = loc; |
| if (!gogo->backend()->set_placeholder_struct_type(struct_type, fields)) |
| return gogo->backend()->error_type(); |
| return ptr_struct_type; |
| } |
| |
| // The type of a function type descriptor. |
| |
| Type* |
| Function_type::make_function_type_descriptor_type() |
| { |
| static Type* ret; |
| if (ret == NULL) |
| { |
| Type* tdt = Type::make_type_descriptor_type(); |
| Type* ptdt = Type::make_type_descriptor_ptr_type(); |
| |
| Type* bool_type = Type::lookup_bool_type(); |
| |
| Type* slice_type = Type::make_array_type(ptdt, NULL); |
| |
| Struct_type* s = Type::make_builtin_struct_type(4, |
| "", tdt, |
| "dotdotdot", bool_type, |
| "in", slice_type, |
| "out", slice_type); |
| |
| ret = Type::make_builtin_named_type("FuncType", s); |
| } |
| |
| return ret; |
| } |
| |
| // The type descriptor for a function type. |
| |
| Expression* |
| Function_type::do_type_descriptor(Gogo* gogo, Named_type* name) |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| Type* ftdt = Function_type::make_function_type_descriptor_type(); |
| |
| const Struct_field_list* fields = ftdt->struct_type()->fields(); |
| |
| Expression_list* vals = new Expression_list(); |
| vals->reserve(4); |
| |
| Struct_field_list::const_iterator p = fields->begin(); |
| go_assert(p->is_field_name("_type")); |
| vals->push_back(this->type_descriptor_constructor(gogo, |
| RUNTIME_TYPE_KIND_FUNC, |
| name, NULL, true)); |
| |
| ++p; |
| go_assert(p->is_field_name("dotdotdot")); |
| vals->push_back(Expression::make_boolean(this->is_varargs(), bloc)); |
| |
| ++p; |
| go_assert(p->is_field_name("in")); |
| vals->push_back(this->type_descriptor_params(p->type(), this->receiver(), |
| this->parameters())); |
| |
| ++p; |
| go_assert(p->is_field_name("out")); |
| vals->push_back(this->type_descriptor_params(p->type(), NULL, |
| this->results())); |
| |
| ++p; |
| go_assert(p == fields->end()); |
| |
| return Expression::make_struct_composite_literal(ftdt, vals, bloc); |
| } |
| |
| // Return a composite literal for the parameters or results of a type |
| // descriptor. |
| |
| Expression* |
| Function_type::type_descriptor_params(Type* params_type, |
| const Typed_identifier* receiver, |
| const Typed_identifier_list* params) |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| if (receiver == NULL && params == NULL) |
| return Expression::make_slice_composite_literal(params_type, NULL, bloc); |
| |
| Expression_list* vals = new Expression_list(); |
| vals->reserve((params == NULL ? 0 : params->size()) |
| + (receiver != NULL ? 1 : 0)); |
| |
| if (receiver != NULL) |
| vals->push_back(Expression::make_type_descriptor(receiver->type(), bloc)); |
| |
| if (params != NULL) |
| { |
| for (Typed_identifier_list::const_iterator p = params->begin(); |
| p != params->end(); |
| ++p) |
| vals->push_back(Expression::make_type_descriptor(p->type(), bloc)); |
| } |
| |
| return Expression::make_slice_composite_literal(params_type, vals, bloc); |
| } |
| |
| // The reflection string. |
| |
| void |
| Function_type::do_reflection(Gogo* gogo, std::string* ret) const |
| { |
| // FIXME: Turn this off until we straighten out the type of the |
| // struct field used in a go statement which calls a method. |
| // go_assert(this->receiver_ == NULL); |
| |
| ret->append("func"); |
| |
| if (this->receiver_ != NULL) |
| { |
| ret->push_back('('); |
| this->append_reflection(this->receiver_->type(), gogo, ret); |
| ret->push_back(')'); |
| } |
| |
| ret->push_back('('); |
| const Typed_identifier_list* params = this->parameters(); |
| if (params != NULL) |
| { |
| bool is_varargs = this->is_varargs_; |
| for (Typed_identifier_list::const_iterator p = params->begin(); |
| p != params->end(); |
| ++p) |
| { |
| if (p != params->begin()) |
| ret->append(", "); |
| if (!is_varargs || p + 1 != params->end()) |
| this->append_reflection(p->type(), gogo, ret); |
| else |
| { |
| ret->append("..."); |
| this->append_reflection(p->type()->array_type()->element_type(), |
| gogo, ret); |
| } |
| } |
| } |
| ret->push_back(')'); |
| |
| const Typed_identifier_list* results = this->results(); |
| if (results != NULL && !results->empty()) |
| { |
| if (results->size() == 1) |
| ret->push_back(' '); |
| else |
| ret->append(" ("); |
| for (Typed_identifier_list::const_iterator p = results->begin(); |
| p != results->end(); |
| ++p) |
| { |
| if (p != results->begin()) |
| ret->append(", "); |
| this->append_reflection(p->type(), gogo, ret); |
| } |
| if (results->size() > 1) |
| ret->push_back(')'); |
| } |
| } |
| |
| // Export a function type. |
| |
| void |
| Function_type::do_export(Export* exp) const |
| { |
| // We don't write out the receiver. The only function types which |
| // should have a receiver are the ones associated with explicitly |
| // defined methods. For those the receiver type is written out by |
| // Function::export_func. |
| |
| exp->write_c_string("("); |
| bool first = true; |
| if (this->parameters_ != NULL) |
| { |
| bool is_varargs = this->is_varargs_; |
| for (Typed_identifier_list::const_iterator p = |
| this->parameters_->begin(); |
| p != this->parameters_->end(); |
| ++p) |
| { |
| if (first) |
| first = false; |
| else |
| exp->write_c_string(", "); |
| exp->write_name(p->name()); |
| exp->write_c_string(" "); |
| if (!is_varargs || p + 1 != this->parameters_->end()) |
| exp->write_type(p->type()); |
| else |
| { |
| exp->write_c_string("..."); |
| exp->write_type(p->type()->array_type()->element_type()); |
| } |
| } |
| } |
| exp->write_c_string(")"); |
| |
| const Typed_identifier_list* results = this->results_; |
| if (results != NULL) |
| { |
| exp->write_c_string(" "); |
| if (results->size() == 1 && results->begin()->name().empty()) |
| exp->write_type(results->begin()->type()); |
| else |
| { |
| first = true; |
| exp->write_c_string("("); |
| for (Typed_identifier_list::const_iterator p = results->begin(); |
| p != results->end(); |
| ++p) |
| { |
| if (first) |
| first = false; |
| else |
| exp->write_c_string(", "); |
| exp->write_name(p->name()); |
| exp->write_c_string(" "); |
| exp->write_type(p->type()); |
| } |
| exp->write_c_string(")"); |
| } |
| } |
| } |
| |
| // Import a function type. |
| |
| Function_type* |
| Function_type::do_import(Import* imp) |
| { |
| imp->require_c_string("("); |
| Typed_identifier_list* parameters; |
| bool is_varargs = false; |
| if (imp->peek_char() == ')') |
| parameters = NULL; |
| else |
| { |
| parameters = new Typed_identifier_list(); |
| while (true) |
| { |
| std::string name = imp->read_name(); |
| imp->require_c_string(" "); |
| |
| if (imp->match_c_string("...")) |
| { |
| imp->advance(3); |
| is_varargs = true; |
| } |
| |
| Type* ptype = imp->read_type(); |
| if (is_varargs) |
| ptype = Type::make_array_type(ptype, NULL); |
| parameters->push_back(Typed_identifier(name, ptype, |
| imp->location())); |
| if (imp->peek_char() != ',') |
| break; |
| go_assert(!is_varargs); |
| imp->require_c_string(", "); |
| } |
| } |
| imp->require_c_string(")"); |
| |
| Typed_identifier_list* results; |
| if (imp->peek_char() != ' ') |
| results = NULL; |
| else |
| { |
| imp->advance(1); |
| results = new Typed_identifier_list; |
| if (imp->peek_char() != '(') |
| { |
| Type* rtype = imp->read_type(); |
| results->push_back(Typed_identifier("", rtype, imp->location())); |
| } |
| else |
| { |
| imp->advance(1); |
| while (true) |
| { |
| std::string name = imp->read_name(); |
| imp->require_c_string(" "); |
| Type* rtype = imp->read_type(); |
| results->push_back(Typed_identifier(name, rtype, |
| imp->location())); |
| if (imp->peek_char() != ',') |
| break; |
| imp->require_c_string(", "); |
| } |
| imp->require_c_string(")"); |
| } |
| } |
| |
| Function_type* ret = Type::make_function_type(NULL, parameters, results, |
| imp->location()); |
| if (is_varargs) |
| ret->set_is_varargs(); |
| return ret; |
| } |
| |
| // Make a copy of a function type without a receiver. |
| |
| Function_type* |
| Function_type::copy_without_receiver() const |
| { |
| go_assert(this->is_method()); |
| Function_type *ret = Type::make_function_type(NULL, this->parameters_, |
| this->results_, |
| this->location_); |
| if (this->is_varargs()) |
| ret->set_is_varargs(); |
| if (this->is_builtin()) |
| ret->set_is_builtin(); |
| return ret; |
| } |
| |
| // Make a copy of a function type with a receiver. |
| |
| Function_type* |
| Function_type::copy_with_receiver(Type* receiver_type) const |
| { |
| go_assert(!this->is_method()); |
| Typed_identifier* receiver = new Typed_identifier("", receiver_type, |
| this->location_); |
| Function_type* ret = Type::make_function_type(receiver, this->parameters_, |
| this->results_, |
| this->location_); |
| if (this->is_varargs_) |
| ret->set_is_varargs(); |
| return ret; |
| } |
| |
| // Make a copy of a function type with the receiver as the first |
| // parameter. |
| |
| Function_type* |
| Function_type::copy_with_receiver_as_param(bool want_pointer_receiver) const |
| { |
| go_assert(this->is_method()); |
| Typed_identifier_list* new_params = new Typed_identifier_list(); |
| Type* rtype = this->receiver_->type(); |
| if (want_pointer_receiver) |
| rtype = Type::make_pointer_type(rtype); |
| Typed_identifier receiver(this->receiver_->name(), rtype, |
| this->receiver_->location()); |
| new_params->push_back(receiver); |
| const Typed_identifier_list* orig_params = this->parameters_; |
| if (orig_params != NULL && !orig_params->empty()) |
| { |
| for (Typed_identifier_list::const_iterator p = orig_params->begin(); |
| p != orig_params->end(); |
| ++p) |
| new_params->push_back(*p); |
| } |
| return Type::make_function_type(NULL, new_params, this->results_, |
| this->location_); |
| } |
| |
| // Make a copy of a function type ignoring any receiver and adding a |
| // closure parameter. |
| |
| Function_type* |
| Function_type::copy_with_names() const |
| { |
| Typed_identifier_list* new_params = new Typed_identifier_list(); |
| const Typed_identifier_list* orig_params = this->parameters_; |
| if (orig_params != NULL && !orig_params->empty()) |
| { |
| static int count; |
| char buf[50]; |
| for (Typed_identifier_list::const_iterator p = orig_params->begin(); |
| p != orig_params->end(); |
| ++p) |
| { |
| snprintf(buf, sizeof buf, "pt.%u", count); |
| ++count; |
| new_params->push_back(Typed_identifier(buf, p->type(), |
| p->location())); |
| } |
| } |
| |
| const Typed_identifier_list* orig_results = this->results_; |
| Typed_identifier_list* new_results; |
| if (orig_results == NULL || orig_results->empty()) |
| new_results = NULL; |
| else |
| { |
| new_results = new Typed_identifier_list(); |
| for (Typed_identifier_list::const_iterator p = orig_results->begin(); |
| p != orig_results->end(); |
| ++p) |
| new_results->push_back(Typed_identifier("", p->type(), |
| p->location())); |
| } |
| |
| return Type::make_function_type(NULL, new_params, new_results, |
| this->location()); |
| } |
| |
| // Make a function type. |
| |
| Function_type* |
| Type::make_function_type(Typed_identifier* receiver, |
| Typed_identifier_list* parameters, |
| Typed_identifier_list* results, |
| Location location) |
| { |
| return new Function_type(receiver, parameters, results, location); |
| } |
| |
| // Make a backend function type. |
| |
| Backend_function_type* |
| Type::make_backend_function_type(Typed_identifier* receiver, |
| Typed_identifier_list* parameters, |
| Typed_identifier_list* results, |
| Location location) |
| { |
| return new Backend_function_type(receiver, parameters, results, location); |
| } |
| |
| // Class Pointer_type. |
| |
| // Traversal. |
| |
| int |
| Pointer_type::do_traverse(Traverse* traverse) |
| { |
| return Type::traverse(this->to_type_, traverse); |
| } |
| |
| // Hash code. |
| |
| unsigned int |
| Pointer_type::do_hash_for_method(Gogo* gogo) const |
| { |
| return this->to_type_->hash_for_method(gogo) << 4; |
| } |
| |
| // Get the backend representation for a pointer type. |
| |
| Btype* |
| Pointer_type::do_get_backend(Gogo* gogo) |
| { |
| Btype* to_btype = this->to_type_->get_backend(gogo); |
| return gogo->backend()->pointer_type(to_btype); |
| } |
| |
| // The type of a pointer type descriptor. |
| |
| Type* |
| Pointer_type::make_pointer_type_descriptor_type() |
| { |
| static Type* ret; |
| if (ret == NULL) |
| { |
| Type* tdt = Type::make_type_descriptor_type(); |
| Type* ptdt = Type::make_type_descriptor_ptr_type(); |
| |
| Struct_type* s = Type::make_builtin_struct_type(2, |
| "", tdt, |
| "elem", ptdt); |
| |
| ret = Type::make_builtin_named_type("PtrType", s); |
| } |
| |
| return ret; |
| } |
| |
| // The type descriptor for a pointer type. |
| |
| Expression* |
| Pointer_type::do_type_descriptor(Gogo* gogo, Named_type* name) |
| { |
| if (this->is_unsafe_pointer_type()) |
| { |
| go_assert(name != NULL); |
| return this->plain_type_descriptor(gogo, |
| RUNTIME_TYPE_KIND_UNSAFE_POINTER, |
| name); |
| } |
| else |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| const Methods* methods; |
| Type* deref = this->points_to(); |
| if (deref->named_type() != NULL) |
| methods = deref->named_type()->methods(); |
| else if (deref->struct_type() != NULL) |
| methods = deref->struct_type()->methods(); |
| else |
| methods = NULL; |
| |
| Type* ptr_tdt = Pointer_type::make_pointer_type_descriptor_type(); |
| |
| const Struct_field_list* fields = ptr_tdt->struct_type()->fields(); |
| |
| Expression_list* vals = new Expression_list(); |
| vals->reserve(2); |
| |
| Struct_field_list::const_iterator p = fields->begin(); |
| go_assert(p->is_field_name("_type")); |
| vals->push_back(this->type_descriptor_constructor(gogo, |
| RUNTIME_TYPE_KIND_PTR, |
| name, methods, false)); |
| |
| ++p; |
| go_assert(p->is_field_name("elem")); |
| vals->push_back(Expression::make_type_descriptor(deref, bloc)); |
| |
| return Expression::make_struct_composite_literal(ptr_tdt, vals, bloc); |
| } |
| } |
| |
| // Reflection string. |
| |
| void |
| Pointer_type::do_reflection(Gogo* gogo, std::string* ret) const |
| { |
| ret->push_back('*'); |
| this->append_reflection(this->to_type_, gogo, ret); |
| } |
| |
| // Export. |
| |
| void |
| Pointer_type::do_export(Export* exp) const |
| { |
| exp->write_c_string("*"); |
| if (this->is_unsafe_pointer_type()) |
| exp->write_c_string("any"); |
| else |
| exp->write_type(this->to_type_); |
| } |
| |
| // Import. |
| |
| Pointer_type* |
| Pointer_type::do_import(Import* imp) |
| { |
| imp->require_c_string("*"); |
| if (imp->match_c_string("any")) |
| { |
| imp->advance(3); |
| return Type::make_pointer_type(Type::make_void_type()); |
| } |
| Type* to = imp->read_type(); |
| return Type::make_pointer_type(to); |
| } |
| |
| // Cache of pointer types. Key is "to" type, value is pointer type |
| // that points to key. |
| |
| Type::Pointer_type_table Type::pointer_types; |
| |
| // A list of placeholder pointer types. We keep this so we can ensure |
| // they are finalized. |
| |
| std::vector<Pointer_type*> Type::placeholder_pointers; |
| |
| // Make a pointer type. |
| |
| Pointer_type* |
| Type::make_pointer_type(Type* to_type) |
| { |
| Pointer_type_table::const_iterator p = pointer_types.find(to_type); |
| if (p != pointer_types.end()) |
| return p->second; |
| Pointer_type* ret = new Pointer_type(to_type); |
| pointer_types[to_type] = ret; |
| return ret; |
| } |
| |
| // This helper is invoked immediately after named types have been |
| // converted, to clean up any unresolved pointer types remaining in |
| // the pointer type cache. |
| // |
| // The motivation for this routine: occasionally the compiler creates |
| // some specific pointer type as part of a lowering operation (ex: |
| // pointer-to-void), then Type::backend_type_size() is invoked on the |
| // type (which creates a Btype placeholder for it), that placeholder |
| // passed somewhere along the line to the back end, but since there is |
| // no reference to the type in user code, there is never a call to |
| // Type::finish_backend for the type (hence the Btype remains as an |
| // unresolved placeholder). Calling this routine will clean up such |
| // instances. |
| |
| void |
| Type::finish_pointer_types(Gogo* gogo) |
| { |
| // We don't use begin() and end() because it is possible to add new |
| // placeholder pointer types as we finalized existing ones. |
| for (size_t i = 0; i < Type::placeholder_pointers.size(); i++) |
| { |
| Pointer_type* pt = Type::placeholder_pointers[i]; |
| Type_btypes::iterator tbti = Type::type_btypes.find(pt); |
| if (tbti != Type::type_btypes.end() && tbti->second.is_placeholder) |
| { |
| pt->finish_backend(gogo, tbti->second.btype); |
| tbti->second.is_placeholder = false; |
| } |
| } |
| } |
| |
| // Class Nil_type. |
| |
| // Get the backend representation of a nil type. FIXME: Is this ever |
| // actually called? |
| |
| Btype* |
| Nil_type::do_get_backend(Gogo* gogo) |
| { |
| return gogo->backend()->pointer_type(gogo->backend()->void_type()); |
| } |
| |
| // Make the nil type. |
| |
| Type* |
| Type::make_nil_type() |
| { |
| static Nil_type singleton_nil_type; |
| return &singleton_nil_type; |
| } |
| |
| // The type of a function call which returns multiple values. This is |
| // really a struct, but we don't want to confuse a function call which |
| // returns a struct with a function call which returns multiple |
| // values. |
| |
| class Call_multiple_result_type : public Type |
| { |
| public: |
| Call_multiple_result_type(Call_expression* call) |
| : Type(TYPE_CALL_MULTIPLE_RESULT), |
| call_(call) |
| { } |
| |
| protected: |
| bool |
| do_has_pointer() const |
| { return false; } |
| |
| bool |
| do_compare_is_identity(Gogo*) |
| { return false; } |
| |
| Btype* |
| do_get_backend(Gogo* gogo) |
| { |
| go_assert(saw_errors()); |
| return gogo->backend()->error_type(); |
| } |
| |
| Expression* |
| do_type_descriptor(Gogo*, Named_type*) |
| { |
| go_assert(saw_errors()); |
| return Expression::make_error(Linemap::unknown_location()); |
| } |
| |
| void |
| do_reflection(Gogo*, std::string*) const |
| { go_assert(saw_errors()); } |
| |
| void |
| do_mangled_name(Gogo*, std::string*) const |
| { go_assert(saw_errors()); } |
| |
| private: |
| // The expression being called. |
| Call_expression* call_; |
| }; |
| |
| // Make a call result type. |
| |
| Type* |
| Type::make_call_multiple_result_type(Call_expression* call) |
| { |
| return new Call_multiple_result_type(call); |
| } |
| |
| // Class Struct_field. |
| |
| // Get the name of a field. |
| |
| const std::string& |
| Struct_field::field_name() const |
| { |
| const std::string& name(this->typed_identifier_.name()); |
| if (!name.empty()) |
| return name; |
| else |
| { |
| // This is called during parsing, before anything is lowered, so |
| // we have to be pretty careful to avoid dereferencing an |
| // unknown type name. |
| Type* t = this->typed_identifier_.type(); |
| Type* dt = t; |
| if (t->classification() == Type::TYPE_POINTER) |
| { |
| // Very ugly. |
| Pointer_type* ptype = static_cast<Pointer_type*>(t); |
| dt = ptype->points_to(); |
| } |
| if (dt->forward_declaration_type() != NULL) |
| return dt->forward_declaration_type()->name(); |
| else if (dt->named_type() != NULL) |
| { |
| // Note that this can be an alias name. |
| return dt->named_type()->name(); |
| } |
| else if (t->is_error_type() || dt->is_error_type()) |
| { |
| static const std::string error_string = "*error*"; |
| return error_string; |
| } |
| else |
| { |
| // Avoid crashing in the erroneous case where T is named but |
| // DT is not. |
| go_assert(t != dt); |
| if (t->forward_declaration_type() != NULL) |
| return t->forward_declaration_type()->name(); |
| else if (t->named_type() != NULL) |
| return t->named_type()->name(); |
| else |
| go_unreachable(); |
| } |
| } |
| } |
| |
| // Return whether this field is named NAME. |
| |
| bool |
| Struct_field::is_field_name(const std::string& name) const |
| { |
| const std::string& me(this->typed_identifier_.name()); |
| if (!me.empty()) |
| return me == name; |
| else |
| { |
| Type* t = this->typed_identifier_.type(); |
| if (t->points_to() != NULL) |
| t = t->points_to(); |
| Named_type* nt = t->named_type(); |
| if (nt != NULL && nt->name() == name) |
| return true; |
| |
| // This is a horrible hack caused by the fact that we don't pack |
| // the names of builtin types. FIXME. |
| if (!this->is_imported_ |
| && nt != NULL |
| && nt->is_builtin() |
| && nt->name() == Gogo::unpack_hidden_name(name)) |
| return true; |
| |
| return false; |
| } |
| } |
| |
| // Return whether this field is an unexported field named NAME. |
| |
| bool |
| Struct_field::is_unexported_field_name(Gogo* gogo, |
| const std::string& name) const |
| { |
| const std::string& field_name(this->field_name()); |
| if (Gogo::is_hidden_name(field_name) |
| && name == Gogo::unpack_hidden_name(field_name) |
| && gogo->pack_hidden_name(name, false) != field_name) |
| return true; |
| |
| // Check for the name of a builtin type. This is like the test in |
| // is_field_name, only there we return false if this->is_imported_, |
| // and here we return true. |
| if (this->is_imported_ && this->is_anonymous()) |
| { |
| Type* t = this->typed_identifier_.type(); |
| if (t->points_to() != NULL) |
| t = t->points_to(); |
| Named_type* nt = t->named_type(); |
| if (nt != NULL |
| && nt->is_builtin() |
| && nt->name() == Gogo::unpack_hidden_name(name)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Return whether this field is an embedded built-in type. |
| |
| bool |
| Struct_field::is_embedded_builtin(Gogo* gogo) const |
| { |
| const std::string& name(this->field_name()); |
| // We know that a field is an embedded type if it is anonymous. |
| // We can decide if it is a built-in type by checking to see if it is |
| // registered globally under the field's name. |
| // This allows us to distinguish between embedded built-in types and |
| // embedded types that are aliases to built-in types. |
| return (this->is_anonymous() |
| && !Gogo::is_hidden_name(name) |
| && gogo->lookup_global(name.c_str()) != NULL); |
| } |
| |
| // Class Struct_type. |
| |
| // A hash table used to find identical unnamed structs so that they |
| // share method tables. |
| |
| Struct_type::Identical_structs Struct_type::identical_structs; |
| |
| // A hash table used to merge method sets for identical unnamed |
| // structs. |
| |
| Struct_type::Struct_method_tables Struct_type::struct_method_tables; |
| |
| // Traversal. |
| |
| int |
| Struct_type::do_traverse(Traverse* traverse) |
| { |
| Struct_field_list* fields = this->fields_; |
| if (fields != NULL) |
| { |
| for (Struct_field_list::iterator p = fields->begin(); |
| p != fields->end(); |
| ++p) |
| { |
| if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT) |
| return TRAVERSE_EXIT; |
| } |
| } |
| return TRAVERSE_CONTINUE; |
| } |
| |
| // Verify that the struct type is complete and valid. |
| |
| bool |
| Struct_type::do_verify() |
| { |
| Struct_field_list* fields = this->fields_; |
| if (fields == NULL) |
| return true; |
| for (Struct_field_list::iterator p = fields->begin(); |
| p != fields->end(); |
| ++p) |
| { |
| Type* t = p->type(); |
| if (p->is_anonymous()) |
| { |
| if ((t->named_type() != NULL && t->points_to() != NULL) |
| || (t->named_type() == NULL && t->points_to() != NULL |
| && t->points_to()->points_to() != NULL)) |
| { |
| go_error_at(p->location(), "embedded type may not be a pointer"); |
| p->set_type(Type::make_error_type()); |
| } |
| else if (t->points_to() != NULL |
| && t->points_to()->interface_type() != NULL) |
| { |
| go_error_at(p->location(), |
| "embedded type may not be pointer to interface"); |
| p->set_type(Type::make_error_type()); |
| } |
| } |
| } |
| return true; |
| } |
| |
| // Whether this contains a pointer. |
| |
| bool |
| Struct_type::do_has_pointer() const |
| { |
| const Struct_field_list* fields = this->fields(); |
| if (fields == NULL) |
| return false; |
| for (Struct_field_list::const_iterator p = fields->begin(); |
| p != fields->end(); |
| ++p) |
| { |
| if (p->type()->has_pointer()) |
| return true; |
| } |
| return false; |
| } |
| |
| // Whether this type is identical to T. |
| |
| bool |
| Struct_type::is_identical(const Struct_type* t, Cmp_tags cmp_tags, |
| bool errors_are_identical) const |
| { |
| if (this->is_struct_incomparable_ != t->is_struct_incomparable_) |
| return false; |
| const Struct_field_list* fields1 = this->fields(); |
| const Struct_field_list* fields2 = t->fields(); |
| if (fields1 == NULL || fields2 == NULL) |
| return fields1 == fields2; |
| Struct_field_list::const_iterator pf2 = fields2->begin(); |
| for (Struct_field_list::const_iterator pf1 = fields1->begin(); |
| pf1 != fields1->end(); |
| ++pf1, ++pf2) |
| { |
| if (pf2 == fields2->end()) |
| return false; |
| if (pf1->field_name() != pf2->field_name()) |
| return false; |
| if (pf1->is_anonymous() != pf2->is_anonymous() |
| || !Type::are_identical_cmp_tags(pf1->type(), pf2->type(), cmp_tags, |
| errors_are_identical, NULL)) |
| return false; |
| if (cmp_tags == COMPARE_TAGS) |
| { |
| if (!pf1->has_tag()) |
| { |
| if (pf2->has_tag()) |
| return false; |
| } |
| else |
| { |
| if (!pf2->has_tag()) |
| return false; |
| if (pf1->tag() != pf2->tag()) |
| return false; |
| } |
| } |
| } |
| if (pf2 != fields2->end()) |
| return false; |
| return true; |
| } |
| |
| // Whether comparisons of this struct type are simple identity |
| // comparisons. |
| |
| bool |
| Struct_type::do_compare_is_identity(Gogo* gogo) |
| { |
| const Struct_field_list* fields = this->fields_; |
| if (fields == NULL) |
| return true; |
| int64_t offset = 0; |
| for (Struct_field_list::const_iterator pf = fields->begin(); |
| pf != fields->end(); |
| ++pf) |
| { |
| if (Gogo::is_sink_name(pf->field_name())) |
| return false; |
| |
| if (!pf->type()->compare_is_identity(gogo)) |
| return false; |
| |
| int64_t field_align; |
| if (!pf->type()->backend_type_align(gogo, &field_align)) |
| return false; |
| if ((offset & (field_align - 1)) != 0) |
| { |
| // This struct has padding. We don't guarantee that that |
| // padding is zero-initialized for a stack variable, so we |
| // can't use memcmp to compare struct values. |
| return false; |
| } |
| |
| int64_t field_size; |
| if (!pf->type()->backend_type_size(gogo, &field_size)) |
| return false; |
| offset += field_size; |
| } |
| |
| int64_t struct_size; |
| if (!this->backend_type_size(gogo, &struct_size)) |
| return false; |
| if (offset != struct_size) |
| { |
| // Trailing padding may not be zero when on the stack. |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Return whether this struct type is reflexive--whether a value of |
| // this type is always equal to itself. |
| |
| bool |
| Struct_type::do_is_reflexive() |
| { |
| const Struct_field_list* fields = this->fields_; |
| if (fields == NULL) |
| return true; |
| for (Struct_field_list::const_iterator pf = fields->begin(); |
| pf != fields->end(); |
| ++pf) |
| { |
| if (!pf->type()->is_reflexive()) |
| return false; |
| } |
| return true; |
| } |
| |
| // Return whether this struct type needs a key update when used as a |
| // map key. |
| |
| bool |
| Struct_type::do_needs_key_update() |
| { |
| const Struct_field_list* fields = this->fields_; |
| if (fields == NULL) |
| return false; |
| for (Struct_field_list::const_iterator pf = fields->begin(); |
| pf != fields->end(); |
| ++pf) |
| { |
| if (pf->type()->needs_key_update()) |
| return true; |
| } |
| return false; |
| } |
| |
| // Return whether this struct type is permitted to be in the heap. |
| |
| bool |
| Struct_type::do_in_heap() |
| { |
| const Struct_field_list* fields = this->fields_; |
| if (fields == NULL) |
| return true; |
| for (Struct_field_list::const_iterator pf = fields->begin(); |
| pf != fields->end(); |
| ++pf) |
| { |
| if (!pf->type()->in_heap()) |
| return false; |
| } |
| return true; |
| } |
| |
| // Build identity and hash functions for this struct. |
| |
| // Hash code. |
| |
| unsigned int |
| Struct_type::do_hash_for_method(Gogo* gogo) const |
| { |
| unsigned int ret = 0; |
| if (this->fields() != NULL) |
| { |
| for (Struct_field_list::const_iterator pf = this->fields()->begin(); |
| pf != this->fields()->end(); |
| ++pf) |
| ret = (ret << 1) + pf->type()->hash_for_method(gogo); |
| } |
| ret <<= 2; |
| if (this->is_struct_incomparable_) |
| ret <<= 1; |
| return ret; |
| } |
| |
| // Find the local field NAME. |
| |
| const Struct_field* |
| Struct_type::find_local_field(const std::string& name, |
| unsigned int *pindex) const |
| { |
| const Struct_field_list* fields = this->fields_; |
| if (fields == NULL) |
| return NULL; |
| unsigned int i = 0; |
| for (Struct_field_list::const_iterator pf = fields->begin(); |
| pf != fields->end(); |
| ++pf, ++i) |
| { |
| if (pf->is_field_name(name)) |
| { |
| if (pindex != NULL) |
| *pindex = i; |
| return &*pf; |
| } |
| } |
| return NULL; |
| } |
| |
| // Return an expression for field NAME in STRUCT_EXPR, or NULL. |
| |
| Field_reference_expression* |
| Struct_type::field_reference(Expression* struct_expr, const std::string& name, |
| Location location) const |
| { |
| unsigned int depth; |
| return this->field_reference_depth(struct_expr, name, location, NULL, |
| &depth); |
| } |
| |
| // Return an expression for a field, along with the depth at which it |
| // was found. |
| |
| Field_reference_expression* |
| Struct_type::field_reference_depth(Expression* struct_expr, |
| const std::string& name, |
| Location location, |
| Saw_named_type* saw, |
| unsigned int* depth) const |
| { |
| const Struct_field_list* fields = this->fields_; |
| if (fields == NULL) |
| return NULL; |
| |
| // Look for a field with this name. |
| unsigned int i = 0; |
| for (Struct_field_list::const_iterator pf = fields->begin(); |
| pf != fields->end(); |
| ++pf, ++i) |
| { |
| if (pf->is_field_name(name)) |
| { |
| *depth = 0; |
| return Expression::make_field_reference(struct_expr, i, location); |
| } |
| } |
| |
| // Look for an anonymous field which contains a field with this |
| // name. |
| unsigned int found_depth = 0; |
| Field_reference_expression* ret = NULL; |
| i = 0; |
| for (Struct_field_list::const_iterator pf = fields->begin(); |
| pf != fields->end(); |
| ++pf, ++i) |
| { |
| if (!pf->is_anonymous()) |
| continue; |
| |
| Struct_type* st = pf->type()->deref()->struct_type(); |
| if (st == NULL) |
| continue; |
| |
| Saw_named_type* hold_saw = saw; |
| Saw_named_type saw_here; |
| Named_type* nt = pf->type()->named_type(); |
| if (nt == NULL) |
| nt = pf->type()->deref()->named_type(); |
| if (nt != NULL) |
| { |
| Saw_named_type* q; |
| for (q = saw; q != NULL; q = q->next) |
| { |
| if (q->nt == nt) |
| { |
| // If this is an error, it will be reported |
| // elsewhere. |
| break; |
| } |
| } |
| if (q != NULL) |
| continue; |
| saw_here.next = saw; |
| saw_here.nt = nt; |
| saw = &saw_here; |
| } |
| |
| // Look for a reference using a NULL struct expression. If we |
| // find one, fill in the struct expression with a reference to |
| // this field. |
| unsigned int subdepth; |
| Field_reference_expression* sub = st->field_reference_depth(NULL, name, |
| location, |
| saw, |
| &subdepth); |
| |
| saw = hold_saw; |
| |
| if (sub == NULL) |
| continue; |
| |
| if (ret == NULL || subdepth < found_depth) |
| { |
| if (ret != NULL) |
| delete ret; |
| ret = sub; |
| found_depth = subdepth; |
| Expression* here = Expression::make_field_reference(struct_expr, i, |
| location); |
| if (pf->type()->points_to() != NULL) |
| here = Expression::make_dereference(here, |
| Expression::NIL_CHECK_DEFAULT, |
| location); |
| while (sub->expr() != NULL) |
| { |
| sub = sub->expr()->deref()->field_reference_expression(); |
| go_assert(sub != NULL); |
| } |
| sub->set_struct_expression(here); |
| sub->set_implicit(true); |
| } |
| else if (subdepth > found_depth) |
| delete sub; |
| else |
| { |
| // We do not handle ambiguity here--it should be handled by |
| // Type::bind_field_or_method. |
| delete sub; |
| found_depth = 0; |
| ret = NULL; |
| } |
| } |
| |
| if (ret != NULL) |
| *depth = found_depth + 1; |
| |
| return ret; |
| } |
| |
| // Return the total number of fields, including embedded fields. |
| |
| unsigned int |
| Struct_type::total_field_count() const |
| { |
| if (this->fields_ == NULL) |
| return 0; |
| unsigned int ret = 0; |
| for (Struct_field_list::const_iterator pf = this->fields_->begin(); |
| pf != this->fields_->end(); |
| ++pf) |
| { |
| if (!pf->is_anonymous() || pf->type()->struct_type() == NULL) |
| ++ret; |
| else |
| ret += pf->type()->struct_type()->total_field_count(); |
| } |
| return ret; |
| } |
| |
| // Return whether NAME is an unexported field, for better error reporting. |
| |
| bool |
| Struct_type::is_unexported_local_field(Gogo* gogo, |
| const std::string& name) const |
| { |
| const Struct_field_list* fields = this->fields_; |
| if (fields != NULL) |
| { |
| for (Struct_field_list::const_iterator pf = fields->begin(); |
| pf != fields->end(); |
| ++pf) |
| if (pf->is_unexported_field_name(gogo, name)) |
| return true; |
| } |
| return false; |
| } |
| |
| // Finalize the methods of an unnamed struct. |
| |
| void |
| Struct_type::finalize_methods(Gogo* gogo) |
| { |
| if (this->all_methods_ != NULL) |
| return; |
| |
| // It is possible to have multiple identical structs that have |
| // methods. We want them to share method tables. Otherwise we will |
| // emit identical methods more than once, which is bad since they |
| // will even have the same names. |
| std::pair<Identical_structs::iterator, bool> ins = |
| Struct_type::identical_structs.insert(std::make_pair(this, this)); |
| if (!ins.second) |
| { |
| // An identical struct was already entered into the hash table. |
| // Note that finalize_methods is, fortunately, not recursive. |
| this->all_methods_ = ins.first->second->all_methods_; |
| return; |
| } |
| |
| Type::finalize_methods(gogo, this, this->location_, &this->all_methods_); |
| } |
| |
| // Return the method NAME, or NULL if there isn't one or if it is |
| // ambiguous. Set *IS_AMBIGUOUS if the method exists but is |
| // ambiguous. |
| |
| Method* |
| Struct_type::method_function(const std::string& name, bool* is_ambiguous) const |
| { |
| return Type::method_function(this->all_methods_, name, is_ambiguous); |
| } |
| |
| // Return a pointer to the interface method table for this type for |
| // the interface INTERFACE. IS_POINTER is true if this is for a |
| // pointer to THIS. |
| |
| Expression* |
| Struct_type::interface_method_table(Interface_type* interface, |
| bool is_pointer) |
| { |
| std::pair<Struct_type*, Struct_type::Struct_method_table_pair*> |
| val(this, NULL); |
| std::pair<Struct_type::Struct_method_tables::iterator, bool> ins = |
| Struct_type::struct_method_tables.insert(val); |
| |
| Struct_method_table_pair* smtp; |
| if (!ins.second) |
| smtp = ins.first->second; |
| else |
| { |
| smtp = new Struct_method_table_pair(); |
| smtp->first = NULL; |
| smtp->second = NULL; |
| ins.first->second = smtp; |
| } |
| |
| return Type::interface_method_table(this, interface, is_pointer, |
| &smtp->first, &smtp->second); |
| } |
| |
| // Convert struct fields to the backend representation. This is not |
| // declared in types.h so that types.h doesn't have to #include |
| // backend.h. |
| |
| static void |
| get_backend_struct_fields(Gogo* gogo, const Struct_field_list* fields, |
| bool use_placeholder, |
| std::vector<Backend::Btyped_identifier>* bfields) |
| { |
| bfields->resize(fields->size()); |
| size_t i = 0; |
| for (Struct_field_list::const_iterator p = fields->begin(); |
| p != fields->end(); |
| ++p, ++i) |
| { |
| (*bfields)[i].name = Gogo::unpack_hidden_name(p->field_name()); |
| (*bfields)[i].btype = (use_placeholder |
| ? p->type()->get_backend_placeholder(gogo) |
| : p->type()->get_backend(gogo)); |
| (*bfields)[i].location = p->location(); |
| } |
| go_assert(i == fields->size()); |
| } |
| |
| // Get the backend representation for a struct type. |
| |
| Btype* |
| Struct_type::do_get_backend(Gogo* gogo) |
| { |
| std::vector<Backend::Btyped_identifier> bfields; |
| get_backend_struct_fields(gogo, this->fields_, false, &bfields); |
| return gogo->backend()->struct_type(bfields); |
| } |
| |
| // Finish the backend representation of the fields of a struct. |
| |
| void |
| Struct_type::finish_backend_fields(Gogo* gogo) |
| { |
| const Struct_field_list* fields = this->fields_; |
| if (fields != NULL) |
| { |
| for (Struct_field_list::const_iterator p = fields->begin(); |
| p != fields->end(); |
| ++p) |
| p->type()->get_backend(gogo); |
| } |
| } |
| |
| // The type of a struct type descriptor. |
| |
| Type* |
| Struct_type::make_struct_type_descriptor_type() |
| { |
| static Type* ret; |
| if (ret == NULL) |
| { |
| Type* tdt = Type::make_type_descriptor_type(); |
| Type* ptdt = Type::make_type_descriptor_ptr_type(); |
| |
| Type* uintptr_type = Type::lookup_integer_type("uintptr"); |
| Type* string_type = Type::lookup_string_type(); |
| Type* pointer_string_type = Type::make_pointer_type(string_type); |
| |
| Struct_type* sf = |
| Type::make_builtin_struct_type(5, |
| "name", pointer_string_type, |
| "pkgPath", pointer_string_type, |
| "typ", ptdt, |
| "tag", pointer_string_type, |
| "offsetAnon", uintptr_type); |
| Type* nsf = Type::make_builtin_named_type("structField", sf); |
| |
| Type* slice_type = Type::make_array_type(nsf, NULL); |
| |
| Struct_type* s = Type::make_builtin_struct_type(2, |
| "", tdt, |
| "fields", slice_type); |
| |
| ret = Type::make_builtin_named_type("StructType", s); |
| } |
| |
| return ret; |
| } |
| |
| // Build a type descriptor for a struct type. |
| |
| Expression* |
| Struct_type::do_type_descriptor(Gogo* gogo, Named_type* name) |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| Type* stdt = Struct_type::make_struct_type_descriptor_type(); |
| |
| const Struct_field_list* fields = stdt->struct_type()->fields(); |
| |
| Expression_list* vals = new Expression_list(); |
| vals->reserve(2); |
| |
| const Methods* methods = this->methods(); |
| // A named struct should not have methods--the methods should attach |
| // to the named type. |
| go_assert(methods == NULL || name == NULL); |
| |
| Struct_field_list::const_iterator ps = fields->begin(); |
| go_assert(ps->is_field_name("_type")); |
| vals->push_back(this->type_descriptor_constructor(gogo, |
| RUNTIME_TYPE_KIND_STRUCT, |
| name, methods, true)); |
| |
| ++ps; |
| go_assert(ps->is_field_name("fields")); |
| |
| Expression_list* elements = new Expression_list(); |
| elements->reserve(this->fields_->size()); |
| Type* element_type = ps->type()->array_type()->element_type(); |
| for (Struct_field_list::const_iterator pf = this->fields_->begin(); |
| pf != this->fields_->end(); |
| ++pf) |
| { |
| const Struct_field_list* f = element_type->struct_type()->fields(); |
| |
| Expression_list* fvals = new Expression_list(); |
| fvals->reserve(5); |
| |
| Struct_field_list::const_iterator q = f->begin(); |
| go_assert(q->is_field_name("name")); |
| std::string n = Gogo::unpack_hidden_name(pf->field_name()); |
| Expression* s = Expression::make_string(n, bloc); |
| fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); |
| |
| ++q; |
| go_assert(q->is_field_name("pkgPath")); |
| bool is_embedded_builtin = pf->is_embedded_builtin(gogo); |
| if (!Gogo::is_hidden_name(pf->field_name()) && !is_embedded_builtin) |
| fvals->push_back(Expression::make_nil(bloc)); |
| else |
| { |
| std::string n; |
| if (is_embedded_builtin) |
| n = gogo->package_name(); |
| else |
| n = Gogo::hidden_name_pkgpath(pf->field_name()); |
| Expression* s = Expression::make_string(n, bloc); |
| fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); |
| } |
| |
| ++q; |
| go_assert(q->is_field_name("typ")); |
| fvals->push_back(Expression::make_type_descriptor(pf->type(), bloc)); |
| |
| ++q; |
| go_assert(q->is_field_name("tag")); |
| if (!pf->has_tag()) |
| fvals->push_back(Expression::make_nil(bloc)); |
| else |
| { |
| Expression* s = Expression::make_string(pf->tag(), bloc); |
| fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); |
| } |
| |
| ++q; |
| go_assert(q->is_field_name("offsetAnon")); |
| Type* uintptr_type = Type::lookup_integer_type("uintptr"); |
| Expression* o = Expression::make_struct_field_offset(this, &*pf); |
| Expression* one = Expression::make_integer_ul(1, uintptr_type, bloc); |
| o = Expression::make_binary(OPERATOR_LSHIFT, o, one, bloc); |
| int av = pf->is_anonymous() ? 1 : 0; |
| Expression* anon = Expression::make_integer_ul(av, uintptr_type, bloc); |
| o = Expression::make_binary(OPERATOR_OR, o, anon, bloc); |
| fvals->push_back(o); |
| |
| Expression* v = Expression::make_struct_composite_literal(element_type, |
| fvals, bloc); |
| elements->push_back(v); |
| } |
| |
| vals->push_back(Expression::make_slice_composite_literal(ps->type(), |
| elements, bloc)); |
| |
| return Expression::make_struct_composite_literal(stdt, vals, bloc); |
| } |
| |
| // Write the hash function for a struct which can not use the identity |
| // function. |
| |
| void |
| Struct_type::write_hash_function(Gogo* gogo, Named_type*, |
| Function_type* hash_fntype, |
| Function_type* equal_fntype) |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| // The pointer to the struct that we are going to hash. This is an |
| // argument to the hash function we are implementing here. |
| Named_object* key_arg = gogo->lookup("key", NULL); |
| go_assert(key_arg != NULL); |
| Type* key_arg_type = key_arg->var_value()->type(); |
| |
| // The seed argument to the hash function. |
| Named_object* seed_arg = gogo->lookup("seed", NULL); |
| go_assert(seed_arg != NULL); |
| |
| Type* uintptr_type = Type::lookup_integer_type("uintptr"); |
| |
| // Make a temporary to hold the return value, initialized to the seed. |
| Expression* ref = Expression::make_var_reference(seed_arg, bloc); |
| Temporary_statement* retval = Statement::make_temporary(uintptr_type, ref, |
| bloc); |
| gogo->add_statement(retval); |
| |
| // Make a temporary to hold the key as a uintptr. |
| ref = Expression::make_var_reference(key_arg, bloc); |
| ref = Expression::make_cast(uintptr_type, ref, bloc); |
| Temporary_statement* key = Statement::make_temporary(uintptr_type, ref, |
| bloc); |
| gogo->add_statement(key); |
| |
| // Loop over the struct fields. |
| const Struct_field_list* fields = this->fields_; |
| for (Struct_field_list::const_iterator pf = fields->begin(); |
| pf != fields->end(); |
| ++pf) |
| { |
| if (Gogo::is_sink_name(pf->field_name())) |
| continue; |
| |
| // Get a pointer to the value of this field. |
| Expression* offset = Expression::make_struct_field_offset(this, &*pf); |
| ref = Expression::make_temporary_reference(key, bloc); |
| Expression* subkey = Expression::make_binary(OPERATOR_PLUS, ref, offset, |
| bloc); |
| subkey = Expression::make_cast(key_arg_type, subkey, bloc); |
| |
| // Get the hash function to use for the type of this field. |
| Named_object* hash_fn; |
| Named_object* equal_fn; |
| pf->type()->type_functions(gogo, pf->type()->named_type(), hash_fntype, |
| equal_fntype, &hash_fn, &equal_fn); |
| |
| // Call the hash function for the field, passing retval as the seed. |
| ref = Expression::make_temporary_reference(retval, bloc); |
| Expression_list* args = new Expression_list(); |
| args->push_back(subkey); |
| args->push_back(ref); |
| Expression* func = Expression::make_func_reference(hash_fn, NULL, bloc); |
| Expression* call = Expression::make_call(func, args, false, bloc); |
| |
| // Set retval to the result. |
| Temporary_reference_expression* tref = |
| Expression::make_temporary_reference(retval, bloc); |
| tref->set_is_lvalue(); |
| Statement* s = Statement::make_assignment(tref, call, bloc); |
| gogo->add_statement(s); |
| } |
| |
| // Return retval to the caller of the hash function. |
| Expression_list* vals = new Expression_list(); |
| ref = Expression::make_temporary_reference(retval, bloc); |
| vals->push_back(ref); |
| Statement* s = Statement::make_return_statement(vals, bloc); |
| gogo->add_statement(s); |
| } |
| |
| // Write the equality function for a struct which can not use the |
| // identity function. |
| |
| void |
| Struct_type::write_equal_function(Gogo* gogo, Named_type* name) |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| // The pointers to the structs we are going to compare. |
| Named_object* key1_arg = gogo->lookup("key1", NULL); |
| Named_object* key2_arg = gogo->lookup("key2", NULL); |
| go_assert(key1_arg != NULL && key2_arg != NULL); |
| |
| // Build temporaries with the right types. |
| Type* pt = Type::make_pointer_type(name != NULL |
| ? static_cast<Type*>(name) |
| : static_cast<Type*>(this)); |
| |
| Expression* ref = Expression::make_var_reference(key1_arg, bloc); |
| ref = Expression::make_unsafe_cast(pt, ref, bloc); |
| Temporary_statement* p1 = Statement::make_temporary(pt, ref, bloc); |
| gogo->add_statement(p1); |
| |
| ref = Expression::make_var_reference(key2_arg, bloc); |
| ref = Expression::make_unsafe_cast(pt, ref, bloc); |
| Temporary_statement* p2 = Statement::make_temporary(pt, ref, bloc); |
| gogo->add_statement(p2); |
| |
| const Struct_field_list* fields = this->fields_; |
| unsigned int field_index = 0; |
| for (Struct_field_list::const_iterator pf = fields->begin(); |
| pf != fields->end(); |
| ++pf, ++field_index) |
| { |
| if (Gogo::is_sink_name(pf->field_name())) |
| continue; |
| |
| // Compare one field in both P1 and P2. |
| Expression* f1 = Expression::make_temporary_reference(p1, bloc); |
| f1 = Expression::make_dereference(f1, Expression::NIL_CHECK_DEFAULT, |
| bloc); |
| f1 = Expression::make_field_reference(f1, field_index, bloc); |
| |
| Expression* f2 = Expression::make_temporary_reference(p2, bloc); |
| f2 = Expression::make_dereference(f2, Expression::NIL_CHECK_DEFAULT, |
| bloc); |
| f2 = Expression::make_field_reference(f2, field_index, bloc); |
| |
| Expression* cond = Expression::make_binary(OPERATOR_NOTEQ, f1, f2, bloc); |
| |
| // If the values are not equal, return false. |
| gogo->start_block(bloc); |
| Expression_list* vals = new Expression_list(); |
| vals->push_back(Expression::make_boolean(false, bloc)); |
| Statement* s = Statement::make_return_statement(vals, bloc); |
| gogo->add_statement(s); |
| Block* then_block = gogo->finish_block(bloc); |
| |
| s = Statement::make_if_statement(cond, then_block, NULL, bloc); |
| gogo->add_statement(s); |
| } |
| |
| // All the fields are equal, so return true. |
| Expression_list* vals = new Expression_list(); |
| vals->push_back(Expression::make_boolean(true, bloc)); |
| Statement* s = Statement::make_return_statement(vals, bloc); |
| gogo->add_statement(s); |
| } |
| |
| // Reflection string. |
| |
| void |
| Struct_type::do_reflection(Gogo* gogo, std::string* ret) const |
| { |
| ret->append("struct {"); |
| |
| for (Struct_field_list::const_iterator p = this->fields_->begin(); |
| p != this->fields_->end(); |
| ++p) |
| { |
| if (p != this->fields_->begin()) |
| ret->push_back(';'); |
| ret->push_back(' '); |
| if (!p->is_anonymous()) |
| { |
| ret->append(Gogo::unpack_hidden_name(p->field_name())); |
| ret->push_back(' '); |
| } |
| if (p->is_anonymous() |
| && p->type()->named_type() != NULL |
| && p->type()->named_type()->is_alias()) |
| p->type()->named_type()->append_reflection_type_name(gogo, true, ret); |
| else |
| this->append_reflection(p->type(), gogo, ret); |
| |
| if (p->has_tag()) |
| { |
| const std::string& tag(p->tag()); |
| ret->append(" \""); |
| for (std::string::const_iterator p = tag.begin(); |
| p != tag.end(); |
| ++p) |
| { |
| if (*p == '\0') |
| ret->append("\\x00"); |
| else if (*p == '\n') |
| ret->append("\\n"); |
| else if (*p == '\t') |
| ret->append("\\t"); |
| else if (*p == '"') |
| ret->append("\\\""); |
| else if (*p == '\\') |
| ret->append("\\\\"); |
| else |
| ret->push_back(*p); |
| } |
| ret->push_back('"'); |
| } |
| } |
| |
| if (!this->fields_->empty()) |
| ret->push_back(' '); |
| |
| ret->push_back('}'); |
| } |
| |
| // If the offset of field INDEX in the backend implementation can be |
| // determined, set *POFFSET to the offset in bytes and return true. |
| // Otherwise, return false. |
| |
| bool |
| Struct_type::backend_field_offset(Gogo* gogo, unsigned int index, |
| int64_t* poffset) |
| { |
| if (!this->is_backend_type_size_known(gogo)) |
| return false; |
| Btype* bt = this->get_backend_placeholder(gogo); |
| *poffset = gogo->backend()->type_field_offset(bt, index); |
| return true; |
| } |
| |
| // Export. |
| |
| void |
| Struct_type::do_export(Export* exp) const |
| { |
| exp->write_c_string("struct { "); |
| const Struct_field_list* fields = this->fields_; |
| go_assert(fields != NULL); |
| for (Struct_field_list::const_iterator p = fields->begin(); |
| p != fields->end(); |
| ++p) |
| { |
| if (p->is_anonymous()) |
| exp->write_string("? "); |
| else |
| { |
| exp->write_string(p->field_name()); |
| exp->write_c_string(" "); |
| } |
| exp->write_type(p->type()); |
| |
| if (p->has_tag()) |
| { |
| exp->write_c_string(" "); |
| Expression* expr = |
| Expression::make_string(p->tag(), Linemap::predeclared_location()); |
| expr->export_expression(exp); |
| delete expr; |
| } |
| |
| exp->write_c_string("; "); |
| } |
| exp->write_c_string("}"); |
| } |
| |
| // Import. |
| |
| Struct_type* |
| Struct_type::do_import(Import* imp) |
| { |
| imp->require_c_string("struct { "); |
| Struct_field_list* fields = new Struct_field_list; |
| if (imp->peek_char() != '}') |
| { |
| while (true) |
| { |
| std::string name; |
| if (imp->match_c_string("? ")) |
| imp->advance(2); |
| else |
| { |
| name = imp->read_identifier(); |
| imp->require_c_string(" "); |
| } |
| Type* ftype = imp->read_type(); |
| |
| Struct_field sf(Typed_identifier(name, ftype, imp->location())); |
| sf.set_is_imported(); |
| |
| if (imp->peek_char() == ' ') |
| { |
| imp->advance(1); |
| Expression* expr = Expression::import_expression(imp); |
| String_expression* sexpr = expr->string_expression(); |
| go_assert(sexpr != NULL); |
| sf.set_tag(sexpr->val()); |
| delete sexpr; |
| } |
| |
| imp->require_c_string("; "); |
| fields->push_back(sf); |
| if (imp->peek_char() == '}') |
| break; |
| } |
| } |
| imp->require_c_string("}"); |
| |
| return Type::make_struct_type(fields, imp->location()); |
| } |
| |
| // Whether we can write this struct type to a C header file. |
| // We can't if any of the fields are structs defined in a different package. |
| |
| bool |
| Struct_type::can_write_to_c_header( |
| std::vector<const Named_object*>* requires, |
| std::vector<const Named_object*>* declare) const |
| { |
| const Struct_field_list* fields = this->fields_; |
| if (fields == NULL || fields->empty()) |
| return false; |
| int sinks = 0; |
| for (Struct_field_list::const_iterator p = fields->begin(); |
| p != fields->end(); |
| ++p) |
| { |
| if (p->is_anonymous()) |
| return false; |
| if (!this->can_write_type_to_c_header(p->type(), requires, declare)) |
| return false; |
| if (Gogo::message_name(p->field_name()) == "_") |
| sinks++; |
| } |
| if (sinks > 1) |
| return false; |
| return true; |
| } |
| |
| // Whether we can write the type T to a C header file. |
| |
| bool |
| Struct_type::can_write_type_to_c_header( |
| const Type* t, |
| std::vector<const Named_object*>* requires, |
| std::vector<const Named_object*>* declare) const |
| { |
| t = t->forwarded(); |
| switch (t->classification()) |
| { |
| case TYPE_ERROR: |
| case TYPE_FORWARD: |
| return false; |
| |
| case TYPE_VOID: |
| case TYPE_BOOLEAN: |
| case TYPE_INTEGER: |
| case TYPE_FLOAT: |
| case TYPE_COMPLEX: |
| case TYPE_STRING: |
| case TYPE_FUNCTION: |
| case TYPE_MAP: |
| case TYPE_CHANNEL: |
| case TYPE_INTERFACE: |
| return true; |
| |
| case TYPE_POINTER: |
| // Don't try to handle a pointer to an array. |
| if (t->points_to()->array_type() != NULL |
| && !t->points_to()->is_slice_type()) |
| return false; |
| |
| if (t->points_to()->named_type() != NULL |
| && t->points_to()->struct_type() != NULL) |
| declare->push_back(t->points_to()->named_type()->named_object()); |
| return true; |
| |
| case TYPE_STRUCT: |
| return t->struct_type()->can_write_to_c_header(requires, declare); |
| |
| case TYPE_ARRAY: |
| if (t->is_slice_type()) |
| return true; |
| return this->can_write_type_to_c_header(t->array_type()->element_type(), |
| requires, declare); |
| |
| case TYPE_NAMED: |
| { |
| const Named_object* no = t->named_type()->named_object(); |
| if (no->package() != NULL) |
| { |
| if (t->is_unsafe_pointer_type()) |
| return true; |
| return false; |
| } |
| if (t->struct_type() != NULL) |
| { |
| requires->push_back(no); |
| return t->struct_type()->can_write_to_c_header(requires, declare); |
| } |
| return this->can_write_type_to_c_header(t->base(), requires, declare); |
| } |
| |
| case TYPE_CALL_MULTIPLE_RESULT: |
| case TYPE_NIL: |
| case TYPE_SINK: |
| default: |
| go_unreachable(); |
| } |
| } |
| |
| // Write this struct to a C header file. |
| |
| void |
| Struct_type::write_to_c_header(std::ostream& os) const |
| { |
| const Struct_field_list* fields = this->fields_; |
| for (Struct_field_list::const_iterator p = fields->begin(); |
| p != fields->end(); |
| ++p) |
| { |
| os << '\t'; |
| this->write_field_to_c_header(os, p->field_name(), p->type()); |
| os << ';' << std::endl; |
| } |
| } |
| |
| // Write the type of a struct field to a C header file. |
| |
| void |
| Struct_type::write_field_to_c_header(std::ostream& os, const std::string& name, |
| const Type *t) const |
| { |
| bool print_name = true; |
| t = t->forwarded(); |
| switch (t->classification()) |
| { |
| case TYPE_VOID: |
| os << "void"; |
| break; |
| |
| case TYPE_BOOLEAN: |
| os << "_Bool"; |
| break; |
| |
| case TYPE_INTEGER: |
| { |
| const Integer_type* it = t->integer_type(); |
| if (it->is_unsigned()) |
| os << 'u'; |
| os << "int" << it->bits() << "_t"; |
| } |
| break; |
| |
| case TYPE_FLOAT: |
| switch (t->float_type()->bits()) |
| { |
| case 32: |
| os << "float"; |
| break; |
| case 64: |
| os << "double"; |
| break; |
| default: |
| go_unreachable(); |
| } |
| break; |
| |
| case TYPE_COMPLEX: |
| switch (t->complex_type()->bits()) |
| { |
| case 64: |
| os << "float _Complex"; |
| break; |
| case 128: |
| os << "double _Complex"; |
| break; |
| default: |
| go_unreachable(); |
| } |
| break; |
| |
| case TYPE_STRING: |
| os << "String"; |
| break; |
| |
| case TYPE_FUNCTION: |
| os << "FuncVal*"; |
| break; |
| |
| case TYPE_POINTER: |
| { |
| std::vector<const Named_object*> requires; |
| std::vector<const Named_object*> declare; |
| if (!this->can_write_type_to_c_header(t->points_to(), &requires, |
| &declare)) |
| os << "void*"; |
| else |
| { |
| this->write_field_to_c_header(os, "", t->points_to()); |
| os << '*'; |
| } |
| } |
| break; |
| |
| case TYPE_MAP: |
| os << "Map*"; |
| break; |
| |
| case TYPE_CHANNEL: |
| os << "Chan*"; |
| break; |
| |
| case TYPE_INTERFACE: |
| if (t->interface_type()->is_empty()) |
| os << "Eface"; |
| else |
| os << "Iface"; |
| break; |
| |
| case TYPE_STRUCT: |
| os << "struct {" << std::endl; |
| t->struct_type()->write_to_c_header(os); |
| os << "\t}"; |
| break; |
| |
| case TYPE_ARRAY: |
| if (t->is_slice_type()) |
| os << "Slice"; |
| else |
| { |
| const Type *ele = t; |
| std::vector<const Type*> array_types; |
| while (ele->array_type() != NULL && !ele->is_slice_type()) |
| { |
| array_types.push_back(ele); |
| ele = ele->array_type()->element_type(); |
| } |
| this->write_field_to_c_header(os, "", ele); |
| os << ' ' << Gogo::message_name(name); |
| print_name = false; |
| while (!array_types.empty()) |
| { |
| ele = array_types.back(); |
| array_types.pop_back(); |
| os << '['; |
| Numeric_constant nc; |
| if (!ele->array_type()->length()->numeric_constant_value(&nc)) |
| go_unreachable(); |
| mpz_t val; |
| if (!nc.to_int(&val)) |
| go_unreachable(); |
| char* s = mpz_get_str(NULL, 10, val); |
| os << s; |
| free(s); |
| mpz_clear(val); |
| os << ']'; |
| } |
| } |
| break; |
| |
| case TYPE_NAMED: |
| { |
| const Named_object* no = t->named_type()->named_object(); |
| if (t->struct_type() != NULL) |
| os << "struct " << no->message_name(); |
| else if (t->is_unsafe_pointer_type()) |
| os << "void*"; |
| else if (t == Type::lookup_integer_type("uintptr")) |
| os << "uintptr_t"; |
| else |
| { |
| this->write_field_to_c_header(os, name, t->base()); |
| print_name = false; |
| } |
| } |
| break; |
| |
| case TYPE_ERROR: |
| case TYPE_FORWARD: |
| case TYPE_CALL_MULTIPLE_RESULT: |
| case TYPE_NIL: |
| case TYPE_SINK: |
| default: |
| go_unreachable(); |
| } |
| |
| if (print_name && !name.empty()) |
| os << ' ' << Gogo::message_name(name); |
| } |
| |
| // Make a struct type. |
| |
| Struct_type* |
| Type::make_struct_type(Struct_field_list* fields, |
| Location location) |
| { |
| return new Struct_type(fields, location); |
| } |
| |
| // Class Array_type. |
| |
| // Store the length of an array as an int64_t into *PLEN. Return |
| // false if the length can not be determined. This will assert if |
| // called for a slice. |
| |
| bool |
| Array_type::int_length(int64_t* plen) |
| { |
| go_assert(this->length_ != NULL); |
| Numeric_constant nc; |
| if (!this->length_->numeric_constant_value(&nc)) |
| return false; |
| return nc.to_memory_size(plen); |
| } |
| |
| // Whether two array types are identical. |
| |
| bool |
| Array_type::is_identical(const Array_type* t, Cmp_tags cmp_tags, |
| bool errors_are_identical) const |
| { |
| if (!Type::are_identical_cmp_tags(this->element_type(), t->element_type(), |
| cmp_tags, errors_are_identical, NULL)) |
| return false; |
| |
| if (this->is_array_incomparable_ != t->is_array_incomparable_) |
| return false; |
| |
| Expression* l1 = this->length(); |
| Expression* l2 = t->length(); |
| |
| // Slices of the same element type are identical. |
| if (l1 == NULL && l2 == NULL) |
| return true; |
| |
| // Arrays of the same element type are identical if they have the |
| // same length. |
| if (l1 != NULL && l2 != NULL) |
| { |
| if (l1 == l2) |
| return true; |
| |
| // Try to determine the lengths. If we can't, assume the arrays |
| // are not identical. |
| bool ret = false; |
| Numeric_constant nc1, nc2; |
| if (l1->numeric_constant_value(&nc1) |
| && l2->numeric_constant_value(&nc2)) |
| { |
| mpz_t v1; |
| if (nc1.to_int(&v1)) |
| { |
| mpz_t v2; |
| if (nc2.to_int(&v2)) |
| { |
| ret = mpz_cmp(v1, v2) == 0; |
| mpz_clear(v2); |
| } |
| mpz_clear(v1); |
| } |
| } |
| return ret; |
| } |
| |
| // Otherwise the arrays are not identical. |
| return false; |
| } |
| |
| // Traversal. |
| |
| int |
| Array_type::do_traverse(Traverse* traverse) |
| { |
| if (Type::traverse(this->element_type_, traverse) == TRAVERSE_EXIT) |
| return TRAVERSE_EXIT; |
| if (this->length_ != NULL |
| && Expression::traverse(&this->length_, traverse) == TRAVERSE_EXIT) |
| return TRAVERSE_EXIT; |
| return TRAVERSE_CONTINUE; |
| } |
| |
| // Check that the length is valid. |
| |
| bool |
| Array_type::verify_length() |
| { |
| if (this->length_ == NULL) |
| return true; |
| |
| Type_context context(Type::lookup_integer_type("int"), false); |
| this->length_->determine_type(&context); |
| |
| if (!this->length_->is_constant()) |
| { |
| go_error_at(this->length_->location(), "array bound is not constant"); |
| return false; |
| } |
| |
| // For array types, the length expression can be an untyped constant |
| // representable as an int, but we don't allow explicitly non-integer |
| // values such as "float64(10)". See issues #13485 and #13486. |
| if (this->length_->type()->integer_type() == NULL |
| && !this->length_->type()->is_error_type()) |
| { |
| go_error_at(this->length_->location(), "invalid array bound"); |
| return false; |
| } |
| |
| Numeric_constant nc; |
| if (!this->length_->numeric_constant_value(&nc)) |
| { |
| if (this->length_->type()->integer_type() != NULL |
| || this->length_->type()->float_type() != NULL) |
| go_error_at(this->length_->location(), "array bound is not constant"); |
| else |
| go_error_at(this->length_->location(), "array bound is not numeric"); |
| return false; |
| } |
| |
| Type* int_type = Type::lookup_integer_type("int"); |
| unsigned int tbits = int_type->integer_type()->bits(); |
| unsigned long val; |
| switch (nc.to_unsigned_long(&val)) |
| { |
| case Numeric_constant::NC_UL_VALID: |
| if (sizeof(val) >= tbits / 8 && val >> (tbits - 1) != 0) |
| { |
| go_error_at(this->length_->location(), "array bound overflows"); |
| return false; |
| } |
| break; |
| case Numeric_constant::NC_UL_NOTINT: |
| go_error_at(this->length_->location(), "array bound truncated to integer"); |
| return false; |
| case Numeric_constant::NC_UL_NEGATIVE: |
| go_error_at(this->length_->location(), "negative array bound"); |
| return false; |
| case Numeric_constant::NC_UL_BIG: |
| { |
| mpz_t val; |
| if (!nc.to_int(&val)) |
| go_unreachable(); |
| unsigned int bits = mpz_sizeinbase(val, 2); |
| mpz_clear(val); |
| if (bits >= tbits) |
| { |
| go_error_at(this->length_->location(), "array bound overflows"); |
| return false; |
| } |
| } |
| break; |
| default: |
| go_unreachable(); |
| } |
| |
| return true; |
| } |
| |
| // Verify the type. |
| |
| bool |
| Array_type::do_verify() |
| { |
| if (this->element_type()->is_error_type()) |
| return false; |
| if (!this->verify_length()) |
| this->length_ = Expression::make_error(this->length_->location()); |
| return true; |
| } |
| |
| // Whether the type contains pointers. This is always true for a |
| // slice. For an array it is true if the element type has pointers |
| // and the length is greater than zero. |
| |
| bool |
| Array_type::do_has_pointer() const |
| { |
| if (this->length_ == NULL) |
| return true; |
| if (!this->element_type_->has_pointer()) |
| return false; |
| |
| Numeric_constant nc; |
| if (!this->length_->numeric_constant_value(&nc)) |
| { |
| // Error reported elsewhere. |
| return false; |
| } |
| |
| unsigned long val; |
| switch (nc.to_unsigned_long(&val)) |
| { |
| case Numeric_constant::NC_UL_VALID: |
| return val > 0; |
| case Numeric_constant::NC_UL_BIG: |
| return true; |
| default: |
| // Error reported elsewhere. |
| return false; |
| } |
| } |
| |
| // Whether we can use memcmp to compare this array. |
| |
| bool |
| Array_type::do_compare_is_identity(Gogo* gogo) |
| { |
| if (this->length_ == NULL) |
| return false; |
| |
| // Check for [...], which indicates that this is not a real type. |
| if (this->length_->is_nil_expression()) |
| return false; |
| |
| if (!this->element_type_->compare_is_identity(gogo)) |
| return false; |
| |
| // If there is any padding, then we can't use memcmp. |
| int64_t size; |
| int64_t align; |
| if (!this->element_type_->backend_type_size(gogo, &size) |
| || !this->element_type_->backend_type_align(gogo, &align)) |
| return false; |
| if ((size & (align - 1)) != 0) |
| return false; |
| |
| return true; |
| } |
| |
| // Array type hash code. |
| |
| unsigned int |
| Array_type::do_hash_for_method(Gogo* gogo) const |
| { |
| unsigned int ret; |
| |
| // There is no very convenient way to get a hash code for the |
| // length. |
| ret = this->element_type_->hash_for_method(gogo) + 1; |
| if (this->is_array_incomparable_) |
| ret <<= 1; |
| return ret; |
| } |
| |
| // Write the hash function for an array which can not use the identify |
| // function. |
| |
| void |
| Array_type::write_hash_function(Gogo* gogo, Named_type* name, |
| Function_type* hash_fntype, |
| Function_type* equal_fntype) |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| // The pointer to the array that we are going to hash. This is an |
| // argument to the hash function we are implementing here. |
| Named_object* key_arg = gogo->lookup("key", NULL); |
| go_assert(key_arg != NULL); |
| Type* key_arg_type = key_arg->var_value()->type(); |
| |
| // The seed argument to the hash function. |
| Named_object* seed_arg = gogo->lookup("seed", NULL); |
| go_assert(seed_arg != NULL); |
| |
| Type* uintptr_type = Type::lookup_integer_type("uintptr"); |
| |
| // Make a temporary to hold the return value, initialized to the seed. |
| Expression* ref = Expression::make_var_reference(seed_arg, bloc); |
| Temporary_statement* retval = Statement::make_temporary(uintptr_type, ref, |
| bloc); |
| gogo->add_statement(retval); |
| |
| // Make a temporary to hold the key as a uintptr. |
| ref = Expression::make_var_reference(key_arg, bloc); |
| ref = Expression::make_cast(uintptr_type, ref, bloc); |
| Temporary_statement* key = Statement::make_temporary(uintptr_type, ref, |
| bloc); |
| gogo->add_statement(key); |
| |
| // Loop over the array elements. |
| // for i = range a |
| Type* int_type = Type::lookup_integer_type("int"); |
| Temporary_statement* index = Statement::make_temporary(int_type, NULL, bloc); |
| gogo->add_statement(index); |
| |
| Expression* iref = Expression::make_temporary_reference(index, bloc); |
| Expression* aref = Expression::make_var_reference(key_arg, bloc); |
| Type* pt = Type::make_pointer_type(name != NULL |
| ? static_cast<Type*>(name) |
| : static_cast<Type*>(this)); |
| aref = Expression::make_cast(pt, aref, bloc); |
| For_range_statement* for_range = Statement::make_for_range_statement(iref, |
| NULL, |
| aref, |
| bloc); |
| |
| gogo->start_block(bloc); |
| |
| // Get the hash function for the element type. |
| Named_object* hash_fn; |
| Named_object* equal_fn; |
| this->element_type_->type_functions(gogo, this->element_type_->named_type(), |
| hash_fntype, equal_fntype, &hash_fn, |
| &equal_fn); |
| |
| // Get a pointer to this element in the loop. |
| Expression* subkey = Expression::make_temporary_reference(key, bloc); |
| subkey = Expression::make_cast(key_arg_type, subkey, bloc); |
| |
| // Get the size of each element. |
| Expression* ele_size = Expression::make_type_info(this->element_type_, |
| Expression::TYPE_INFO_SIZE); |
| |
| // Get the hash of this element, passing retval as the seed. |
| ref = Expression::make_temporary_reference(retval, bloc); |
| Expression_list* args = new Expression_list(); |
| args->push_back(subkey); |
| args->push_back(ref); |
| Expression* func = Expression::make_func_reference(hash_fn, NULL, bloc); |
| Expression* call = Expression::make_call(func, args, false, bloc); |
| |
| // Set retval to the result. |
| Temporary_reference_expression* tref = |
| Expression::make_temporary_reference(retval, bloc); |
| tref->set_is_lvalue(); |
| Statement* s = Statement::make_assignment(tref, call, bloc); |
| gogo->add_statement(s); |
| |
| // Increase the element pointer. |
| tref = Expression::make_temporary_reference(key, bloc); |
| tref->set_is_lvalue(); |
| s = Statement::make_assignment_operation(OPERATOR_PLUSEQ, tref, ele_size, |
| bloc); |
| Block* statements = gogo->finish_block(bloc); |
| |
| for_range->add_statements(statements); |
| gogo->add_statement(for_range); |
| |
| // Return retval to the caller of the hash function. |
| Expression_list* vals = new Expression_list(); |
| ref = Expression::make_temporary_reference(retval, bloc); |
| vals->push_back(ref); |
| s = Statement::make_return_statement(vals, bloc); |
| gogo->add_statement(s); |
| } |
| |
| // Write the equality function for an array which can not use the |
| // identity function. |
| |
| void |
| Array_type::write_equal_function(Gogo* gogo, Named_type* name) |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| // The pointers to the arrays we are going to compare. |
| Named_object* key1_arg = gogo->lookup("key1", NULL); |
| Named_object* key2_arg = gogo->lookup("key2", NULL); |
| go_assert(key1_arg != NULL && key2_arg != NULL); |
| |
| // Build temporaries for the keys with the right types. |
| Type* pt = Type::make_pointer_type(name != NULL |
| ? static_cast<Type*>(name) |
| : static_cast<Type*>(this)); |
| |
| Expression* ref = Expression::make_var_reference(key1_arg, bloc); |
| ref = Expression::make_unsafe_cast(pt, ref, bloc); |
| Temporary_statement* p1 = Statement::make_temporary(pt, ref, bloc); |
| gogo->add_statement(p1); |
| |
| ref = Expression::make_var_reference(key2_arg, bloc); |
| ref = Expression::make_unsafe_cast(pt, ref, bloc); |
| Temporary_statement* p2 = Statement::make_temporary(pt, ref, bloc); |
| gogo->add_statement(p2); |
| |
| // Loop over the array elements. |
| // for i = range a |
| Type* int_type = Type::lookup_integer_type("int"); |
| Temporary_statement* index = Statement::make_temporary(int_type, NULL, bloc); |
| gogo->add_statement(index); |
| |
| Expression* iref = Expression::make_temporary_reference(index, bloc); |
| Expression* aref = Expression::make_temporary_reference(p1, bloc); |
| For_range_statement* for_range = Statement::make_for_range_statement(iref, |
| NULL, |
| aref, |
| bloc); |
| |
| gogo->start_block(bloc); |
| |
| // Compare element in P1 and P2. |
| Expression* e1 = Expression::make_temporary_reference(p1, bloc); |
| e1 = Expression::make_dereference(e1, Expression::NIL_CHECK_DEFAULT, bloc); |
| ref = Expression::make_temporary_reference(index, bloc); |
| e1 = Expression::make_array_index(e1, ref, NULL, NULL, bloc); |
| |
| Expression* e2 = Expression::make_temporary_reference(p2, bloc); |
| e2 = Expression::make_dereference(e2, Expression::NIL_CHECK_DEFAULT, bloc); |
| ref = Expression::make_temporary_reference(index, bloc); |
| e2 = Expression::make_array_index(e2, ref, NULL, NULL, bloc); |
| |
| Expression* cond = Expression::make_binary(OPERATOR_NOTEQ, e1, e2, bloc); |
| |
| // If the elements are not equal, return false. |
| gogo->start_block(bloc); |
| Expression_list* vals = new Expression_list(); |
| vals->push_back(Expression::make_boolean(false, bloc)); |
| Statement* s = Statement::make_return_statement(vals, bloc); |
| gogo->add_statement(s); |
| Block* then_block = gogo->finish_block(bloc); |
| |
| s = Statement::make_if_statement(cond, then_block, NULL, bloc); |
| gogo->add_statement(s); |
| |
| Block* statements = gogo->finish_block(bloc); |
| |
| for_range->add_statements(statements); |
| gogo->add_statement(for_range); |
| |
| // All the elements are equal, so return true. |
| vals = new Expression_list(); |
| vals->push_back(Expression::make_boolean(true, bloc)); |
| s = Statement::make_return_statement(vals, bloc); |
| gogo->add_statement(s); |
| } |
| |
| // Get the backend representation of the fields of a slice. This is |
| // not declared in types.h so that types.h doesn't have to #include |
| // backend.h. |
| // |
| // We use int for the count and capacity fields. This matches 6g. |
| // The language more or less assumes that we can't allocate space of a |
| // size which does not fit in int. |
| |
| static void |
| get_backend_slice_fields(Gogo* gogo, Array_type* type, bool use_placeholder, |
| std::vector<Backend::Btyped_identifier>* bfields) |
| { |
| bfields->resize(3); |
| |
| Type* pet = Type::make_pointer_type(type->element_type()); |
| Btype* pbet = (use_placeholder |
| ? pet->get_backend_placeholder(gogo) |
| : pet->get_backend(gogo)); |
| Location ploc = Linemap::predeclared_location(); |
| |
| Backend::Btyped_identifier* p = &(*bfields)[0]; |
| p->name = "__values"; |
| p->btype = pbet; |
| p->location = ploc; |
| |
| Type* int_type = Type::lookup_integer_type("int"); |
| |
| p = &(*bfields)[1]; |
| p->name = "__count"; |
| p->btype = int_type->get_backend(gogo); |
| p->location = ploc; |
| |
| p = &(*bfields)[2]; |
| p->name = "__capacity"; |
| p->btype = int_type->get_backend(gogo); |
| p->location = ploc; |
| } |
| |
| // Get the backend representation for the type of this array. A fixed array is |
| // simply represented as ARRAY_TYPE with the appropriate index--i.e., it is |
| // just like an array in C. An open array is a struct with three |
| // fields: a data pointer, the length, and the capacity. |
| |
| Btype* |
| Array_type::do_get_backend(Gogo* gogo) |
| { |
| if (this->length_ == NULL) |
| { |
| std::vector<Backend::Btyped_identifier> bfields; |
| get_backend_slice_fields(gogo, this, false, &bfields); |
| return gogo->backend()->struct_type(bfields); |
| } |
| else |
| { |
| Btype* element = this->get_backend_element(gogo, false); |
| Bexpression* len = this->get_backend_length(gogo); |
| return gogo->backend()->array_type(element, len); |
| } |
| } |
| |
| // Return the backend representation of the element type. |
| |
| Btype* |
| Array_type::get_backend_element(Gogo* gogo, bool use_placeholder) |
| { |
| if (use_placeholder) |
| return this->element_type_->get_backend_placeholder(gogo); |
| else |
| return this->element_type_->get_backend(gogo); |
| } |
| |
| // Return the backend representation of the length. The length may be |
| // computed using a function call, so we must only evaluate it once. |
| |
| Bexpression* |
| Array_type::get_backend_length(Gogo* gogo) |
| { |
| go_assert(this->length_ != NULL); |
| if (this->blength_ == NULL) |
| { |
| if (this->length_->is_error_expression()) |
| { |
| this->blength_ = gogo->backend()->error_expression(); |
| return this->blength_; |
| } |
| Numeric_constant nc; |
| mpz_t val; |
| if (this->length_->numeric_constant_value(&nc) && nc.to_int(&val)) |
| { |
| if (mpz_sgn(val) < 0) |
| { |
| this->blength_ = gogo->backend()->error_expression(); |
| return this->blength_; |
| } |
| Type* t = nc.type(); |
| if (t == NULL) |
| t = Type::lookup_integer_type("int"); |
| else if (t->is_abstract()) |
| t = t->make_non_abstract_type(); |
| Btype* btype = t->get_backend(gogo); |
| this->blength_ = |
| gogo->backend()->integer_constant_expression(btype, val); |
| mpz_clear(val); |
| } |
| else |
| { |
| // Make up a translation context for the array length |
| // expression. FIXME: This won't work in general. |
| Translate_context context(gogo, NULL, NULL, NULL); |
| this->blength_ = this->length_->get_backend(&context); |
| |
| Btype* ibtype = Type::lookup_integer_type("int")->get_backend(gogo); |
| this->blength_ = |
| gogo->backend()->convert_expression(ibtype, this->blength_, |
| this->length_->location()); |
| } |
| } |
| return this->blength_; |
| } |
| |
| // Finish backend representation of the array. |
| |
| void |
| Array_type::finish_backend_element(Gogo* gogo) |
| { |
| Type* et = this->array_type()->element_type(); |
| et->get_backend(gogo); |
| if (this->is_slice_type()) |
| { |
| // This relies on the fact that we always use the same |
| // structure for a pointer to any given type. |
| Type* pet = Type::make_pointer_type(et); |
| pet->get_backend(gogo); |
| } |
| } |
| |
| // Return an expression for a pointer to the values in ARRAY. |
| |
| Expression* |
| Array_type::get_value_pointer(Gogo*, Expression* array, bool is_lvalue) const |
| { |
| if (this->length() != NULL) |
| { |
| // Fixed array. |
| go_assert(array->type()->array_type() != NULL); |
| Type* etype = array->type()->array_type()->element_type(); |
| array = Expression::make_unary(OPERATOR_AND, array, array->location()); |
| return Expression::make_cast(Type::make_pointer_type(etype), array, |
| array->location()); |
| } |
| |
| // Slice. |
| |
| if (is_lvalue) |
| { |
| Temporary_reference_expression* tref = |
| array->temporary_reference_expression(); |
| Var_expression* ve = array->var_expression(); |
| if (tref != NULL) |
| { |
| tref = tref->copy()->temporary_reference_expression(); |
| tref->set_is_lvalue(); |
| array = tref; |
| } |
| else if (ve != NULL) |
| { |
| ve = new Var_expression(ve->named_object(), ve->location()); |
| array = ve; |
| } |
| } |
| |
| return Expression::make_slice_info(array, |
| Expression::SLICE_INFO_VALUE_POINTER, |
| array->location()); |
| } |
| |
| // Return an expression for the length of the array ARRAY which has this |
| // type. |
| |
| Expression* |
| Array_type::get_length(Gogo*, Expression* array) const |
| { |
| if (this->length_ != NULL) |
| return this->length_; |
| |
| // This is a slice. We need to read the length field. |
| return Expression::make_slice_info(array, Expression::SLICE_INFO_LENGTH, |
| array->location()); |
| } |
| |
| // Return an expression for the capacity of the array ARRAY which has this |
| // type. |
| |
| Expression* |
| Array_type::get_capacity(Gogo*, Expression* array) const |
| { |
| if (this->length_ != NULL) |
| return this->length_; |
| |
| // This is a slice. We need to read the capacity field. |
| return Expression::make_slice_info(array, Expression::SLICE_INFO_CAPACITY, |
| array->location()); |
| } |
| |
| // Export. |
| |
| void |
| Array_type::do_export(Export* exp) const |
| { |
| exp->write_c_string("["); |
| if (this->length_ != NULL) |
| this->length_->export_expression(exp); |
| exp->write_c_string("] "); |
| exp->write_type(this->element_type_); |
| } |
| |
| // Import. |
| |
| Array_type* |
| Array_type::do_import(Import* imp) |
| { |
| imp->require_c_string("["); |
| Expression* length; |
| if (imp->peek_char() == ']') |
| length = NULL; |
| else |
| length = Expression::import_expression(imp); |
| imp->require_c_string("] "); |
| Type* element_type = imp->read_type(); |
| return Type::make_array_type(element_type, length); |
| } |
| |
| // The type of an array type descriptor. |
| |
| Type* |
| Array_type::make_array_type_descriptor_type() |
| { |
| static Type* ret; |
| if (ret == NULL) |
| { |
| Type* tdt = Type::make_type_descriptor_type(); |
| Type* ptdt = Type::make_type_descriptor_ptr_type(); |
| |
| Type* uintptr_type = Type::lookup_integer_type("uintptr"); |
| |
| Struct_type* sf = |
| Type::make_builtin_struct_type(4, |
| "", tdt, |
| "elem", ptdt, |
| "slice", ptdt, |
| "len", uintptr_type); |
| |
| ret = Type::make_builtin_named_type("ArrayType", sf); |
| } |
| |
| return ret; |
| } |
| |
| // The type of an slice type descriptor. |
| |
| Type* |
| Array_type::make_slice_type_descriptor_type() |
| { |
| static Type* ret; |
| if (ret == NULL) |
| { |
| Type* tdt = Type::make_type_descriptor_type(); |
| Type* ptdt = Type::make_type_descriptor_ptr_type(); |
| |
| Struct_type* sf = |
| Type::make_builtin_struct_type(2, |
| "", tdt, |
| "elem", ptdt); |
| |
| ret = Type::make_builtin_named_type("SliceType", sf); |
| } |
| |
| return ret; |
| } |
| |
| // Build a type descriptor for an array/slice type. |
| |
| Expression* |
| Array_type::do_type_descriptor(Gogo* gogo, Named_type* name) |
| { |
| if (this->length_ != NULL) |
| return this->array_type_descriptor(gogo, name); |
| else |
| return this->slice_type_descriptor(gogo, name); |
| } |
| |
| // Build a type descriptor for an array type. |
| |
| Expression* |
| Array_type::array_type_descriptor(Gogo* gogo, Named_type* name) |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| Type* atdt = Array_type::make_array_type_descriptor_type(); |
| |
| const Struct_field_list* fields = atdt->struct_type()->fields(); |
| |
| Expression_list* vals = new Expression_list(); |
| vals->reserve(3); |
| |
| Struct_field_list::const_iterator p = fields->begin(); |
| go_assert(p->is_field_name("_type")); |
| vals->push_back(this->type_descriptor_constructor(gogo, |
| RUNTIME_TYPE_KIND_ARRAY, |
| name, NULL, true)); |
| |
| ++p; |
| go_assert(p->is_field_name("elem")); |
| vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc)); |
| |
| ++p; |
| go_assert(p->is_field_name("slice")); |
| Type* slice_type = Type::make_array_type(this->element_type_, NULL); |
| vals->push_back(Expression::make_type_descriptor(slice_type, bloc)); |
| |
| ++p; |
| go_assert(p->is_field_name("len")); |
| vals->push_back(Expression::make_cast(p->type(), this->length_, bloc)); |
| |
| ++p; |
| go_assert(p == fields->end()); |
| |
| return Expression::make_struct_composite_literal(atdt, vals, bloc); |
| } |
| |
| // Build a type descriptor for a slice type. |
| |
| Expression* |
| Array_type::slice_type_descriptor(Gogo* gogo, Named_type* name) |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| Type* stdt = Array_type::make_slice_type_descriptor_type(); |
| |
| const Struct_field_list* fields = stdt->struct_type()->fields(); |
| |
| Expression_list* vals = new Expression_list(); |
| vals->reserve(2); |
| |
| Struct_field_list::const_iterator p = fields->begin(); |
| go_assert(p->is_field_name("_type")); |
| vals->push_back(this->type_descriptor_constructor(gogo, |
| RUNTIME_TYPE_KIND_SLICE, |
| name, NULL, true)); |
| |
| ++p; |
| go_assert(p->is_field_name("elem")); |
| vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc)); |
| |
| ++p; |
| go_assert(p == fields->end()); |
| |
| return Expression::make_struct_composite_literal(stdt, vals, bloc); |
| } |
| |
| // Reflection string. |
| |
| void |
| Array_type::do_reflection(Gogo* gogo, std::string* ret) const |
| { |
| ret->push_back('['); |
| if (this->length_ != NULL) |
| { |
| Numeric_constant nc; |
| if (!this->length_->numeric_constant_value(&nc)) |
| { |
| go_assert(saw_errors()); |
| return; |
| } |
| mpz_t val; |
| if (!nc.to_int(&val)) |
| { |
| go_assert(saw_errors()); |
| return; |
| } |
| char* s = mpz_get_str(NULL, 10, val); |
| ret->append(s); |
| free(s); |
| mpz_clear(val); |
| } |
| ret->push_back(']'); |
| |
| this->append_reflection(this->element_type_, gogo, ret); |
| } |
| |
| // Make an array type. |
| |
| Array_type* |
| Type::make_array_type(Type* element_type, Expression* length) |
| { |
| return new Array_type(element_type, length); |
| } |
| |
| // Class Map_type. |
| |
| Named_object* Map_type::zero_value; |
| int64_t Map_type::zero_value_size; |
| int64_t Map_type::zero_value_align; |
| |
| // If this map requires the "fat" functions, return the pointer to |
| // pass as the zero value to those functions. Otherwise, in the |
| // normal case, return NULL. The map requires the "fat" functions if |
| // the value size is larger than max_zero_size bytes. max_zero_size |
| // must match maxZero in libgo/go/runtime/hashmap.go. |
| |
| Expression* |
| Map_type::fat_zero_value(Gogo* gogo) |
| { |
| int64_t valsize; |
| if (!this->val_type_->backend_type_size(gogo, &valsize)) |
| { |
| go_assert(saw_errors()); |
| return NULL; |
| } |
| if (valsize <= Map_type::max_zero_size) |
| return NULL; |
| |
| if (Map_type::zero_value_size < valsize) |
| Map_type::zero_value_size = valsize; |
| |
| int64_t valalign; |
| if (!this->val_type_->backend_type_align(gogo, &valalign)) |
| { |
| go_assert(saw_errors()); |
| return NULL; |
| } |
| |
| if (Map_type::zero_value_align < valalign) |
| Map_type::zero_value_align = valalign; |
| |
| Location bloc = Linemap::predeclared_location(); |
| |
| if (Map_type::zero_value == NULL) |
| { |
| // The final type will be set in backend_zero_value. |
| Type* uint8_type = Type::lookup_integer_type("uint8"); |
| Expression* size = Expression::make_integer_ul(0, NULL, bloc); |
| Array_type* array_type = Type::make_array_type(uint8_type, size); |
| array_type->set_is_array_incomparable(); |
| Variable* var = new Variable(array_type, NULL, true, false, false, bloc); |
| std::string name = gogo->map_zero_value_name(); |
| Map_type::zero_value = Named_object::make_variable(name, NULL, var); |
| } |
| |
| Expression* z = Expression::make_var_reference(Map_type::zero_value, bloc); |
| z = Expression::make_unary(OPERATOR_AND, z, bloc); |
| Type* unsafe_ptr_type = Type::make_pointer_type(Type::make_void_type()); |
| z = Expression::make_cast(unsafe_ptr_type, z, bloc); |
| return z; |
| } |
| |
| // Return whether VAR is the map zero value. |
| |
| bool |
| Map_type::is_zero_value(Variable* var) |
| { |
| return (Map_type::zero_value != NULL |
| && Map_type::zero_value->var_value() == var); |
| } |
| |
| // Return the backend representation for the zero value. |
| |
| Bvariable* |
| Map_type::backend_zero_value(Gogo* gogo) |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| go_assert(Map_type::zero_value != NULL); |
| |
| Type* uint8_type = Type::lookup_integer_type("uint8"); |
| Btype* buint8_type = uint8_type->get_backend(gogo); |
| |
| Type* int_type = Type::lookup_integer_type("int"); |
| |
| Expression* e = Expression::make_integer_int64(Map_type::zero_value_size, |
| int_type, bloc); |
| Translate_context context(gogo, NULL, NULL, NULL); |
| Bexpression* blength = e->get_backend(&context); |
| |
| Btype* barray_type = gogo->backend()->array_type(buint8_type, blength); |
| |
| std::string zname = Map_type::zero_value->name(); |
| std::string asm_name(go_selectively_encode_id(zname)); |
| Bvariable* zvar = |
| gogo->backend()->implicit_variable(zname, asm_name, |
| barray_type, false, false, true, |
| Map_type::zero_value_align); |
| gogo->backend()->implicit_variable_set_init(zvar, zname, barray_type, |
| false, false, true, NULL); |
| return zvar; |
| } |
| |
| // Traversal. |
| |
| int |
| Map_type::do_traverse(Traverse* traverse) |
| { |
| if (Type::traverse(this->key_type_, traverse) == TRAVERSE_EXIT |
| || Type::traverse(this->val_type_, traverse) == TRAVERSE_EXIT) |
| return TRAVERSE_EXIT; |
| return TRAVERSE_CONTINUE; |
| } |
| |
| // Check that the map type is OK. |
| |
| bool |
| Map_type::do_verify() |
| { |
| // The runtime support uses "map[void]void". |
| if (!this->key_type_->is_comparable() && !this->key_type_->is_void_type()) |
| go_error_at(this->location_, "invalid map key type"); |
| if (!this->key_type_->in_heap()) |
| go_error_at(this->location_, "go:notinheap map key not allowed"); |
| if (!this->val_type_->in_heap()) |
| go_error_at(this->location_, "go:notinheap map value not allowed"); |
| return true; |
| } |
| |
| // Whether two map types are identical. |
| |
| bool |
| Map_type::is_identical(const Map_type* t, Cmp_tags cmp_tags, |
| bool errors_are_identical) const |
| { |
| return (Type::are_identical_cmp_tags(this->key_type(), t->key_type(), |
| cmp_tags, errors_are_identical, NULL) |
| && Type::are_identical_cmp_tags(this->val_type(), t->val_type(), |
| cmp_tags, errors_are_identical, |
| NULL)); |
| } |
| |
| // Hash code. |
| |
| unsigned int |
| Map_type::do_hash_for_method(Gogo* gogo) const |
| { |
| return (this->key_type_->hash_for_method(gogo) |
| + this->val_type_->hash_for_method(gogo) |
| + 2); |
| } |
| |
| // Get the backend representation for a map type. A map type is |
| // represented as a pointer to a struct. The struct is hmap in |
| // runtime/hashmap.go. |
| |
| Btype* |
| Map_type::do_get_backend(Gogo* gogo) |
| { |
| static Btype* backend_map_type; |
| if (backend_map_type == NULL) |
| { |
| std::vector<Backend::Btyped_identifier> bfields(9); |
| |
| Location bloc = Linemap::predeclared_location(); |
| |
| Type* int_type = Type::lookup_integer_type("int"); |
| bfields[0].name = "count"; |
| bfields[0].btype = int_type->get_backend(gogo); |
| bfields[0].location = bloc; |
| |
| Type* uint8_type = Type::lookup_integer_type("uint8"); |
| bfields[1].name = "flags"; |
| bfields[1].btype = uint8_type->get_backend(gogo); |
| bfields[1].location = bloc; |
| |
| bfields[2].name = "B"; |
| bfields[2].btype = bfields[1].btype; |
| bfields[2].location = bloc; |
| |
| Type* uint16_type = Type::lookup_integer_type("uint16"); |
| bfields[3].name = "noverflow"; |
| bfields[3].btype = uint16_type->get_backend(gogo); |
| bfields[3].location = bloc; |
| |
| Type* uint32_type = Type::lookup_integer_type("uint32"); |
| bfields[4].name = "hash0"; |
| bfields[4].btype = uint32_type->get_backend(gogo); |
| bfields[4].location = bloc; |
| |
| Btype* bvt = gogo->backend()->void_type(); |
| Btype* bpvt = gogo->backend()->pointer_type(bvt); |
| bfields[5].name = "buckets"; |
| bfields[5].btype = bpvt; |
| bfields[5].location = bloc; |
| |
| bfields[6].name = "oldbuckets"; |
| bfields[6].btype = bpvt; |
| bfields[6].location = bloc; |
| |
| Type* uintptr_type = Type::lookup_integer_type("uintptr"); |
| bfields[7].name = "nevacuate"; |
| bfields[7].btype = uintptr_type->get_backend(gogo); |
| bfields[7].location = bloc; |
| |
| bfields[8].name = "extra"; |
| bfields[8].btype = bpvt; |
| bfields[8].location = bloc; |
| |
| Btype *bt = gogo->backend()->struct_type(bfields); |
| bt = gogo->backend()->named_type("runtime.hmap", bt, bloc); |
| backend_map_type = gogo->backend()->pointer_type(bt); |
| } |
| return backend_map_type; |
| } |
| |
| // The type of a map type descriptor. |
| |
| Type* |
| Map_type::make_map_type_descriptor_type() |
| { |
| static Type* ret; |
| if (ret == NULL) |
| { |
| Type* tdt = Type::make_type_descriptor_type(); |
| Type* ptdt = Type::make_type_descriptor_ptr_type(); |
| Type* uint8_type = Type::lookup_integer_type("uint8"); |
| Type* uint16_type = Type::lookup_integer_type("uint16"); |
| Type* bool_type = Type::lookup_bool_type(); |
| |
| Struct_type* sf = |
| Type::make_builtin_struct_type(12, |
| "", tdt, |
| "key", ptdt, |
| "elem", ptdt, |
| "bucket", ptdt, |
| "hmap", ptdt, |
| "keysize", uint8_type, |
| "indirectkey", bool_type, |
| "valuesize", uint8_type, |
| "indirectvalue", bool_type, |
| "bucketsize", uint16_type, |
| "reflexivekey", bool_type, |
| "needkeyupdate", bool_type); |
| |
| ret = Type::make_builtin_named_type("MapType", sf); |
| } |
| |
| return ret; |
| } |
| |
| // Build a type descriptor for a map type. |
| |
| Expression* |
| Map_type::do_type_descriptor(Gogo* gogo, Named_type* name) |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| Type* mtdt = Map_type::make_map_type_descriptor_type(); |
| Type* uint8_type = Type::lookup_integer_type("uint8"); |
| Type* uint16_type = Type::lookup_integer_type("uint16"); |
| |
| int64_t keysize; |
| if (!this->key_type_->backend_type_size(gogo, &keysize)) |
| { |
| go_error_at(this->location_, "error determining map key type size"); |
| return Expression::make_error(this->location_); |
| } |
| |
| int64_t valsize; |
| if (!this->val_type_->backend_type_size(gogo, &valsize)) |
| { |
| go_error_at(this->location_, "error determining map value type size"); |
| return Expression::make_error(this->location_); |
| } |
| |
| int64_t ptrsize; |
| if (!Type::make_pointer_type(uint8_type)->backend_type_size(gogo, &ptrsize)) |
| { |
| go_assert(saw_errors()); |
| return Expression::make_error(this->location_); |
| } |
| |
| Type* bucket_type = this->bucket_type(gogo, keysize, valsize); |
| if (bucket_type == NULL) |
| { |
| go_assert(saw_errors()); |
| return Expression::make_error(this->location_); |
| } |
| |
| int64_t bucketsize; |
| if (!bucket_type->backend_type_size(gogo, &bucketsize)) |
| { |
| go_assert(saw_errors()); |
| return Expression::make_error(this->location_); |
| } |
| |
| const Struct_field_list* fields = mtdt->struct_type()->fields(); |
| |
| Expression_list* vals = new Expression_list(); |
| vals->reserve(12); |
| |
| Struct_field_list::const_iterator p = fields->begin(); |
| go_assert(p->is_field_name("_type")); |
| vals->push_back(this->type_descriptor_constructor(gogo, |
| RUNTIME_TYPE_KIND_MAP, |
| name, NULL, true)); |
| |
| ++p; |
| go_assert(p->is_field_name("key")); |
| vals->push_back(Expression::make_type_descriptor(this->key_type_, bloc)); |
| |
| ++p; |
| go_assert(p->is_field_name("elem")); |
| vals->push_back(Expression::make_type_descriptor(this->val_type_, bloc)); |
| |
| ++p; |
| go_assert(p->is_field_name("bucket")); |
| vals->push_back(Expression::make_type_descriptor(bucket_type, bloc)); |
| |
| ++p; |
| go_assert(p->is_field_name("hmap")); |
| Type* hmap_type = this->hmap_type(bucket_type); |
| vals->push_back(Expression::make_type_descriptor(hmap_type, bloc)); |
| |
| ++p; |
| go_assert(p->is_field_name("keysize")); |
| if (keysize > Map_type::max_key_size) |
| vals->push_back(Expression::make_integer_int64(ptrsize, uint8_type, bloc)); |
| else |
| vals->push_back(Expression::make_integer_int64(keysize, uint8_type, bloc)); |
| |
| ++p; |
| go_assert(p->is_field_name("indirectkey")); |
| vals->push_back(Expression::make_boolean(keysize > Map_type::max_key_size, |
| bloc)); |
| |
| ++p; |
| go_assert(p->is_field_name("valuesize")); |
| if (valsize > Map_type::max_val_size) |
| vals->push_back(Expression::make_integer_int64(ptrsize, uint8_type, bloc)); |
| else |
| vals->push_back(Expression::make_integer_int64(valsize, uint8_type, bloc)); |
| |
| ++p; |
| go_assert(p->is_field_name("indirectvalue")); |
| vals->push_back(Expression::make_boolean(valsize > Map_type::max_val_size, |
| bloc)); |
| |
| ++p; |
| go_assert(p->is_field_name("bucketsize")); |
| vals->push_back(Expression::make_integer_int64(bucketsize, uint16_type, |
| bloc)); |
| |
| ++p; |
| go_assert(p->is_field_name("reflexivekey")); |
| vals->push_back(Expression::make_boolean(this->key_type_->is_reflexive(), |
| bloc)); |
| |
| ++p; |
| go_assert(p->is_field_name("needkeyupdate")); |
| vals->push_back(Expression::make_boolean(this->key_type_->needs_key_update(), |
| bloc)); |
| |
| ++p; |
| go_assert(p == fields->end()); |
| |
| return Expression::make_struct_composite_literal(mtdt, vals, bloc); |
| } |
| |
| // Return the bucket type to use for a map type. This must correspond |
| // to libgo/go/runtime/hashmap.go. |
| |
| Type* |
| Map_type::bucket_type(Gogo* gogo, int64_t keysize, int64_t valsize) |
| { |
| if (this->bucket_type_ != NULL) |
| return this->bucket_type_; |
| |
| Type* key_type = this->key_type_; |
| if (keysize > Map_type::max_key_size) |
| key_type = Type::make_pointer_type(key_type); |
| |
| Type* val_type = this->val_type_; |
| if (valsize > Map_type::max_val_size) |
| val_type = Type::make_pointer_type(val_type); |
| |
| Expression* bucket_size = Expression::make_integer_ul(Map_type::bucket_size, |
| NULL, this->location_); |
| |
| Type* uint8_type = Type::lookup_integer_type("uint8"); |
| Array_type* topbits_type = Type::make_array_type(uint8_type, bucket_size); |
| topbits_type->set_is_array_incomparable(); |
| Array_type* keys_type = Type::make_array_type(key_type, bucket_size); |
| keys_type->set_is_array_incomparable(); |
| Array_type* values_type = Type::make_array_type(val_type, bucket_size); |
| values_type->set_is_array_incomparable(); |
| |
| // If keys and values have no pointers, the map implementation can |
| // keep a list of overflow pointers on the side so that buckets can |
| // be marked as having no pointers. Arrange for the bucket to have |
| // no pointers by changing the type of the overflow field to uintptr |
| // in this case. See comment on the hmap.overflow field in |
| // libgo/go/runtime/hashmap.go. |
| Type* overflow_type; |
| if (!key_type->has_pointer() && !val_type->has_pointer()) |
| overflow_type = Type::lookup_integer_type("uintptr"); |
| else |
| { |
| // This should really be a pointer to the bucket type itself, |
| // but that would require us to construct a Named_type for it to |
| // give it a way to refer to itself. Since nothing really cares |
| // (except perhaps for someone using a debugger) just use an |
| // unsafe pointer. |
| overflow_type = Type::make_pointer_type(Type::make_void_type()); |
| } |
| |
| // Make sure the overflow pointer is the last memory in the struct, |
| // because the runtime assumes it can use size-ptrSize as the offset |
| // of the overflow pointer. We double-check that property below |
| // once the offsets and size are computed. |
| |
| int64_t topbits_field_size, topbits_field_align; |
| int64_t keys_field_size, keys_field_align; |
| int64_t values_field_size, values_field_align; |
| int64_t overflow_field_size, overflow_field_align; |
| if (!topbits_type->backend_type_size(gogo, &topbits_field_size) |
| || !topbits_type->backend_type_field_align(gogo, &topbits_field_align) |
| || !keys_type->backend_type_size(gogo, &keys_field_size) |
| || !keys_type->backend_type_field_align(gogo, &keys_field_align) |
| || !values_type->backend_type_size(gogo, &values_field_size) |
| || !values_type->backend_type_field_align(gogo, &values_field_align) |
| || !overflow_type->backend_type_size(gogo, &overflow_field_size) |
| || !overflow_type->backend_type_field_align(gogo, &overflow_field_align)) |
| { |
| go_assert(saw_errors()); |
| return NULL; |
| } |
| |
| Struct_type* ret; |
| int64_t max_align = std::max(std::max(topbits_field_align, keys_field_align), |
| values_field_align); |
| if (max_align <= overflow_field_align) |
| ret = make_builtin_struct_type(4, |
| "topbits", topbits_type, |
| "keys", keys_type, |
| "values", values_type, |
| "overflow", overflow_type); |
| else |
| { |
| size_t off = topbits_field_size; |
| off = ((off + keys_field_align - 1) |
| &~ static_cast<size_t>(keys_field_align - 1)); |
| off += keys_field_size; |
| off = ((off + values_field_align - 1) |
| &~ static_cast<size_t>(values_field_align - 1)); |
| off += values_field_size; |
| |
| int64_t padded_overflow_field_size = |
| ((overflow_field_size + max_align - 1) |
| &~ static_cast<size_t>(max_align - 1)); |
| |
| size_t ovoff = off; |
| ovoff = ((ovoff + max_align - 1) |
| &~ static_cast<size_t>(max_align - 1)); |
| size_t pad = (ovoff - off |
| + padded_overflow_field_size - overflow_field_size); |
| |
| Expression* pad_expr = Expression::make_integer_ul(pad, NULL, |
| this->location_); |
| Array_type* pad_type = Type::make_array_type(uint8_type, pad_expr); |
| pad_type->set_is_array_incomparable(); |
| |
| ret = make_builtin_struct_type(5, |
| "topbits", topbits_type, |
| "keys", keys_type, |
| "values", values_type, |
| "pad", pad_type, |
| "overflow", overflow_type); |
| } |
| |
| // Verify that the overflow field is just before the end of the |
| // bucket type. |
| |
| Btype* btype = ret->get_backend(gogo); |
| int64_t offset = gogo->backend()->type_field_offset(btype, |
| ret->field_count() - 1); |
| int64_t size; |
| if (!ret->backend_type_size(gogo, &size)) |
| { |
| go_assert(saw_errors()); |
| return NULL; |
| } |
| |
| int64_t ptr_size; |
| if (!Type::make_pointer_type(uint8_type)->backend_type_size(gogo, &ptr_size)) |
| { |
| go_assert(saw_errors()); |
| return NULL; |
| } |
| |
| go_assert(offset + ptr_size == size); |
| |
| ret->set_is_struct_incomparable(); |
| |
| this->bucket_type_ = ret; |
| return ret; |
| } |
| |
| // Return the hashmap type for a map type. |
| |
| Type* |
| Map_type::hmap_type(Type* bucket_type) |
| { |
| if (this->hmap_type_ != NULL) |
| return this->hmap_type_; |
| |
| Type* int_type = Type::lookup_integer_type("int"); |
| Type* uint8_type = Type::lookup_integer_type("uint8"); |
| Type* uint16_type = Type::lookup_integer_type("uint16"); |
| Type* uint32_type = Type::lookup_integer_type("uint32"); |
| Type* uintptr_type = Type::lookup_integer_type("uintptr"); |
| Type* void_ptr_type = Type::make_pointer_type(Type::make_void_type()); |
| |
| Type* ptr_bucket_type = Type::make_pointer_type(bucket_type); |
| |
| Struct_type* ret = make_builtin_struct_type(9, |
| "count", int_type, |
| "flags", uint8_type, |
| "B", uint8_type, |
| "noverflow", uint16_type, |
| "hash0", uint32_type, |
| "buckets", ptr_bucket_type, |
| "oldbuckets", ptr_bucket_type, |
| "nevacuate", uintptr_type, |
| "extra", void_ptr_type); |
| ret->set_is_struct_incomparable(); |
| this->hmap_type_ = ret; |
| return ret; |
| } |
| |
| // Return the iterator type for a map type. This is the type of the |
| // value used when doing a range over a map. |
| |
| Type* |
| Map_type::hiter_type(Gogo* gogo) |
| { |
| if (this->hiter_type_ != NULL) |
| return this->hiter_type_; |
| |
| int64_t keysize, valsize; |
| if (!this->key_type_->backend_type_size(gogo, &keysize) |
| || !this->val_type_->backend_type_size(gogo, &valsize)) |
| { |
| go_assert(saw_errors()); |
| return NULL; |
| } |
| |
| Type* key_ptr_type = Type::make_pointer_type(this->key_type_); |
| Type* val_ptr_type = Type::make_pointer_type(this->val_type_); |
| Type* uint8_type = Type::lookup_integer_type("uint8"); |
| Type* uint8_ptr_type = Type::make_pointer_type(uint8_type); |
| Type* uintptr_type = Type::lookup_integer_type("uintptr"); |
| Type* bucket_type = this->bucket_type(gogo, keysize, valsize); |
| Type* bucket_ptr_type = Type::make_pointer_type(bucket_type); |
| Type* hmap_type = this->hmap_type(bucket_type); |
| Type* hmap_ptr_type = Type::make_pointer_type(hmap_type); |
| Type* void_ptr_type = Type::make_pointer_type(Type::make_void_type()); |
| Type* bool_type = Type::lookup_bool_type(); |
| |
| Struct_type* ret = make_builtin_struct_type(15, |
| "key", key_ptr_type, |
| "val", val_ptr_type, |
| "t", uint8_ptr_type, |
| "h", hmap_ptr_type, |
| "buckets", bucket_ptr_type, |
| "bptr", bucket_ptr_type, |
| "overflow", void_ptr_type, |
| "oldoverflow", void_ptr_type, |
| "startBucket", uintptr_type, |
| "offset", uint8_type, |
| "wrapped", bool_type, |
| "B", uint8_type, |
| "i", uint8_type, |
| "bucket", uintptr_type, |
| "checkBucket", uintptr_type); |
| ret->set_is_struct_incomparable(); |
| this->hiter_type_ = ret; |
| return ret; |
| } |
| |
| // Reflection string for a map. |
| |
| void |
| Map_type::do_reflection(Gogo* gogo, std::string* ret) const |
| { |
| ret->append("map["); |
| this->append_reflection(this->key_type_, gogo, ret); |
| ret->append("]"); |
| this->append_reflection(this->val_type_, gogo, ret); |
| } |
| |
| // Export a map type. |
| |
| void |
| Map_type::do_export(Export* exp) const |
| { |
| exp->write_c_string("map ["); |
| exp->write_type(this->key_type_); |
| exp->write_c_string("] "); |
| exp->write_type(this->val_type_); |
| } |
| |
| // Import a map type. |
| |
| Map_type* |
| Map_type::do_import(Import* imp) |
| { |
| imp->require_c_string("map ["); |
| Type* key_type = imp->read_type(); |
| imp->require_c_string("] "); |
| Type* val_type = imp->read_type(); |
| return Type::make_map_type(key_type, val_type, imp->location()); |
| } |
| |
| // Make a map type. |
| |
| Map_type* |
| Type::make_map_type(Type* key_type, Type* val_type, Location location) |
| { |
| return new Map_type(key_type, val_type, location); |
| } |
| |
| // Class Channel_type. |
| |
| // Verify. |
| |
| bool |
| Channel_type::do_verify() |
| { |
| // We have no location for this error, but this is not something the |
| // ordinary user will see. |
| if (!this->element_type_->in_heap()) |
| go_error_at(Linemap::unknown_location(), |
| "chan of go:notinheap type not allowed"); |
| return true; |
| } |
| |
| // Hash code. |
| |
| unsigned int |
| Channel_type::do_hash_for_method(Gogo* gogo) const |
| { |
| unsigned int ret = 0; |
| if (this->may_send_) |
| ret += 1; |
| if (this->may_receive_) |
| ret += 2; |
| if (this->element_type_ != NULL) |
| ret += this->element_type_->hash_for_method(gogo) << 2; |
| return ret << 3; |
| } |
| |
| // Whether this type is the same as T. |
| |
| bool |
| Channel_type::is_identical(const Channel_type* t, Cmp_tags cmp_tags, |
| bool errors_are_identical) const |
| { |
| if (!Type::are_identical_cmp_tags(this->element_type(), t->element_type(), |
| cmp_tags, errors_are_identical, NULL)) |
| return false; |
| return (this->may_send_ == t->may_send_ |
| && this->may_receive_ == t->may_receive_); |
| } |
| |
| // Return the backend representation for a channel type. A channel is a pointer |
| // to a __go_channel struct. The __go_channel struct is defined in |
| // libgo/runtime/channel.h. |
| |
| Btype* |
| Channel_type::do_get_backend(Gogo* gogo) |
| { |
| static Btype* backend_channel_type; |
| if (backend_channel_type == NULL) |
| { |
| std::vector<Backend::Btyped_identifier> bfields; |
| Btype* bt = gogo->backend()->struct_type(bfields); |
| bt = gogo->backend()->named_type("__go_channel", bt, |
| Linemap::predeclared_location()); |
| backend_channel_type = gogo->backend()->pointer_type(bt); |
| } |
| return backend_channel_type; |
| } |
| |
| // Build a type descriptor for a channel type. |
| |
| Type* |
| Channel_type::make_chan_type_descriptor_type() |
| { |
| static Type* ret; |
| if (ret == NULL) |
| { |
| Type* tdt = Type::make_type_descriptor_type(); |
| Type* ptdt = Type::make_type_descriptor_ptr_type(); |
| |
| Type* uintptr_type = Type::lookup_integer_type("uintptr"); |
| |
| Struct_type* sf = |
| Type::make_builtin_struct_type(3, |
| "", tdt, |
| "elem", ptdt, |
| "dir", uintptr_type); |
| |
| ret = Type::make_builtin_named_type("ChanType", sf); |
| } |
| |
| return ret; |
| } |
| |
| // Build a type descriptor for a map type. |
| |
| Expression* |
| Channel_type::do_type_descriptor(Gogo* gogo, Named_type* name) |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| Type* ctdt = Channel_type::make_chan_type_descriptor_type(); |
| |
| const Struct_field_list* fields = ctdt->struct_type()->fields(); |
| |
| Expression_list* vals = new Expression_list(); |
| vals->reserve(3); |
| |
| Struct_field_list::const_iterator p = fields->begin(); |
| go_assert(p->is_field_name("_type")); |
| vals->push_back(this->type_descriptor_constructor(gogo, |
| RUNTIME_TYPE_KIND_CHAN, |
| name, NULL, true)); |
| |
| ++p; |
| go_assert(p->is_field_name("elem")); |
| vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc)); |
| |
| ++p; |
| go_assert(p->is_field_name("dir")); |
| // These bits must match the ones in libgo/runtime/go-type.h. |
| int val = 0; |
| if (this->may_receive_) |
| val |= 1; |
| if (this->may_send_) |
| val |= 2; |
| vals->push_back(Expression::make_integer_ul(val, p->type(), bloc)); |
| |
| ++p; |
| go_assert(p == fields->end()); |
| |
| return Expression::make_struct_composite_literal(ctdt, vals, bloc); |
| } |
| |
| // Reflection string. |
| |
| void |
| Channel_type::do_reflection(Gogo* gogo, std::string* ret) const |
| { |
| if (!this->may_send_) |
| ret->append("<-"); |
| ret->append("chan"); |
| if (!this->may_receive_) |
| ret->append("<-"); |
| ret->push_back(' '); |
| this->append_reflection(this->element_type_, gogo, ret); |
| } |
| |
| // Export. |
| |
| void |
| Channel_type::do_export(Export* exp) const |
| { |
| exp->write_c_string("chan "); |
| if (this->may_send_ && !this->may_receive_) |
| exp->write_c_string("-< "); |
| else if (this->may_receive_ && !this->may_send_) |
| exp->write_c_string("<- "); |
| exp->write_type(this->element_type_); |
| } |
| |
| // Import. |
| |
| Channel_type* |
| Channel_type::do_import(Import* imp) |
| { |
| imp->require_c_string("chan "); |
| |
| bool may_send; |
| bool may_receive; |
| if (imp->match_c_string("-< ")) |
| { |
| imp->advance(3); |
| may_send = true; |
| may_receive = false; |
| } |
| else if (imp->match_c_string("<- ")) |
| { |
| imp->advance(3); |
| may_receive = true; |
| may_send = false; |
| } |
| else |
| { |
| may_send = true; |
| may_receive = true; |
| } |
| |
| Type* element_type = imp->read_type(); |
| |
| return Type::make_channel_type(may_send, may_receive, element_type); |
| } |
| |
| // Return the type to manage a select statement with ncases case |
| // statements. A value of this type is allocated on the stack. This |
| // must match the type hselect in libgo/go/runtime/select.go. |
| |
| Type* |
| Channel_type::select_type(int ncases) |
| { |
| Type* unsafe_pointer_type = Type::make_pointer_type(Type::make_void_type()); |
| Type* uint16_type = Type::lookup_integer_type("uint16"); |
| |
| static Struct_type* scase_type; |
| if (scase_type == NULL) |
| { |
| Type* uintptr_type = Type::lookup_integer_type("uintptr"); |
| Type* uint64_type = Type::lookup_integer_type("uint64"); |
| scase_type = |
| Type::make_builtin_struct_type(7, |
| "elem", unsafe_pointer_type, |
| "chan", unsafe_pointer_type, |
| "pc", uintptr_type, |
| "kind", uint16_type, |
| "index", uint16_type, |
| "receivedp", unsafe_pointer_type, |
| "releasetime", uint64_type); |
| scase_type->set_is_struct_incomparable(); |
| } |
| |
| Expression* ncases_expr = |
| Expression::make_integer_ul(ncases, NULL, Linemap::predeclared_location()); |
| Array_type* scases = Type::make_array_type(scase_type, ncases_expr); |
| scases->set_is_array_incomparable(); |
| Array_type* order = Type::make_array_type(uint16_type, ncases_expr); |
| order->set_is_array_incomparable(); |
| |
| Struct_type* ret = |
| Type::make_builtin_struct_type(7, |
| "tcase", uint16_type, |
| "ncase", uint16_type, |
| "pollorder", unsafe_pointer_type, |
| "lockorder", unsafe_pointer_type, |
| "scase", scases, |
| "lockorderarr", order, |
| "pollorderarr", order); |
| ret->set_is_struct_incomparable(); |
| return ret; |
| } |
| |
| // Make a new channel type. |
| |
| Channel_type* |
| Type::make_channel_type(bool send, bool receive, Type* element_type) |
| { |
| return new Channel_type(send, receive, element_type); |
| } |
| |
| // Class Interface_type. |
| |
| // Return the list of methods. |
| |
| const Typed_identifier_list* |
| Interface_type::methods() const |
| { |
| go_assert(this->methods_are_finalized_ || saw_errors()); |
| return this->all_methods_; |
| } |
| |
| // Return the number of methods. |
| |
| size_t |
| Interface_type::method_count() const |
| { |
| go_assert(this->methods_are_finalized_ || saw_errors()); |
| return this->all_methods_ == NULL ? 0 : this->all_methods_->size(); |
| } |
| |
| // Traversal. |
| |
| int |
| Interface_type::do_traverse(Traverse* traverse) |
| { |
| Typed_identifier_list* methods = (this->methods_are_finalized_ |
| ? this->all_methods_ |
| : this->parse_methods_); |
| if (methods == NULL) |
| return TRAVERSE_CONTINUE; |
| return methods->traverse(traverse); |
| } |
| |
| // Finalize the methods. This handles interface inheritance. |
| |
| void |
| Interface_type::finalize_methods() |
| { |
| if (this->methods_are_finalized_) |
| return; |
| this->methods_are_finalized_ = true; |
| if (this->parse_methods_ == NULL) |
| return; |
| |
| this->all_methods_ = new Typed_identifier_list(); |
| this->all_methods_->reserve(this->parse_methods_->size()); |
| Typed_identifier_list inherit; |
| for (Typed_identifier_list::const_iterator pm = |
| this->parse_methods_->begin(); |
| pm != this->parse_methods_->end(); |
| ++pm) |
| { |
| const Typed_identifier* p = &*pm; |
| if (p->name().empty()) |
| inherit.push_back(*p); |
| else if (this->find_method(p->name()) == NULL) |
| this->all_methods_->push_back(*p); |
| else |
| go_error_at(p->location(), "duplicate method %qs", |
| Gogo::message_name(p->name()).c_str()); |
| } |
| |
| std::vector<Named_type*> seen; |
| seen.reserve(inherit.size()); |
| bool issued_recursive_error = false; |
| while (!inherit.empty()) |
| { |
| Type* t = inherit.back().type(); |
| Location tl = inherit.back().location(); |
| inherit.pop_back(); |
| |
| Interface_type* it = t->interface_type(); |
| if (it == NULL) |
| { |
| if (!t->is_error()) |
| go_error_at(tl, "interface contains embedded non-interface"); |
| continue; |
| } |
| if (it == this) |
| { |
| if (!issued_recursive_error) |
| { |
| go_error_at(tl, "invalid recursive interface"); |
| issued_recursive_error = true; |
| } |
| continue; |
| } |
| |
| Named_type* nt = t->named_type(); |
| if (nt != NULL && it->parse_methods_ != NULL) |
| { |
| std::vector<Named_type*>::const_iterator q; |
| for (q = seen.begin(); q != seen.end(); ++q) |
| { |
| if (*q == nt) |
| { |
| go_error_at(tl, "inherited interface loop"); |
| break; |
| } |
| } |
| if (q != seen.end()) |
| continue; |
| seen.push_back(nt); |
| } |
| |
| const Typed_identifier_list* imethods = it->parse_methods_; |
| if (imethods == NULL) |
| continue; |
| for (Typed_identifier_list::const_iterator q = imethods->begin(); |
| q != imethods->end(); |
| ++q) |
| { |
| if (q->name().empty()) |
| inherit.push_back(*q); |
| else if (this->find_method(q->name()) == NULL) |
| this->all_methods_->push_back(Typed_identifier(q->name(), |
| q->type(), tl)); |
| else |
| go_error_at(tl, "inherited method %qs is ambiguous", |
| Gogo::message_name(q->name()).c_str()); |
| } |
| } |
| |
| if (!this->all_methods_->empty()) |
| this->all_methods_->sort_by_name(); |
| else |
| { |
| delete this->all_methods_; |
| this->all_methods_ = NULL; |
| } |
| } |
| |
| // Return the method NAME, or NULL. |
| |
| const Typed_identifier* |
| Interface_type::find_method(const std::string& name) const |
| { |
| go_assert(this->methods_are_finalized_); |
| if (this->all_methods_ == NULL) |
| return NULL; |
| for (Typed_identifier_list::const_iterator p = this->all_methods_->begin(); |
| p != this->all_methods_->end(); |
| ++p) |
| if (p->name() == name) |
| return &*p; |
| return NULL; |
| } |
| |
| // Return the method index. |
| |
| size_t |
| Interface_type::method_index(const std::string& name) const |
| { |
| go_assert(this->methods_are_finalized_ && this->all_methods_ != NULL); |
| size_t ret = 0; |
| for (Typed_identifier_list::const_iterator p = this->all_methods_->begin(); |
| p != this->all_methods_->end(); |
| ++p, ++ret) |
| if (p->name() == name) |
| return ret; |
| go_unreachable(); |
| } |
| |
| // Return whether NAME is an unexported method, for better error |
| // reporting. |
| |
| bool |
| Interface_type::is_unexported_method(Gogo* gogo, const std::string& name) const |
| { |
| go_assert(this->methods_are_finalized_); |
| if (this->all_methods_ == NULL) |
| return false; |
| for (Typed_identifier_list::const_iterator p = this->all_methods_->begin(); |
| p != this->all_methods_->end(); |
| ++p) |
| { |
| const std::string& method_name(p->name()); |
| if (Gogo::is_hidden_name(method_name) |
| && name == Gogo::unpack_hidden_name(method_name) |
| && gogo->pack_hidden_name(name, false) != method_name) |
| return true; |
| } |
| return false; |
| } |
| |
| // Whether this type is identical with T. |
| |
| bool |
| Interface_type::is_identical(const Interface_type* t, Cmp_tags cmp_tags, |
| bool errors_are_identical) const |
| { |
| // If methods have not been finalized, then we are asking whether |
| // func redeclarations are the same. This is an error, so for |
| // simplicity we say they are never the same. |
| if (!this->methods_are_finalized_ || !t->methods_are_finalized_) |
| return false; |
| |
| // We require the same methods with the same types. The methods |
| // have already been sorted. |
| if (this->all_methods_ == NULL || t->all_methods_ == NULL) |
| return this->all_methods_ == t->all_methods_; |
| |
| if (this->assume_identical(this, t) || t->assume_identical(t, this)) |
| return true; |
| |
| Assume_identical* hold_ai = this->assume_identical_; |
| Assume_identical ai; |
| ai.t1 = this; |
| ai.t2 = t; |
| ai.next = hold_ai; |
| this->assume_identical_ = &ai; |
| |
| Typed_identifier_list::const_iterator p1 = this->all_methods_->begin(); |
| Typed_identifier_list::const_iterator p2; |
| for (p2 = t->all_methods_->begin(); p2 != t->all_methods_->end(); ++p1, ++p2) |
| { |
| if (p1 == this->all_methods_->end()) |
| break; |
| if (p1->name() != p2->name() |
| || !Type::are_identical_cmp_tags(p1->type(), p2->type(), cmp_tags, |
| errors_are_identical, NULL)) |
| break; |
| } |
| |
| this->assume_identical_ = hold_ai; |
| |
| return p1 == this->all_methods_->end() && p2 == t->all_methods_->end(); |
| } |
| |
| // Return true if T1 and T2 are assumed to be identical during a type |
| // comparison. |
| |
| bool |
| Interface_type::assume_identical(const Interface_type* t1, |
| const Interface_type* t2) const |
| { |
| for (Assume_identical* p = this->assume_identical_; |
| p != NULL; |
| p = p->next) |
| if ((p->t1 == t1 && p->t2 == t2) || (p->t1 == t2 && p->t2 == t1)) |
| return true; |
| return false; |
| } |
| |
| // Whether we can assign the interface type T to this type. The types |
| // are known to not be identical. An interface assignment is only |
| // permitted if T is known to implement all methods in THIS. |
| // Otherwise a type guard is required. |
| |
| bool |
| Interface_type::is_compatible_for_assign(const Interface_type* t, |
| std::string* reason) const |
| { |
| go_assert(this->methods_are_finalized_ && t->methods_are_finalized_); |
| if (this->all_methods_ == NULL) |
| return true; |
| for (Typed_identifier_list::const_iterator p = this->all_methods_->begin(); |
| p != this->all_methods_->end(); |
| ++p) |
| { |
| const Typed_identifier* m = t->find_method(p->name()); |
| if (m == NULL) |
| { |
| if (reason != NULL) |
| { |
| char buf[200]; |
| snprintf(buf, sizeof buf, |
| _("need explicit conversion; missing method %s%s%s"), |
| go_open_quote(), Gogo::message_name(p->name()).c_str(), |
| go_close_quote()); |
| reason->assign(buf); |
| } |
| return false; |
| } |
| |
| std::string subreason; |
| if (!Type::are_identical(p->type(), m->type(), true, &subreason)) |
| { |
| if (reason != NULL) |
| { |
| std::string n = Gogo::message_name(p->name()); |
| size_t len = 100 + n.length() + subreason.length(); |
| char* buf = new char[len]; |
| if (subreason.empty()) |
| snprintf(buf, len, _("incompatible type for method %s%s%s"), |
| go_open_quote(), n.c_str(), go_close_quote()); |
| else |
| snprintf(buf, len, |
| _("incompatible type for method %s%s%s (%s)"), |
| go_open_quote(), n.c_str(), go_close_quote(), |
| subreason.c_str()); |
| reason->assign(buf); |
| delete[] buf; |
| } |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| // Hash code. |
| |
| unsigned int |
| Interface_type::do_hash_for_method(Gogo*) const |
| { |
| go_assert(this->methods_are_finalized_); |
| unsigned int ret = 0; |
| if (this->all_methods_ != NULL) |
| { |
| for (Typed_identifier_list::const_iterator p = |
| this->all_methods_->begin(); |
| p != this->all_methods_->end(); |
| ++p) |
| { |
| ret = Type::hash_string(p->name(), ret); |
| // We don't use the method type in the hash, to avoid |
| // infinite recursion if an interface method uses a type |
| // which is an interface which inherits from the interface |
| // itself. |
| // type T interface { F() interface {T}} |
| ret <<= 1; |
| } |
| } |
| return ret; |
| } |
| |
| // Return true if T implements the interface. If it does not, and |
| // REASON is not NULL, set *REASON to a useful error message. |
| |
| bool |
| Interface_type::implements_interface(const Type* t, std::string* reason) const |
| { |
| go_assert(this->methods_are_finalized_); |
| if (this->all_methods_ == NULL) |
| return true; |
| |
| bool is_pointer = false; |
| const Named_type* nt = t->named_type(); |
| const Struct_type* st = t->struct_type(); |
| // If we start with a named type, we don't dereference it to find |
| // methods. |
| if (nt == NULL) |
| { |
| const Type* pt = t->points_to(); |
| if (pt != NULL) |
| { |
| // If T is a pointer to a named type, then we need to look at |
| // the type to which it points. |
| is_pointer = true; |
| nt = pt->named_type(); |
| st = pt->struct_type(); |
| } |
| } |
| |
| // If we have a named type, get the methods from it rather than from |
| // any struct type. |
| if (nt != NULL) |
| st = NULL; |
| |
| // Only named and struct types have methods. |
| if (nt == NULL && st == NULL) |
| { |
| if (reason != NULL) |
| { |
| if (t->points_to() != NULL |
| && t->points_to()->interface_type() != NULL) |
| reason->assign(_("pointer to interface type has no methods")); |
| else |
| reason->assign(_("type has no methods")); |
| } |
| return false; |
| } |
| |
| if (nt != NULL ? !nt->has_any_methods() : !st->has_any_methods()) |
| { |
| if (reason != NULL) |
| { |
| if (t->points_to() != NULL |
| && t->points_to()->interface_type() != NULL) |
| reason->assign(_("pointer to interface type has no methods")); |
| else |
| reason->assign(_("type has no methods")); |
| } |
| return false; |
| } |
| |
| for (Typed_identifier_list::const_iterator p = this->all_methods_->begin(); |
| p != this->all_methods_->end(); |
| ++p) |
| { |
| bool is_ambiguous = false; |
| Method* m = (nt != NULL |
| ? nt->method_function(p->name(), &is_ambiguous) |
| : st->method_function(p->name(), &is_ambiguous)); |
| if (m == NULL) |
| { |
| if (reason != NULL) |
| { |
| std::string n = Gogo::message_name(p->name()); |
| size_t len = n.length() + 100; |
| char* buf = new char[len]; |
| if (is_ambiguous) |
| snprintf(buf, len, _("ambiguous method %s%s%s"), |
| go_open_quote(), n.c_str(), go_close_quote()); |
| else |
| snprintf(buf, len, _("missing method %s%s%s"), |
| go_open_quote(), n.c_str(), go_close_quote()); |
| reason->assign(buf); |
| delete[] buf; |
| } |
| return false; |
| } |
| |
| Function_type *p_fn_type = p->type()->function_type(); |
| Function_type* m_fn_type = m->type()->function_type(); |
| go_assert(p_fn_type != NULL && m_fn_type != NULL); |
| std::string subreason; |
| if (!p_fn_type->is_identical(m_fn_type, true, COMPARE_TAGS, true, |
| &subreason)) |
| { |
| if (reason != NULL) |
| { |
| std::string n = Gogo::message_name(p->name()); |
| size_t len = 100 + n.length() + subreason.length(); |
| char* buf = new char[len]; |
| if (subreason.empty()) |
| snprintf(buf, len, _("incompatible type for method %s%s%s"), |
| go_open_quote(), n.c_str(), go_close_quote()); |
| else |
| snprintf(buf, len, |
| _("incompatible type for method %s%s%s (%s)"), |
| go_open_quote(), n.c_str(), go_close_quote(), |
| subreason.c_str()); |
| reason->assign(buf); |
| delete[] buf; |
| } |
| return false; |
| } |
| |
| if (!is_pointer && !m->is_value_method()) |
| { |
| if (reason != NULL) |
| { |
| std::string n = Gogo::message_name(p->name()); |
| size_t len = 100 + n.length(); |
| char* buf = new char[len]; |
| snprintf(buf, len, |
| _("method %s%s%s requires a pointer receiver"), |
| go_open_quote(), n.c_str(), go_close_quote()); |
| reason->assign(buf); |
| delete[] buf; |
| } |
| return false; |
| } |
| |
| // If the magic //go:nointerface comment was used, the method |
| // may not be used to implement interfaces. |
| if (m->nointerface()) |
| { |
| if (reason != NULL) |
| { |
| std::string n = Gogo::message_name(p->name()); |
| size_t len = 100 + n.length(); |
| char* buf = new char[len]; |
| snprintf(buf, len, |
| _("method %s%s%s is marked go:nointerface"), |
| go_open_quote(), n.c_str(), go_close_quote()); |
| reason->assign(buf); |
| delete[] buf; |
| } |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| // Return the backend representation of the empty interface type. We |
| // use the same struct for all empty interfaces. |
| |
| Btype* |
| Interface_type::get_backend_empty_interface_type(Gogo* gogo) |
| { |
| static Btype* empty_interface_type; |
| if (empty_interface_type == NULL) |
| { |
| std::vector<Backend::Btyped_identifier> bfields(2); |
| |
| Location bloc = Linemap::predeclared_location(); |
| |
| Type* pdt = Type::make_type_descriptor_ptr_type(); |
| bfields[0].name = "__type_descriptor"; |
| bfields[0].btype = pdt->get_backend(gogo); |
| bfields[0].location = bloc; |
| |
| Type* vt = Type::make_pointer_type(Type::make_void_type()); |
| bfields[1].name = "__object"; |
| bfields[1].btype = vt->get_backend(gogo); |
| bfields[1].location = bloc; |
| |
| empty_interface_type = gogo->backend()->struct_type(bfields); |
| } |
| return empty_interface_type; |
| } |
| |
| Interface_type::Bmethods_map Interface_type::bmethods_map; |
| |
| // Return a pointer to the backend representation of the method table. |
| |
| Btype* |
| Interface_type::get_backend_methods(Gogo* gogo) |
| { |
| if (this->bmethods_ != NULL && !this->bmethods_is_placeholder_) |
| return this->bmethods_; |
| |
| std::pair<Interface_type*, Bmethods_map_entry> val; |
| val.first = this; |
| val.second.btype = NULL; |
| val.second.is_placeholder = false; |
| std::pair<Bmethods_map::iterator, bool> ins = |
| Interface_type::bmethods_map.insert(val); |
| if (!ins.second |
| && ins.first->second.btype != NULL |
| && !ins.first->second.is_placeholder) |
| { |
| this->bmethods_ = ins.first->second.btype; |
| this->bmethods_is_placeholder_ = false; |
| return this->bmethods_; |
| } |
| |
| Location loc = this->location(); |
| |
| std::vector<Backend::Btyped_identifier> |
| mfields(this->all_methods_->size() + 1); |
| |
| Type* pdt = Type::make_type_descriptor_ptr_type(); |
| mfields[0].name = "__type_descriptor"; |
| mfields[0].btype = pdt->get_backend(gogo); |
| mfields[0].location = loc; |
| |
| std::string last_name = ""; |
| size_t i = 1; |
| for (Typed_identifier_list::const_iterator p = this->all_methods_->begin(); |
| p != this->all_methods_->end(); |
| ++p, ++i) |
| { |
| // The type of the method in Go only includes the parameters. |
| // The actual method also has a receiver, which is always a |
| // pointer. We need to add that pointer type here in order to |
| // generate the correct type for the backend. |
| Function_type* ft = p->type()->function_type(); |
| go_assert(ft->receiver() == NULL); |
| |
| const Typed_identifier_list* params = ft->parameters(); |
| Typed_identifier_list* mparams = new Typed_identifier_list(); |
| if (params != NULL) |
| mparams->reserve(params->size() + 1); |
| Type* vt = Type::make_pointer_type(Type::make_void_type()); |
| mparams->push_back(Typed_identifier("", vt, ft->location())); |
| if (params != NULL) |
| { |
| for (Typed_identifier_list::const_iterator pp = params->begin(); |
| pp != params->end(); |
| ++pp) |
| mparams->push_back(*pp); |
| } |
| |
| Typed_identifier_list* mresults = (ft->results() == NULL |
| ? NULL |
| : ft->results()->copy()); |
| Function_type* mft = Type::make_function_type(NULL, mparams, mresults, |
| ft->location()); |
| |
| mfields[i].name = Gogo::unpack_hidden_name(p->name()); |
| mfields[i].btype = mft->get_backend_fntype(gogo); |
| mfields[i].location = loc; |
| |
| // Sanity check: the names should be sorted. |
| go_assert(Gogo::unpack_hidden_name(p->name()) |
| > Gogo::unpack_hidden_name(last_name)); |
| last_name = p->name(); |
| } |
| |
| Btype* st = gogo->backend()->struct_type(mfields); |
| Btype* ret = gogo->backend()->pointer_type(st); |
| |
| if (ins.first->second.btype != NULL |
| && ins.first->second.is_placeholder) |
| gogo->backend()->set_placeholder_pointer_type(ins.first->second.btype, |
| ret); |
| this->bmethods_ = ret; |
| ins.first->second.btype = ret; |
| this->bmethods_is_placeholder_ = false; |
| ins.first->second.is_placeholder = false; |
| return ret; |
| } |
| |
| // Return a placeholder for the pointer to the backend methods table. |
| |
| Btype* |
| Interface_type::get_backend_methods_placeholder(Gogo* gogo) |
| { |
| if (this->bmethods_ == NULL) |
| { |
| std::pair<Interface_type*, Bmethods_map_entry> val; |
| val.first = this; |
| val.second.btype = NULL; |
| val.second.is_placeholder = false; |
| std::pair<Bmethods_map::iterator, bool> ins = |
| Interface_type::bmethods_map.insert(val); |
| if (!ins.second && ins.first->second.btype != NULL) |
| { |
| this->bmethods_ = ins.first->second.btype; |
| this->bmethods_is_placeholder_ = ins.first->second.is_placeholder; |
| return this->bmethods_; |
| } |
| |
| Location loc = this->location(); |
| Btype* bt = gogo->backend()->placeholder_pointer_type("", loc, false); |
| this->bmethods_ = bt; |
| ins.first->second.btype = bt; |
| this->bmethods_is_placeholder_ = true; |
| ins.first->second.is_placeholder = true; |
| } |
| return this->bmethods_; |
| } |
| |
| // Return the fields of a non-empty interface type. This is not |
| // declared in types.h so that types.h doesn't have to #include |
| // backend.h. |
| |
| static void |
| get_backend_interface_fields(Gogo* gogo, Interface_type* type, |
| bool use_placeholder, |
| std::vector<Backend::Btyped_identifier>* bfields) |
| { |
| Location loc = type->location(); |
| |
| bfields->resize(2); |
| |
| (*bfields)[0].name = "__methods"; |
| (*bfields)[0].btype = (use_placeholder |
| ? type->get_backend_methods_placeholder(gogo) |
| : type->get_backend_methods(gogo)); |
| (*bfields)[0].location = loc; |
| |
| Type* vt = Type::make_pointer_type(Type::make_void_type()); |
| (*bfields)[1].name = "__object"; |
| (*bfields)[1].btype = vt->get_backend(gogo); |
| (*bfields)[1].location = Linemap::predeclared_location(); |
| } |
| |
| // Return the backend representation for an interface type. An interface is a |
| // pointer to a struct. The struct has three fields. The first field is a |
| // pointer to the type descriptor for the dynamic type of the object. |
| // The second field is a pointer to a table of methods for the |
| // interface to be used with the object. The third field is the value |
| // of the object itself. |
| |
| Btype* |
| Interface_type::do_get_backend(Gogo* gogo) |
| { |
| if (this->is_empty()) |
| return Interface_type::get_backend_empty_interface_type(gogo); |
| else |
| { |
| if (this->interface_btype_ != NULL) |
| return this->interface_btype_; |
| this->interface_btype_ = |
| gogo->backend()->placeholder_struct_type("", this->location_); |
| std::vector<Backend::Btyped_identifier> bfields; |
| get_backend_interface_fields(gogo, this, false, &bfields); |
| if (!gogo->backend()->set_placeholder_struct_type(this->interface_btype_, |
| bfields)) |
| this->interface_btype_ = gogo->backend()->error_type(); |
| return this->interface_btype_; |
| } |
| } |
| |
| // Finish the backend representation of the methods. |
| |
| void |
| Interface_type::finish_backend_methods(Gogo* gogo) |
| { |
| if (!this->is_empty()) |
| { |
| const Typed_identifier_list* methods = this->methods(); |
| if (methods != NULL) |
| { |
| for (Typed_identifier_list::const_iterator p = methods->begin(); |
| p != methods->end(); |
| ++p) |
| p->type()->get_backend(gogo); |
| } |
| |
| // Getting the backend methods now will set the placeholder |
| // pointer. |
| this->get_backend_methods(gogo); |
| } |
| } |
| |
| // The type of an interface type descriptor. |
| |
| Type* |
| Interface_type::make_interface_type_descriptor_type() |
| { |
| static Type* ret; |
| if (ret == NULL) |
| { |
| Type* tdt = Type::make_type_descriptor_type(); |
| Type* ptdt = Type::make_type_descriptor_ptr_type(); |
| |
| Type* string_type = Type::lookup_string_type(); |
| Type* pointer_string_type = Type::make_pointer_type(string_type); |
| |
| Struct_type* sm = |
| Type::make_builtin_struct_type(3, |
| "name", pointer_string_type, |
| "pkgPath", pointer_string_type, |
| "typ", ptdt); |
| |
| Type* nsm = Type::make_builtin_named_type("imethod", sm); |
| |
| Type* slice_nsm = Type::make_array_type(nsm, NULL); |
| |
| Struct_type* s = Type::make_builtin_struct_type(2, |
| "", tdt, |
| "methods", slice_nsm); |
| |
| ret = Type::make_builtin_named_type("InterfaceType", s); |
| } |
| |
| return ret; |
| } |
| |
| // Build a type descriptor for an interface type. |
| |
| Expression* |
| Interface_type::do_type_descriptor(Gogo* gogo, Named_type* name) |
| { |
| Location bloc = Linemap::predeclared_location(); |
| |
| Type* itdt = Interface_type::make_interface_type_descriptor_type(); |
| |
| const Struct_field_list* ifields = itdt->struct_type()->fields(); |
| |
| Expression_list* ivals = new Expression_list(); |
| ivals->reserve(2); |
| |
| Struct_field_list::const_iterator pif = ifields->begin(); |
| go_assert(pif->is_field_name("_type")); |
| const int rt = RUNTIME_TYPE_KIND_INTERFACE; |
| ivals->push_back(this->type_descriptor_constructor(gogo, rt, name, NULL, |
| true)); |
| |
| ++pif; |
| go_assert(pif->is_field_name("methods")); |
| |
| Expression_list* methods = new Expression_list(); |
| if (this->all_methods_ != NULL) |
| { |
| Type* elemtype = pif->type()->array_type()->element_type(); |
| |
| methods->reserve(this->all_methods_->size()); |
| for (Typed_identifier_list::const_iterator pm = |
| this->all_methods_->begin(); |
| pm != this->all_methods_->end(); |
| ++pm) |
| { |
| const Struct_field_list* mfields = elemtype->struct_type()->fields(); |
| |
| Expression_list* mvals = new Expression_list(); |
| mvals->reserve(3); |
| |
| Struct_field_list::const_iterator pmf = mfields->begin(); |
| go_assert(pmf->is_field_name("name")); |
| std::string s = Gogo::unpack_hidden_name(pm->name()); |
| Expression* e = Expression::make_string(s, bloc); |
| mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc)); |
| |
| ++pmf; |
| go_assert(pmf->is_field_name("pkgPath")); |
| if (!Gogo::is_hidden_name(pm->name())) |
| mvals->push_back(Expression::make_nil(bloc)); |
| else |
| { |
| s = Gogo::hidden_name_pkgpath(pm->name()); |
| e = Expression::make_string(s, bloc); |
| mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc)); |
| } |
| |
| ++pmf; |
| go_assert(pmf->is_field_name("typ")); |
| mvals->push_back(Expression::make_type_descriptor(pm->type(), bloc)); |
| |
| ++pmf; |
| go_assert(pmf == mfields->end()); |
| |
| e = Expression::make_struct_composite_literal(elemtype, mvals, |
| bloc); |
| methods->push_back(e); |
| } |
| } |
| |
| ivals->push_back(Expression::make_slice_composite_literal(pif->type(), |
| methods, bloc)); |
| |
| ++pif; |
| go_assert(pif == ifields->end()); |
| |
| return Expression::make_struct_composite_literal(itdt, ivals, bloc); |
| } |
| |
| // Reflection string. |
| |
| void |
| Interface_type::do_reflection(Gogo* gogo, std::string* ret) const |
| { |
| ret->append("interface {"); |
| const Typed_identifier_list* methods = this->parse_methods_; |
| if (methods != NULL) |
| { |
| ret->push_back(' '); |
| for (Typed_identifier_list::const_iterator p = methods->begin(); |
| p != methods->end(); |
| ++p) |
| { |
| if (p != methods->begin()) |
| ret->append("; "); |
| if (p->name().empty()) |
| this->append_reflection(p->type(), gogo, ret); |
| else |
| { |
| if (!Gogo::is_hidden_name(p->name())) |
| ret->append(p->name()); |
| else if (gogo->pkgpath_from_option()) |
| ret->append(p->name().substr(1)); |
| else |
| { |
| // If no -fgo-pkgpath option, backward compatibility |
| // for how this used to work before -fgo-pkgpath was |
| // introduced. |
| std::string pkgpath = Gogo::hidden_name_pkgpath(p->name()); |
| ret->append(pkgpath.substr(pkgpath.find('.') + 1)); |
| ret->push_back('.'); |
| ret->append(Gogo::unpack_hidden_name(p->name())); |
| } |
| std::string sub = p->type()->reflection(gogo); |
| go_assert(sub.compare(0, 4, "func") == 0); |
| sub = sub.substr(4); |
| ret->append(sub); |
| } |
| } |
| ret->push_back(' '); |
| } |
| ret->append("}"); |
| } |
| |
| // Export. |
| |
| void |
| Interface_type::do_export(Export* exp) const |
| { |
| exp->write_c_string("interface { "); |
| |
| const Typed_identifier_list* methods = this->parse_methods_; |
| if (methods != NULL) |
| { |
| for (Typed_identifier_list::const_iterator pm = methods->begin(); |
| pm != methods->end(); |
| ++pm) |
| { |
| if (pm->name().empty()) |
| { |
| exp->write_c_string("? "); |
| exp->write_type(pm->type()); |
| } |
| else |
| { |
| exp->write_string(pm->name()); |
| exp->write_c_string(" ("); |
| |
| const Function_type* fntype = pm->type()->function_type(); |
| |
| bool first = true; |
| const Typed_identifier_list* parameters = fntype->parameters(); |
| if (parameters != NULL) |
| { |
| bool is_varargs = fntype->is_varargs(); |
| for (Typed_identifier_list::const_iterator pp = |
| parameters->begin(); |
| pp != parameters->end(); |
| ++pp) |
| { |
| if (first) |
| first = false; |
| else |
| exp->write_c_string(", "); |
| exp->write_name(pp->name()); |
| exp->write_c_string(" "); |
| if (!is_varargs || pp + 1 != parameters->end()) |
| exp->write_type(pp->type()); |
| else |
| { |
| exp->write_c_string("..."); |
| Type *pptype = pp->type(); |
| exp->write_type(pptype->array_type()->element_type()); |
| } |
| } |
| } |
| |
| exp->write_c_string(")"); |
| |
| const Typed_identifier_list* results = fntype->results(); |
| if (results != NULL) |
| { |
| exp->write_c_string(" "); |
| if (results->size() == 1 && results->begin()->name().empty()) |
| exp->write_type(results->begin()->type()); |
| else |
| { |
| first = true; |
| exp->write_c_string("("); |
| for (Typed_identifier_list::const_iterator p = |
| results->begin(); |
| p != results->end(); |
| ++p) |
| { |
| if (first) |
| first = false; |
| else |
| exp->write_c_string(", "); |
| exp->write_name(p->name()); |
| exp->write_c_string(" "); |
| exp->write_type(p->type()); |
| } |
| exp->write_c_string(")"); |
| } |
| } |
| } |
| |
| exp->write_c_string("; "); |
| } |
| } |
| |
| exp->write_c_string("}"); |
| } |
| |
| // Import an interface type. |
| |
| Interface_type* |
| Interface_type::do_import(Import* imp) |
| { |
| imp->require_c_string("interface { "); |
| |
| Typed_identifier_list* methods = new Typed_identifier_list; |
| while (imp->peek_char() != '}') |
| { |
| std::string name = imp->read_identifier(); |
| |
| if (name == "?") |
| { |
| imp->require_c_string(" "); |
| Type* t = imp->read_type(); |
| methods->push_back(Typed_identifier("", t, imp->location())); |
| imp->require_c_string("; "); |
| continue; |
| } |
| |
| imp->require_c_string(" ("); |
| |
| Typed_identifier_list* parameters; |
| bool is_varargs = false; |
| if (imp->peek_char() == ')') |
| parameters = NULL; |
| else |
| { |
| parameters = new Typed_identifier_list; |
| while (true) |
| { |
| std::string name = imp->read_name(); |
| imp->require_c_string(" "); |
| |
| if (imp->match_c_string("...")) |
| { |
| imp->advance(3); |
| is_varargs = true; |
| } |
| |
| Type* ptype = imp->read_type(); |
| if (is_varargs) |
| ptype = Type::make_array_type(ptype, NULL); |
| parameters->push_back(Typed_identifier(name, ptype, |
| imp->location())); |
| if (imp->peek_char() != ',') |
| break; |
| go_assert(!is_varargs); |
| imp->require_c_string(", "); |
| } |
| } |
| imp->require_c_string(")"); |
| |
| Typed_identifier_list* results; |
| if (imp->peek_char() != ' ') |
| results = NULL; |
| else |
| { |
| results = new Typed_identifier_list; |
| imp->advance(1); |
| if (imp->peek_char() != '(') |
| { |
| Type* rtype = imp->read_type(); |
| results->push_back(Typed_identifier("", rtype, imp->location())); |
| } |
| else |
| { |
| imp->advance(1); |
| while (true) |
| { |
| std::string name = imp->read_name(); |
| imp->require_c_string(" "); |
| Type* rtype = imp->read_type(); |
| results->push_back(Typed_identifier(name, rtype, |
| imp->location())); |
| if (imp->peek_char() != ',') |
| break; |
| imp->require_c_string(", "); |
| } |
| imp->require_c_string(")"); |
| } |
| } |
| |
| Function_type* fntype = Type::make_function_type(NULL, parameters, |
| results, |
| imp->location()); |
| if (is_varargs) |
| fntype->set_is_varargs(); |
| methods->push_back(Typed_identifier(name, fntype, imp->location())); |
| |
| imp->require_c_string("; "); |
| } |
| |
| imp->require_c_string("}"); |
| |
| if (methods->empty()) |
| { |
| delete methods; |
| methods = NULL; |
| } |
| |
| Interface_type* ret = Type::make_interface_type(methods, imp->location()); |
| ret->package_ = imp->package(); |
| return ret; |
| } |
| |
| // Make an interface type. |
| |
| Interface_type* |
| Type::make_interface_type(Typed_identifier_list* methods, |
| Location location) |
| { |
| return new Interface_type(methods, location); |
| } |
| |
| // Make an empty interface type. |
| |
| Interface_type* |
| Type::make_empty_interface_type(Location location) |
| { |
| Interface_type* ret = new Interface_type(NULL, location); |
| ret->finalize_methods(); |
| return ret; |
| } |
| |
| // Class Method. |
| |
| // Bind a method to an object. |
| |
| Expression* |
| Method::bind_method(Expression* expr, Location location) const |
| { |
| if (this->stub_ == NULL) |
| { |
| // When there is no stub object, the binding is determined by |
| // the child class. |
| return this->do_bind_method(expr, location); |
| } |
| return Expression::make_bound_method(expr, this, this->stub_, location); |
| } |
| |
| // Return the named object associated with a method. This may only be |
| // called after methods are finalized. |
| |
| Named_object* |
| Method::named_object() const |
| { |
| if (this->stub_ != NULL) |
| return this->stub_; |
| return this->do_named_object(); |
| } |
| |
| // Class Named_method. |
| |
| // The type of the method. |
| |
| Function_type* |
| Named_method::do_type() const |
| { |
| if (this->named_object_->is_function()) |
| return this->named_object_->func_value()->type(); |
| else if (this->named_object_->is_function_declaration()) |
| return this->named_object_->func_declaration_value()->type(); |
| else |
| go_unreachable(); |
| } |
| |
| // Return the location of the method receiver. |
| |
| Location |
| Named_method::do_receiver_location() const |
| { |
| return this->do_type()->receiver()->location(); |
| } |
| |
| // Bind a method to an object. |
| |
| Expression* |
| Named_method::do_bind_method(Expression* expr, Location location) const |
| { |
| Named_object* no = this->named_object_; |
| Bound_method_expression* bme = Expression::make_bound_method(expr, this, |
| no, location); |
| // If this is not a local method, and it does not use a stub, then |
| // the real method expects a different type. We need to cast the |
| // first argument. |
| if (this->depth() > 0 && !this->needs_stub_method()) |
| { |
| Function_type* ftype = this->do_type(); |
| go_assert(ftype->is_method()); |
| Type* frtype = ftype->receiver()->type(); |
| bme->set_first_argument_type(frtype); |
| } |
| return bme; |
| } |
| |
| // Return whether this method should not participate in interfaces. |
| |
| bool |
| Named_method::do_nointerface() const |
| { |
| Named_object* no = this->named_object_; |
| if (no->is_function()) |
| return no->func_value()->nointerface(); |
| else if (no->is_function_declaration()) |
| return no->func_declaration_value()->nointerface(); |
| else |
| go_unreachable(); |
| } |
| |
| // Class Interface_method. |
| |
| // Bind a method to an object. |
| |
| Expression* |
| Interface_method::do_bind_method(Expression* expr, |
| Location location) const |
| { |
| return Expression::make_interface_field_reference(expr, this->name_, |
| location); |
| } |
| |
| // Class Methods. |
| |
| // Insert a new method. Return true if it was inserted, false |
| // otherwise. |
| |
| bool |
| Methods::insert(const std::string& name, Method* m) |
| { |
| std::pair<Method_map::iterator, bool> ins = |
| this->methods_.insert(std::make_pair(name, m)); |
| if (ins.second) |
| return true; |
| else |
| { |
| Method* old_method = ins.first->second; |
| if (m->depth() < old_method->depth()) |
| { |
| delete old_method; |
| ins.first->second = m; |
| return true; |
| } |
| else |
| { |
| if (m->depth() == old_method->depth()) |
| old_method->set_is_ambiguous(); |
| return false; |
| } |
| } |
| } |
| |
| // Return the number of unambiguous methods. |
| |
| size_t |
| Methods::count() const |
| { |
| size_t ret = 0; |
| for (Method_map::const_iterator p = this->methods_.begin(); |
| p != this->methods_.end(); |
| ++p) |
| if (!p->second->is_ambiguous()) |
| ++ret; |
| return ret; |
| } |
| |
| // Class Named_type. |
| |
| // Return the name of the type. |
| |
| const std::string& |
| Named_type::name() const |
| { |
| return this->named_object_->name(); |
| } |
| |
| // Return the name of the type to use in an error message. |
| |
| std::string |
| Named_type::message_name() const |
| { |
| return this->named_object_->message_name(); |
| } |
| |
| // Return the base type for this type. We have to be careful about |
| // circular type definitions, which are invalid but may be seen here. |
| |
| Type* |
| Named_type::named_base() |
| { |
| if (this->seen_) |
| return this; |
| this->seen_ = true; |
| Type* ret = this->type_->base(); |
| this->seen_ = false; |
| return ret; |
| } |
| |
| const Type* |
| Named_type::named_base() const |
| { |
| if (this->seen_) |
| return this; |
| this->seen_ = true; |
| const Type* ret = this->type_->base(); |
| this->seen_ = false; |
| return ret; |
| } |
| |
| // Return whether this is an error type. We have to be careful about |
| // circular type definitions, which are invalid but may be seen here. |
| |
| bool |
| Named_type::is_named_error_type() const |
| { |
| if (this->seen_) |
| return false; |
| this->seen_ = true; |
| bool ret = this->type_->is_error_type(); |
| this->seen_ = false; |
| return ret; |
| } |
| |
| // Whether this type is comparable. We have to be careful about |
| // circular type definitions. |
| |
| bool |
| Named_type::named_type_is_comparable(std::string* reason) const |
| { |
| if (this->seen_) |
| return false; |
| this->seen_ = true; |
| bool ret = Type::are_compatible_for_comparison(true, this->type_, |
| this->type_, reason); |
| this->seen_ = false; |
| return ret; |
| } |
| |
| // Add a method to this type. |
| |
| Named_object* |
| Named_type::add_method(const std::string& name, Function* function) |
| { |
| go_assert(!this->is_alias_); |
| if (this->local_methods_ == NULL) |
| this->local_methods_ = new Bindings(NULL); |
| return this->local_methods_->add_function(name, NULL, function); |
| } |
| |
| // Add a method declaration to this type. |
| |
| Named_object* |
| Named_type::add_method_declaration(const std::string& name, Package* package, |
| Function_type* type, |
| Location location) |
| { |
| go_assert(!this->is_alias_); |
| if (this->local_methods_ == NULL) |
| this->local_methods_ = new Bindings(NULL); |
| return this->local_methods_->add_function_declaration(name, package, type, |
| location); |
| } |
| |
| // Add an existing method to this type. |
| |
| void |
| Named_type::add_existing_method(Named_object* no) |
| { |
| go_assert(!this->is_alias_); |
| if (this->local_methods_ == NULL) |
| this->local_methods_ = new Bindings(NULL); |
| this->local_methods_->add_named_object(no); |
| } |
| |
| // Look for a local method NAME, and returns its named object, or NULL |
| // if not there. |
| |
| Named_object* |
| Named_type::find_local_method(const std::string& name) const |
| { |
| if (this->is_error_) |
| return NULL; |
| if (this->is_alias_) |
| { |
| Named_type* nt = this->type_->named_type(); |
| if (nt != NULL) |
| { |
| if (this->seen_alias_) |
| return NULL; |
| this->seen_alias_ = true; |
| Named_object* ret = nt->find_local_method(name); |
| this->seen_alias_ = false; |
| return ret; |
| } |
| return NULL; |
| } |
| if (this->local_methods_ == NULL) |
| return NULL; |
| return this->local_methods_->lookup(name); |
| } |
| |
| // Return the list of local methods. |
| |
| const Bindings* |
| Named_type::local_methods() const |
| { |
| if (this->is_error_) |
| return NULL; |
| if (this->is_alias_) |
| { |
| Named_type* nt = this->type_->named_type(); |
| if (nt != NULL) |
| { |
| if (this->seen_alias_) |
| return NULL; |
| this->seen_alias_ = true; |
| const Bindings* ret = nt->local_methods(); |
| this->seen_alias_ = false; |
| return ret; |
| } |
| return NULL; |
| } |
| return this->local_methods_; |
| } |
| |
| // Return whether NAME is an unexported field or method, for better |
| // error reporting. |
| |
| bool |
| Named_type::is_unexported_local_method(Gogo* gogo, |
| const std::string& name) const |
| { |
| if (this->is_error_) |
| return false; |
| if (this->is_alias_) |
| { |
| Named_type* nt = this->type_->named_type(); |
| if (nt != NULL) |
| { |
| if (this->seen_alias_) |
| return false; |
| this->seen_alias_ = true; |
| bool ret = nt->is_unexported_local_method(gogo, name); |
| this->seen_alias_ = false; |
| return ret; |
| } |
| return false; |
| } |
| Bindings* methods = this->local_methods_; |
| if (methods != NULL) |
| { |
| for (Bindings::const_declarations_iterator p = |
| methods->begin_declarations(); |
| p != methods->end_declarations(); |
| ++p) |
| { |
| if (Gogo::is_hidden_name(p->first) |
| && name == Gogo::unpack_hidden_name(p->first) |
| && gogo->pack_hidden_name(name, false) != p->first) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // Build the complete list of methods for this type, which means |
| // recursively including all methods for anonymous fields. Create all |
| // stub methods. |
| |
| void |
| Named_type::finalize_methods(Gogo* gogo) |
| { |
| if (this->is_alias_) |
| return; |
| if (this->all_methods_ != NULL) |
| return; |
| |
| if (this->local_methods_ != NULL |
| && (this->points_to() != NULL || this->interface_type() != NULL)) |
| { |
| const Bindings* lm = this->local_methods_; |
| for (Bindings::const_declarations_iterator p = lm->begin_declarations(); |
| p != lm->end_declarations(); |
| ++p) |
| go_error_at(p->second->location(), |
| "invalid pointer or interface receiver type"); |
| delete this->local_methods_; |
| this->local_methods_ = NULL; |
| return; |
| } |
| |
| Type::finalize_methods(gogo, this, this->location_, &this->all_methods_); |
| } |
| |
| // Return whether this type has any methods. |
| |
| bool |
| Named_type::has_any_methods() const |
| { |
| if (this->is_error_) |
| return false; |
| if (this->is_alias_) |
| { |
| if (this->type_->named_type() != NULL) |
| { |
| if (this->seen_alias_) |
| return false; |
| this->seen_alias_ = true; |
| bool ret = this->type_->named_type()->has_any_methods(); |
| this->seen_alias_ = false; |
| return ret; |
| } |
| if (this->type_->struct_type() != NULL) |
| return this->type_->struct_type()->has_any_methods(); |
| return false; |
| } |
| return this->all_methods_ != NULL; |
| } |
| |
| // Return the methods for this type. |
| |
| const Methods* |
| Named_type::methods() const |
| { |
| if (this->is_error_) |
| return NULL; |
| if (this->is_alias_) |
| { |
| if (this->type_->named_type() != NULL) |
| { |
| if (this->seen_alias_) |
| return NULL; |
| this->seen_alias_ = true; |
| const Methods* ret = this->type_->named_type()->methods(); |
| this->seen_alias_ = false; |
| return ret; |
| } |
| if (this->type_->struct_type() != NULL) |
| return this->type_->struct_type()->methods(); |
| return NULL; |
| } |
| return this->all_methods_; |
| } |
| |
| // Return the method NAME, or NULL if there isn't one or if it is |
| // ambiguous. Set *IS_AMBIGUOUS if the method exists but is |
| // ambiguous. |
| |
| Method* |
| Named_type::method_function(const std::string& name, bool* is_ambiguous) const |
| { |
| if (this->is_error_) |
| return NULL; |
| if (this->is_alias_) |
| { |
| if (is_ambiguous != NULL) |
| *is_ambiguous = false; |
| if (this->type_->named_type() != NULL) |
| { |
| if (this->seen_alias_) |
| return NULL; |
| this->seen_alias_ = true; |
| Named_type* nt = this->type_->named_type(); |
| Method* ret = nt->method_function(name, is_ambiguous); |
| this->seen_alias_ = false; |
| return ret; |
| } |
| if (this->type_->struct_type() != NULL) |
| return this->type_->struct_type()->method_function(name, is_ambiguous); |
| return NULL; |
| } |
| return Type::method_function(this->all_methods_, name, is_ambiguous); |
| } |
| |
| // Return a pointer to the interface method table for this type for |
| // the interface INTERFACE. IS_POINTER is true if this is for a |
| // pointer to THIS. |
| |
| Expression* |
| Named_type::interface_method_table(Interface_type* interface, bool is_pointer) |
| { |
| if (this->is_error_) |
| return Expression::make_error(this->location_); |
| if (this->is_alias_) |
| { |
| if (this->type_->named_type() != NULL) |
| { |
| if (this->seen_alias_) |
| return Expression::make_error(this->location_); |
| this->seen_alias_ = true; |
| Named_type* nt = this->type_->named_type(); |
| Expression* ret = nt->interface_method_table(interface, is_pointer); |
| this->seen_alias_ = false; |
| return ret; |
| } |
| if (this->type_->struct_type() != NULL) |
| return this->type_->struct_type()->interface_method_table(interface, |
| is_pointer); |
| go_unreachable(); |
| } |
| return Type::interface_method_table(this, interface, is_pointer, |
| &this->interface_method_tables_, |
| &this->pointer_interface_method_tables_); |
| } |
| |
| // Look for a use of a complete type within another type. This is |
| // used to check that we don't try to use a type within itself. |
| |
| class Find_type_use : public Traverse |
| { |
| public: |
| Find_type_use(Named_type* find_type) |
| : Traverse(traverse_types), |
| find_type_(find_type), found_(false) |
| { } |
| |
| // Whether we found the type. |
| bool |
| found() const |
| { return this->found_; } |
| |
| protected: |
| int |
| type(Type*); |
| |
| private: |
| // The type we are looking for. |
| Named_type* find_type_; |
| // Whether we found the type. |
| bool found_; |
| }; |
| |
| // Check for FIND_TYPE in TYPE. |
| |
| int |
| Find_type_use::type(Type* type) |
| { |
| if (type->named_type() != NULL && this->find_type_ == type->named_type()) |
| { |
| this->found_ = true; |
| return TRAVERSE_EXIT; |
| } |
| |
| // It's OK if we see a reference to the type in any type which is |
| // essentially a pointer: a pointer, a slice, a function, a map, or |
| // a channel. |
| if (type->points_to() != NULL |
| || type->is_slice_type() |
| || type->function_type() != NULL |
| || type->map_type() != NULL |
| || type->channel_type() != NULL) |
| return TRAVERSE_SKIP_COMPONENTS; |
| |
| // For an interface, a reference to the type in a method type should |
| // be ignored, but we have to consider direct inheritance. When |
| // this is called, there may be cases of direct inheritance |
| // represented as a method with no name. |
| if (type->interface_type() != NULL) |
| { |
| const Typed_identifier_list* methods = type->interface_type()->methods(); |
| if (methods != NULL) |
| { |
| for (Typed_identifier_list::const_iterator p = methods->begin(); |
| p != methods->end(); |
| ++p) |
| { |
| if (p->name().empty()) |
| { |
| if (Type::traverse(p->type(), this) == TRAVERSE_EXIT) |
| return TRAVERSE_EXIT; |
| } |
| } |
| } |
| return TRAVERSE_SKIP_COMPONENTS; |
| } |
| |
| // Otherwise, FIND_TYPE_ depends on TYPE, in the sense that we need |
| // to convert TYPE to the backend representation before we convert |
| // FIND_TYPE_. |
| if (type->named_type() != NULL) |
| { |
| switch (type->base()->classification()) |
| { |
| case Type::TYPE_ERROR: |
| case Type::TYPE_BOOLEAN: |
| case Type::TYPE_INTEGER: |
| case Type::TYPE_FLOAT: |
| case Type::TYPE_COMPLEX: |
| case Type::TYPE_STRING: |
| case Type::TYPE_NIL: |
| break; |
| |
| case Type::TYPE_ARRAY: |
| case Type::TYPE_STRUCT: |
| this->find_type_->add_dependency(type->named_type()); |
| break; |
| |
| case Type::TYPE_NAMED: |
| case Type::TYPE_FORWARD: |
| go_assert(saw_errors()); |
| break; |
| |
| case Type::TYPE_VOID: |
| case Type::TYPE_SINK: |
| case Type::TYPE_FUNCTION: |
| case Type::TYPE_POINTER: |
| case Type::TYPE_CALL_MULTIPLE_RESULT: |
| case Type::TYPE_MAP: |
| case Type::TYPE_CHANNEL: |
| case Type::TYPE_INTERFACE: |
| default: |
| go_unreachable(); |
| } |
| } |
| |
| return TRAVERSE_CONTINUE; |
| } |
| |
| // Look for a circular reference of an alias. |
| |
| class Find_alias : public Traverse |
| { |
| public: |
| Find_alias(Named_type* find_type) |
| : Traverse(traverse_types), |
| find_type_(find_type), found_(false) |
| { } |
| |
| // Whether we found the type. |
| bool |
| found() const |
| { return this->found_; } |
| |
| protected: |
| int |
| type(Type*); |
| |
| private: |
| // The type we are looking for. |
| Named_type* find_type_; |
| // Whether we found the type. |
| bool found_; |
| }; |
| |
| int |
| Find_alias::type(Type* type) |
| { |
| Named_type* nt = type->named_type(); |
| if (nt != NULL) |
| { |
| if (nt == this->find_type_) |
| { |
| this->found_ = true; |
| return TRAVERSE_EXIT; |
| } |
| |
| // We started from `type T1 = T2`, where T1 is find_type_ and T2 |
| // is, perhaps indirectly, the parameter TYPE. If TYPE is not |
| // an alias itself, it's OK if whatever T2 is defined as refers |
| // to T1. |
| if (!nt->is_alias()) |
| return TRAVERSE_SKIP_COMPONENTS; |
| } |
| |
| return TRAVERSE_CONTINUE; |
| } |
| |
| // Verify that a named type does not refer to itself. |
| |
| bool |
| Named_type::do_verify() |
| { |
| if (this->is_verified_) |
| return true; |
| this->is_verified_ = true; |
| |
| if (this->is_error_) |
| return false; |
| |
| if (this->is_alias_) |
| { |
| Find_alias find(this); |
| Type::traverse(this->type_, &find); |
| if (find.found()) |
| { |
| go_error_at(this->location_, "invalid recursive alias %qs", |
| this->message_name().c_str()); |
| this->is_error_ = true; |
| return false; |
| } |
| } |
| |
| Find_type_use find(this); |
| Type::traverse(this->type_, &find); |
| if (find.found()) |
| { |
| go_error_at(this->location_, "invalid recursive type %qs", |
| this->message_name().c_str()); |
| this->is_error_ = true; |
| return false; |
| } |
| |
| // Check whether any of the local methods overloads an existing |
| // struct field or interface method. We don't need to check the |
| // list of methods against itself: that is handled by the Bindings |
| // code. |
| if (this->local_methods_ != NULL) |
| { |
| Struct_type* st = this->type_->struct_type(); |
| if (st != NULL) |
| { |
| for (Bindings::const_declarations_iterator p = |
| this->local_methods_->begin_declarations(); |
| p != this->local_methods_->end_declarations(); |
| ++p) |
| { |
| const std::string& name(p->first); |
| if (st != NULL && st->find_local_field(name, NULL) != NULL) |
| { |
| go_error_at(p->second->location(), |
| "method %qs redeclares struct field name", |
| Gogo::message_name(name).c_str()); |
| } |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| // Return whether this type is or contains a pointer. |
| |
| bool |
| Named_type::do_has_pointer() const |
| { |
| if (this->seen_) |
| return false; |
| this->seen_ = true; |
| bool ret = this->type_->has_pointer(); |
| this->seen_ = false; |
| return ret; |
| } |
| |
| // Return whether comparisons for this type can use the identity |
| // function. |
| |
| bool |
| Named_type::do_compare_is_identity(Gogo* gogo) |
| { |
| // We don't use this->seen_ here because compare_is_identity may |
| // call base() later, and that will mess up if seen_ is set here. |
| if (this->seen_in_compare_is_identity_) |
| return false; |
| this->seen_in_compare_is_identity_ = true; |
| bool ret = this->type_->compare_is_identity(gogo); |
| this->seen_in_compare_is_identity_ = false; |
| return ret; |
| } |
| |
| // Return whether this type is reflexive--whether it is always equal |
| // to itself. |
| |
| bool |
| Named_type::do_is_reflexive() |
| { |
| if (this->seen_in_compare_is_identity_) |
| return false; |
| this->seen_in_compare_is_identity_ = true; |
| bool ret = this->type_->is_reflexive(); |
| this->seen_in_compare_is_identity_ = false; |
| return ret; |
| } |
| |
| // Return whether this type needs a key update when used as a map key. |
| |
| bool |
| Named_type::do_needs_key_update() |
| { |
| if (this->seen_in_compare_is_identity_) |
| return true; |
| this->seen_in_compare_is_identity_ = true; |
| bool ret = this->type_->needs_key_update(); |
| this->seen_in_compare_is_identity_ = false; |
| return ret; |
| } |
| |
| // Return a hash code. This is used for method lookup. We simply |
| // hash on the name itself. |
| |
| unsigned int |
| Named_type::do_hash_for_method(Gogo* gogo) const |
| { |
| if (this->is_error_) |
| return 0; |
| |
| // Aliases are handled in Type::hash_for_method. |
| go_assert(!this->is_alias_); |
| |
| const std::string& name(this->named_object()->name()); |
| unsigned int ret = Type::hash_string(name, 0); |
| |
| // GOGO will be NULL here when called from Type_hash_identical. |
| // That is OK because that is only used for internal hash tables |
| // where we are going to be comparing named types for equality. In |
| // other cases, which are cases where the runtime is going to |
| // compare hash codes to see if the types are the same, we need to |
| // include the pkgpath in the hash. |
| if (gogo != NULL && !Gogo::is_hidden_name(name) && !this->is_builtin()) |
| { |
| const Package* package = this->named_object()->package(); |
| if (package == NULL) |
| ret = Type::hash_string(gogo->pkgpath(), ret); |
| else |
| ret = Type::hash_string(package->pkgpath(), ret); |
| } |
| |
| return ret; |
| } |
| |
| // Convert a named type to the backend representation. In order to |
| // get dependencies right, we fill in a dummy structure for this type, |
| // then convert all the dependencies, then complete this type. When |
| // this function is complete, the size of the type is known. |
| |
| void |
| Named_type::convert(Gogo* gogo) |
| { |
| if (this->is_error_ || this->is_converted_) |
| return; |
| |
| this->create_placeholder(gogo); |
| |
| // If we are called to turn unsafe.Sizeof into a constant, we may |
| // not have verified the type yet. We have to make sure it is |
| // verified, since that sets the list of dependencies. |
| this->verify(); |
| |
| // Convert all the dependencies. If they refer indirectly back to |
| // this type, they will pick up the intermediate representation we just |
| // created. |
| for (std::vector<Named_type*>::const_iterator p = this->dependencies_.begin(); |
| p != this->dependencies_.end(); |
| ++p) |
| (*p)->convert(gogo); |
| |
| // Complete this type. |
| Btype* bt = this->named_btype_; |
| Type* base = this->type_->base(); |
| switch (base->classification()) |
| { |
| case TYPE_VOID: |
| case TYPE_BOOLEAN: |
| case TYPE_INTEGER: |
| case TYPE_FLOAT: |
| case TYPE_COMPLEX: |
| case TYPE_STRING: |
| case TYPE_NIL: |
| break; |
| |
| case TYPE_MAP: |
| case TYPE_CHANNEL: |
| break; |
| |
| case TYPE_FUNCTION: |
| case TYPE_POINTER: |
| // The size of these types is already correct. We don't worry |
| // about filling them in until later, when we also track |
| // circular references. |
| break; |
| |
| case TYPE_STRUCT: |
| { |
| std::vector<Backend::Btyped_identifier> bfields; |
| get_backend_struct_fields(gogo, base->struct_type()->fields(), |
| true, &bfields); |
| if (!gogo->backend()->set_placeholder_struct_type(bt, bfields)) |
| bt = gogo->backend()->error_type(); |
| } |
| break; |
| |
| case TYPE_ARRAY: |
| // Slice types were completed in create_placeholder. |
| if (!base->is_slice_type()) |
| { |
| Btype* bet = base->array_type()->get_backend_element(gogo, true); |
| Bexpression* blen = base->array_type()->get_backend_length(gogo); |
| if (!gogo->backend()->set_placeholder_array_type(bt, bet, blen)) |
| bt = gogo->backend()->error_type(); |
| } |
| break; |
| |
| case TYPE_INTERFACE: |
| // Interface types were completed in create_placeholder. |
| break; |
| |
| case TYPE_ERROR: |
| return; |
| |
| default: |
| case TYPE_SINK: |
| case TYPE_CALL_MULTIPLE_RESULT: |
| case TYPE_NAMED: |
| case TYPE_FORWARD: |
| go_unreachable(); |
| } |
| |
| this->named_btype_ = bt; |
| this->is_converted_ = true; |
| this->is_placeholder_ = false; |
| } |
| |
| // Create the placeholder for a named type. This is the first step in |
| // converting to the backend representation. |
| |
| void |
| Named_type::create_placeholder(Gogo* gogo) |
| { |
| if (this->is_error_) |
| this->named_btype_ = gogo->backend()->error_type(); |
| |
| if (this->named_btype_ != NULL) |
| return; |
| |
| // Create the structure for this type. Note that because we call |
| // base() here, we don't attempt to represent a named type defined |
| // as another named type. Instead both named types will point to |
| // different base representations. |
| Type* base = this->type_->base(); |
| Btype* bt; |
| bool set_name = true; |
| switch (base->classification()) |
| { |
| case TYPE_ERROR: |
| this->is_error_ = true; |
| this->named_btype_ = gogo->backend()->error_type(); |
| return; |
| |
| case TYPE_VOID: |
| case TYPE_BOOLEAN: |
| case TYPE_INTEGER: |
| case TYPE_FLOAT: |
| case TYPE_COMPLEX: |
| case TYPE_STRING: |
| case TYPE_NIL: |
| // These are simple basic types, we can just create them |
| // directly. |
| bt = Type::get_named_base_btype(gogo, base); |
| break; |
| |
| case TYPE_MAP: |
| case TYPE_CHANNEL: |
| // All maps and channels have the same backend representation. |
| bt = Type::get_named_base_btype(gogo, base); |
| break; |
| |
| case TYPE_FUNCTION: |
| case TYPE_POINTER: |
| { |
| bool for_function = base->classification() == TYPE_FUNCTION; |
| bt = gogo->backend()->placeholder_pointer_type(this->name(), |
| this->location_, |
| for_function); |
| set_name = false; |
| } |
| break; |
| |
| case TYPE_STRUCT: |
| bt = gogo->backend()->placeholder_struct_type(this->name(), |
| this->location_); |
| this->is_placeholder_ = true; |
| set_name = false; |
| break; |
| |
| case TYPE_ARRAY: |
| if (base->is_slice_type()) |
| bt = gogo->backend()->placeholder_struct_type(this->name(), |
| this->location_); |
| else |
| { |
| bt = gogo->backend()->placeholder_array_type(this->name(), |
| this->location_); |
| this->is_placeholder_ = true; |
| } |
| set_name = false; |
| break; |
| |
| case TYPE_INTERFACE: |
| if (base->interface_type()->is_empty()) |
| bt = Interface_type::get_backend_empty_interface_type(gogo); |
| else |
| { |
| bt = gogo->backend()->placeholder_struct_type(this->name(), |
| this->location_); |
| set_name = false; |
| } |
| break; |
| |
| default: |
| case TYPE_SINK: |
| case TYPE_CALL_MULTIPLE_RESULT: |
| case TYPE_NAMED: |
| case TYPE_FORWARD: |
| go_unreachable(); |
| } |
| |
| if (set_name) |
| bt = gogo->backend()->named_type(this->name(), bt, this->location_); |
| |
| this->named_btype_ = bt; |
| |
| if (base->is_slice_type()) |
| { |
| // We do not record slices as dependencies of other types, |
| // because we can fill them in completely here with the final |
| // size. |
| std::vector<Backend::Btyped_identifier> bfields; |
| get_backend_slice_fields(gogo, base->array_type(), true, &bfields); |
| if (!gogo->backend()->set_placeholder_struct_type(bt, bfields)) |
| this->named_btype_ = gogo->backend()->error_type(); |
| } |
| else if (base->interface_type() != NULL |
| && !base->interface_type()->is_empty()) |
| { |
| // We do not record interfaces as dependencies of other types, |
| // because we can fill them in completely here with the final |
| // size. |
| std::vector<Backend::Btyped_identifier> bfields; |
| get_backend_interface_fields(gogo, base->interface_type(), true, |
| &bfields); |
| if (!gogo->backend()->set_placeholder_struct_type(bt, bfields)) |
| this->named_btype_ = gogo->backend()->error_type(); |
| } |
| } |
| |
| // Get the backend representation for a named type. |
| |
| Btype* |
| Named_type::do_get_backend(Gogo* gogo) |
| { |
| if (this->is_error_) |
| return gogo->backend()->error_type(); |
| |
| Btype* bt = this->named_btype_; |
| |
| if (!gogo->named_types_are_converted()) |
| { |
| // We have not completed converting named types. NAMED_BTYPE_ |
| // is a placeholder and we shouldn't do anything further. |
| if (bt != NULL) |
| return bt; |
| |
| // We don't build dependencies for types whose sizes do not |
| // change or are not relevant, so we may see them here while |
| // converting types. |
| this->create_placeholder(gogo); |
| bt = this->named_btype_; |
| go_assert(bt != NULL); |
| return bt; |
| } |
| |
| // We are not converting types. This should only be called if the |
| // type has already been converted. |
| if (!this->is_converted_) |
| { |
| go_assert(saw_errors()); |
| return gogo->backend()->error_type(); |
| } |
| |
| go_assert(bt != NULL); |
| |
| // Complete the backend representation. |
| Type* base = this->type_->base(); |
| Btype* bt1; |
| switch (base->classification()) |
| { |
| case TYPE_ERROR: |
| return gogo->backend()->error_type(); |
| |
| case TYPE_VOID: |
| case TYPE_BOOLEAN: |
| case TYPE_INTEGER: |
| case TYPE_FLOAT: |
| case TYPE_COMPLEX: |
| case TYPE_STRING: |
| case TYPE_NIL: |
| case TYPE_MAP: |
| case TYPE_CHANNEL: |
| return bt; |
| |
| case TYPE_STRUCT: |
| if (!this->seen_in_get_backend_) |
| { |
| this->seen_in_get_backend_ = true; |
| base->struct_type()->finish_backend_fields(gogo); |
| this->seen_in_get_backend_ = false; |
| } |
| return bt; |
| |
| case TYPE_ARRAY: |
| if (!this->seen_in_get_backend_) |
| { |
| this->seen_in_get_backend_ = true; |
| base->array_type()->finish_backend_element(gogo); |
| this->seen_in_get_backend_ = false; |
| } |
| return bt; |
| |
| case TYPE_INTERFACE: |
| if (!this->seen_in_get_backend_) |
| { |
| this->seen_in_get_backend_ = true; |
| base->interface_type()->finish_backend_methods(gogo); |
| this->seen_in_get_backend_ = false; |
| } |
| return bt; |
| |
| case TYPE_FUNCTION: |
| // Don't build a circular data structure. GENERIC can't handle |
| // it. |
| if (this->seen_in_get_backend_) |
| { |
| this->is_circular_ = true; |
| return gogo->backend()->circular_pointer_type(bt, true); |
| } |
| this->seen_in_get_backend_ = true; |
| bt1 = Type::get_named_base_btype(gogo, base); |
| this->seen_in_get_backend_ = false; |
| if (this->is_circular_) |
| bt1 = gogo->backend()->circular_pointer_type(bt, true); |
| if (!gogo->backend()->set_placeholder_pointer_type(bt, bt1)) |
| bt = gogo->backend()->error_type(); |
| return bt; |
| |
| case TYPE_POINTER: |
| // Don't build a circular data structure. GENERIC can't handle |
| // it. |
| if (this->seen_in_get_backend_) |
| { |
| this->is_circular_ = true; |
| return gogo->backend()->circular_pointer_type(bt, false); |
| } |
| this->seen_in_get_backend_ = true; |
| bt1 = Type::get_named_base_btype(gogo, base); |
| this->seen_in_get_backend_ = false; |
| if (this->is_circular_) |
| bt1 = gogo->backend()->circular_pointer_type(bt, false); |
| if (!gogo->backend()->set_placeholder_pointer_type(bt, bt1)) |
| bt = gogo->backend()->error_type(); |
| return bt; |
| |
| default: |
| case TYPE_SINK: |
| case TYPE_CALL_MULTIPLE_RESULT: |
| case TYPE_NAMED: |
| case TYPE_FORWARD: |
| go_unreachable(); |
| } |
| |
| go_unreachable(); |
| } |
| |
| // Build a type descriptor for a named type. |
| |
| Expression* |
| Named_type::do_type_descriptor(Gogo* gogo, Named_type* name) |
| { |
| if (this->is_error_) |
| return Expression::make_error(this->location_); |
| if (name == NULL && this->is_alias_) |
| { |
| if (this->seen_alias_) |
| return Expression::make_error(this->location_); |
| this->seen_alias_ = true; |
| Expression* ret = this->type_->type_descriptor(gogo, NULL); |
| this->seen_alias_ = false; |
| return ret; |
| } |
| |
| // If NAME is not NULL, then we don't really want the type |
| // descriptor for this type; we want the descriptor for the |
| // underlying type, giving it the name NAME. |
| return this->named_type_descriptor(gogo, this->type_, |
| name == NULL ? this : name); |
| } |
| |
| // Add to the reflection string. This is used mostly for the name of |
| // the type used in a type descriptor, not for actual reflection |
| // strings. |
| |
| void |
| Named_type::do_reflection(Gogo* gogo, std::string* ret) const |
| { |
| this->append_reflection_type_name(gogo, false, ret); |
| } |
| |
| // Add to the reflection string. For an alias we normally use the |
| // real name, but if USE_ALIAS is true we use the alias name itself. |
| |
| void |
| Named_type::append_reflection_type_name(Gogo* gogo, bool use_alias, |
| std::string* ret) const |
| { |
| if (this->is_error_) |
| return; |
| if (this->is_alias_ && !use_alias) |
| { |
| if (this->seen_alias_) |
| return; |
| this->seen_alias_ = true; |
| this->append_reflection(this->type_, gogo, ret); |
| this->seen_alias_ = false; |
| return; |
| } |
| if (!this->is_builtin()) |
| { |
| // When -fgo-pkgpath or -fgo-prefix is specified, we use it to |
| // make a unique reflection string, so that the type |
| // canonicalization in the reflect package will work. In order |
| // to be compatible with the gc compiler, we put tabs into the |
| // package path, so that the reflect methods can discard it. |
| const Package* package = this->named_object_->package(); |
| ret->push_back('\t'); |
| ret->append(package != NULL |
| ? package->pkgpath_symbol() |
| : gogo->pkgpath_symbol()); |
| ret->push_back('\t'); |
| ret->append(package != NULL |
| ? package->package_name() |
| : gogo->package_name()); |
| ret->push_back('.'); |
| } |
| if (this->in_function_ != NULL) |
| { |
| ret->push_back('\t'); |
| const Typed_identifier* rcvr = |
| this->in_function_->func_value()->type()->receiver(); |
| if (rcvr != NULL) |
| { |
| Named_type* rcvr_type = rcvr->type()->deref()->named_type(); |
| ret->append(Gogo::unpack_hidden_name(rcvr_type->name())); |
| ret->push_back('.'); |
| } |
| ret->append(Gogo::unpack_hidden_name(this->in_function_->name())); |
| ret->push_back('$'); |
| if (this->in_function_index_ > 0) |
| { |
| char buf[30]; |
| snprintf(buf, sizeof buf, "%u", this->in_function_index_); |
| ret->append(buf); |
| ret->push_back('$'); |
| } |
| ret->push_back('\t'); |
| } |
| ret->append(Gogo::unpack_hidden_name(this->named_object_->name())); |
| } |
| |
| // Export the type. This is called to export a global type. |
| |
| void |
| Named_type::export_named_type(Export* exp, const std::string&) const |
| { |
| // We don't need to write the name of the type here, because it will |
| // be written by Export::write_type anyhow. |
| exp->write_c_string("type "); |
| exp->write_type(this); |
| exp->write_c_string(";\n"); |
| } |
| |
| // Import a named type. |
| |
| void |
| Named_type::import_named_type(Import* imp, Named_type** ptype) |
| { |
| imp->require_c_string("type "); |
| Type *type = imp->read_type(); |
| *ptype = type->named_type(); |
| go_assert(*ptype != NULL); |
| imp->require_c_string(";\n"); |
| } |
| |
| // Export the type when it is referenced by another type. In this |
| // case Export::export_type will already have issued the name. |
| |
| void |
| Named_type::do_export(Export* exp) const |
| { |
| exp->write_type(this->type_); |
| |
| // To save space, we only export the methods directly attached to |
| // this type. |
| Bindings* methods = this->local_methods_; |
| if (methods == NULL) |
| return; |
| |
| exp->write_c_string("\n"); |
| for (Bindings::const_definitions_iterator p = methods->begin_definitions(); |
| p != methods->end_definitions(); |
| ++p) |
| { |
| exp->write_c_string(" "); |
| (*p)->export_named_object(exp); |
| } |
| |
| for (Bindings::const_declarations_iterator p = methods->begin_declarations(); |
| p != methods->end_declarations(); |
| ++p) |
| { |
| if (p->second->is_function_declaration()) |
| { |
| exp->write_c_string(" "); |
| p->second->export_named_object(exp); |
| } |
| } |
| } |
| |
| // Make a named type. |
| |
| Named_type* |
| Type::make_named_type(Named_object* named_object, Type* type, |
| Location location) |
| { |
| return new Named_type(named_object, type, location); |
| } |
| |
| // Finalize the methods for TYPE. It will be a named type or a struct |
| // type. This sets *ALL_METHODS to the list of methods, and builds |
| // all required stubs. |
| |
| void |
| Type::finalize_methods(Gogo* gogo, const Type* type, Location location, |
| Methods** all_methods) |
| { |
| *all_methods = new Methods(); |
| std::vector<const Named_type*> seen; |
| Type::add_methods_for_type(type, NULL, 0, false, false, &seen, *all_methods); |
| if ((*all_methods)->empty()) |
| { |
| delete *all_methods; |
| *all_methods = NULL; |
| } |
| Type::build_stub_methods(gogo, type, *all_methods, location); |
| } |
| |
| // Add the methods for TYPE to *METHODS. FIELD_INDEXES is used to |
| // build up the struct field indexes as we go. DEPTH is the depth of |
| // the field within TYPE. IS_EMBEDDED_POINTER is true if we are |
| // adding these methods for an anonymous field with pointer type. |
| // NEEDS_STUB_METHOD is true if we need to use a stub method which |
| // calls the real method. TYPES_SEEN is used to avoid infinite |
| // recursion. |
| |
| void |
| Type::add_methods_for_type(const Type* type, |
| const Method::Field_indexes* field_indexes, |
| unsigned int depth, |
| bool is_embedded_pointer, |
| bool needs_stub_method, |
| std::vector<const Named_type*>* seen, |
| Methods* methods) |
| { |
| // Pointer types may not have methods. |
| if (type->points_to() != NULL) |
| return; |
| |
| const Named_type* nt = type->named_type(); |
| if (nt != NULL) |
| { |
| for (std::vector<const Named_type*>::const_iterator p = seen->begin(); |
| p != seen->end(); |
| ++p) |
| { |
| if (*p == nt) |
| return; |
| } |
| |
| seen->push_back(nt); |
| |
| Type::add_local_methods_for_type(nt, field_indexes, depth, |
| is_embedded_pointer, needs_stub_method, |
| methods); |
| } |
| |
| Type::add_embedded_methods_for_type(type, field_indexes, depth, |
| is_embedded_pointer, needs_stub_method, |
| seen, methods); |
| |
| // If we are called with depth > 0, then we are looking at an |
| // anonymous field of a struct. If such a field has interface type, |
| // then we need to add the interface methods. We don't want to add |
| // them when depth == 0, because we will already handle them |
| // following the usual rules for an interface type. |
| if (depth > 0) |
| Type::add_interface_methods_for_type(type, field_indexes, depth, methods); |
| |
| if (nt != NULL) |
| seen->pop_back(); |
| } |
| |
| // Add the local methods for the named type NT to *METHODS. The |
| // parameters are as for add_methods_to_type. |
| |
| void |
| Type::add_local_methods_for_type(const Named_type* nt, |
| const Method::Field_indexes* field_indexes, |
| unsigned int depth, |
| bool is_embedded_pointer, |
| bool needs_stub_method, |
| Methods* methods) |
| { |
| const Bindings* local_methods = nt->local_methods(); |
| if (local_methods == NULL) |
| return; |
| |
| for (Bindings::const_declarations_iterator p = |
| local_methods->begin_declarations(); |
| p != local_methods->end_declarations(); |
| ++p) |
| { |
| Named_object* no = p->second; |
| bool is_value_method = (is_embedded_pointer |
| || !Type::method_expects_pointer(no)); |
| Method* m = new Named_method(no, field_indexes, depth, is_value_method, |
| (needs_stub_method || depth > 0)); |
| if (!methods->insert(no->name(), m)) |
| delete m; |
| } |
| } |
| |
| // Add the embedded methods for TYPE to *METHODS. These are the |
| // methods attached to anonymous fields. The parameters are as for |
| // add_methods_to_type. |
| |
| void |
| Type::add_embedded_methods_for_type(const Type* type, |
| const Method::Field_indexes* field_indexes, |
| unsigned int depth, |
| bool is_embedded_pointer, |
| bool needs_stub_method, |
| std::vector<const Named_type*>* seen, |
| Methods* methods) |
| { |
| // Look for anonymous fields in TYPE. TYPE has fields if it is a |
| // struct. |
| const Struct_type* st = type->struct_type(); |
| if (st == NULL) |
| return; |
| |
| const Struct_field_list* fields = st->fields(); |
| if (fields == NULL) |
| return; |
| |
| unsigned int i = 0; |
| for (Struct_field_list::const_iterator pf = fields->begin(); |
| pf != fields->end(); |
| ++pf, ++i) |
| { |
| if (!pf->is_anonymous()) |
| continue; |
| |
| Type* ftype = pf->type(); |
| bool is_pointer = false; |
| if (ftype->points_to() != NULL) |
| { |
| ftype = ftype->points_to(); |
| is_pointer = true; |
| } |
| Named_type* fnt = ftype->named_type(); |
| if (fnt == NULL) |
| { |
| // This is an error, but it will be diagnosed elsewhere. |
| continue; |
| } |
| |
| Method::Field_indexes* sub_field_indexes = new Method::Field_indexes(); |
| sub_field_indexes->next = field_indexes; |
| sub_field_indexes->field_index = i; |
| |
| Methods tmp_methods; |
| Type::add_methods_for_type(fnt, sub_field_indexes, depth + 1, |
| (is_embedded_pointer || is_pointer), |
| (needs_stub_method |
| || is_pointer |
| || i > 0), |
| seen, |
| &tmp_methods); |
| // Check if there are promoted methods that conflict with field names and |
| // don't add them to the method map. |
| for (Methods::const_iterator p = tmp_methods.begin(); |
| p != tmp_methods.end(); |
| ++p) |
| { |
| bool found = false; |
| for (Struct_field_list::const_iterator fp = fields->begin(); |
| fp != fields->end(); |
| ++fp) |
| { |
| if (fp->field_name() == p->first) |
| { |
| found = true; |
| break; |
| } |
| } |
| if (!found && |
| !methods->insert(p->first, p->second)) |
| delete p->second; |
| } |
| } |
| } |
| |
| // If TYPE is an interface type, then add its method to *METHODS. |
| // This is for interface methods attached to an anonymous field. The |
| // parameters are as for add_methods_for_type. |
| |
| void |
| Type::add_interface_methods_for_type(const Type* type, |
| const Method::Field_indexes* field_indexes, |
| unsigned int depth, |
| Methods* methods) |
| { |
| const Interface_type* it = type->interface_type(); |
| if (it == NULL) |
| return; |
| |
| const Typed_identifier_list* imethods = it->methods(); |
| if (imethods == NULL) |
| return; |
| |
| for (Typed_identifier_list::const_iterator pm = imethods->begin(); |
| pm != imethods->end(); |
| ++pm) |
| { |
| Function_type* fntype = pm->type()->function_type(); |
| if (fntype == NULL) |
| { |
| // This is an error, but it should be reported elsewhere |
| // when we look at the methods for IT. |
| continue; |
| } |
| go_assert(!fntype->is_method()); |
| fntype = fntype->copy_with_receiver(const_cast<Type*>(type)); |
| Method* m = new Interface_method(pm->name(), pm->location(), fntype, |
| field_indexes, depth); |
| if (!methods->insert(pm->name(), m)) |
| delete m; |
| } |
| } |
| |
| // Build stub methods for TYPE as needed. METHODS is the set of |
| // methods for the type. A stub method may be needed when a type |
| // inherits a method from an anonymous field. When we need the |
| // address of the method, as in a type descriptor, we need to build a |
| // little stub which does the required field dereferences and jumps to |
| // the real method. LOCATION is the location of the type definition. |
| |
| void |
| Type::build_stub_methods(Gogo* gogo, const Type* type, const Methods* methods, |
| Location location) |
| { |
| if (methods == NULL) |
| return; |
| for (Methods::const_iterator p = methods->begin(); |
| p != methods->end(); |
| ++p) |
| { |
| Method* m = p->second; |
| if (m->is_ambiguous() || !m->needs_stub_method()) |
| continue; |
| |
| const std::string& name(p->first); |
| |
| // Build a stub method. |
| |
| const Function_type* fntype = m->type(); |
| |
| static unsigned int counter; |
| char buf[100]; |
| snprintf(buf, sizeof buf, "$this%u", counter); |
| ++counter; |
| |
| Type* receiver_type = const_cast<Type*>(type); |
| if (!m->is_value_method()) |
| receiver_type = Type::make_pointer_type(receiver_type); |
| Location receiver_location = m->receiver_location(); |
| Typed_identifier* receiver = new Typed_identifier(buf, receiver_type, |
| receiver_location); |
| |
| const Typed_identifier_list* fnparams = fntype->parameters(); |
| Typed_identifier_list* stub_params; |
| if (fnparams == NULL || fnparams->empty()) |
| stub_params = NULL; |
| else |
| { |
| // We give each stub parameter a unique name. |
| stub_params = new Typed_identifier_list(); |
| for (Typed_identifier_list::const_iterator pp = fnparams->begin(); |
| pp != fnparams->end(); |
| ++pp) |
| { |
| char pbuf[100]; |
| snprintf(pbuf, sizeof pbuf, "$p%u", counter); |
| stub_params->push_back(Typed_identifier(pbuf, pp->type(), |
| pp->location())); |
| ++counter; |
| } |
| } |
| |
| const Typed_identifier_list* fnresults = fntype->results(); |
| Typed_identifier_list* stub_results; |
| if (fnresults == NULL || fnresults->empty()) |
| stub_results = NULL; |
| else |
| { |
| // We create the result parameters without any names, since |
| // we won't refer to them. |
| stub_results = new Typed_identifier_list(); |
| for (Typed_identifier_list::const_iterator pr = fnresults->begin(); |
| pr != fnresults->end(); |
| ++pr) |
| stub_results->push_back(Typed_identifier("", pr->type(), |
| pr->location())); |
| } |
| |
| Function_type* stub_type = Type::make_function_type(receiver, |
| stub_params, |
| stub_results, |
| fntype->location()); |
| if (fntype->is_varargs()) |
| stub_type->set_is_varargs(); |
| |
| // We only create the function in the package which creates the |
| // type. |
| const Package* package; |
| if (type->named_type() == NULL) |
| package = NULL; |
| else |
| package = type->named_type()->named_object()->package(); |
| std::string stub_name = gogo->stub_method_name(package, name); |
| Named_object* stub; |
| if (package != NULL) |
| stub = Named_object::make_function_declaration(stub_name, package, |
| stub_type, location); |
| else |
| { |
| stub = gogo->start_function(stub_name, stub_type, false, |
| fntype->location()); |
| Type::build_one_stub_method(gogo, m, buf, stub_params, |
| fntype->is_varargs(), location); |
| gogo->finish_function(fntype->location()); |
| |
| if (type->named_type() == NULL && stub->is_function()) |
| stub->func_value()->set_is_unnamed_type_stub_method(); |
| if (m->nointerface() && stub->is_function()) |
| stub->func_value()->set_nointerface(); |
| } |
| |
| m->set_stub_object(stub); |
| } |
| } |
| |
| // Build a stub method which adjusts the receiver as required to call |
| // METHOD. RECEIVER_NAME is the name we used for the receiver. |
| // PARAMS is the list of function parameters. |
| |
| void |
| Type::build_one_stub_method(Gogo* gogo, Method* method, |
| const char* receiver_name, |
| const Typed_identifier_list* params, |
| bool is_varargs, |
| Location location) |
| { |
| Named_object* receiver_object = gogo->lookup(receiver_name, NULL); |
| go_assert(receiver_object != NULL); |
| |
| Expression* expr = Expression::make_var_reference(receiver_object, location); |
| expr = Type::apply_field_indexes(expr, method->field_indexes(), location); |
| if (expr->type()->points_to() == NULL) |
| expr = Expression::make_unary(OPERATOR_AND, expr, location); |
| |
| Expression_list* arguments; |
| if (params == NULL || params->empty()) |
| arguments = NULL; |
| else |
| { |
| arguments = new Expression_list(); |
| for (Typed_identifier_list::const_iterator p = params->begin(); |
| p != params->end(); |
| ++p) |
| { |
| Named_object* param = gogo->lookup(p->name(), NULL); |
| go_assert(param != NULL); |
| Expression* param_ref = Expression::make_var_reference(param, |
| location); |
| arguments->push_back(param_ref); |
| } |
| } |
| |
| Expression* func = method->bind_method(expr, location); |
| go_assert(func != NULL); |
| Call_expression* call = Expression::make_call(func, arguments, is_varargs, |
| location); |
| |
| gogo->add_statement(Statement::make_return_from_call(call, location)); |
| } |
| |
| // Apply FIELD_INDEXES to EXPR. The field indexes have to be applied |
| // in reverse order. |
| |
| Expression* |
| Type::apply_field_indexes(Expression* expr, |
| const Method::Field_indexes* field_indexes, |
| Location location) |
| { |
| if (field_indexes == NULL) |
| return expr; |
| expr = Type::apply_field_indexes(expr, field_indexes->next, location); |
| Struct_type* stype = expr->type()->deref()->struct_type(); |
| go_assert(stype != NULL |
| && field_indexes->field_index < stype->field_count()); |
| if (expr->type()->struct_type() == NULL) |
| { |
| go_assert(expr->type()->points_to() != NULL); |
| expr = Expression::make_dereference(expr, Expression::NIL_CHECK_DEFAULT, |
| location); |
| go_assert(expr->type()->struct_type() == stype); |
| } |
| return Expression::make_field_reference(expr, field_indexes->field_index, |
| location); |
| } |
| |
| // Return whether NO is a method for which the receiver is a pointer. |
| |
| bool |
| Type::method_expects_pointer(const Named_object* no) |
| { |
| const Function_type *fntype; |
| if (no->is_function()) |
| fntype = no->func_value()->type(); |
| else if (no->is_function_declaration()) |
| fntype = no->func_declaration_value()->type(); |
| else |
| go_unreachable(); |
| return fntype->receiver()->type()->points_to() != NULL; |
| } |
| |
| // Given a set of methods for a type, METHODS, return the method NAME, |
| // or NULL if there isn't one or if it is ambiguous. If IS_AMBIGUOUS |
| // is not NULL, then set *IS_AMBIGUOUS to true if the method exists |
| // but is ambiguous (and return NULL). |
| |
| Method* |
| Type::method_function(const Methods* methods, const std::string& name, |
| bool* is_ambiguous) |
| { |
| if (is_ambiguous != NULL) |
| *is_ambiguous = false; |
| if (methods == NULL) |
| return NULL; |
| Methods::const_iterator p = methods->find(name); |
| if (p == methods->end()) |
| return NULL; |
| Method* m = p->second; |
| if (m->is_ambiguous()) |
| { |
| if (is_ambiguous != NULL) |
| *is_ambiguous = true; |
| return NULL; |
| } |
| return m; |
| } |
| |
| // Return a pointer to the interface method table for TYPE for the |
| // interface INTERFACE. |
| |
| Expression* |
| Type::interface_method_table(Type* type, |
| Interface_type *interface, |
| bool is_pointer, |
| Interface_method_tables** method_tables, |
| Interface_method_tables** pointer_tables) |
| { |
| go_assert(!interface->is_empty()); |
| |
| Interface_method_tables** pimt = is_pointer ? method_tables : pointer_tables; |
| |
| if (*pimt == NULL) |
| *pimt = new Interface_method_tables(5); |
| |
| std::pair<Interface_type*, Expression*> val(interface, NULL); |
| std::pair<Interface_method_tables::iterator, bool> ins = (*pimt)->insert(val); |
| |
| Location loc = Linemap::predeclared_location(); |
| if (ins.second) |
| { |
| // This is a new entry in the hash table. |
| go_assert(ins.first->second == NULL); |
| ins.first->second = |
| Expression::make_interface_mtable_ref(interface, type, is_pointer, loc); |
| } |
| return Expression::make_unary(OPERATOR_AND, ins.first->second, loc); |
| } |
| |
| // Look for field or method NAME for TYPE. Return an Expression for |
| // the field or method bound to EXPR. If there is no such field or |
| // method, give an appropriate error and return an error expression. |
| |
| Expression* |
| Type::bind_field_or_method(Gogo* gogo, const Type* type, Expression* expr, |
| const std::string& name, |
| Location location) |
| { |
| if (type->deref()->is_error_type()) |
| return Expression::make_error(location); |
| |
| const Named_type* nt = type->deref()->named_type(); |
| const Struct_type* st = type->deref()->struct_type(); |
| const Interface_type* it = type->interface_type(); |
| |
| // If this is a pointer to a pointer, then it is possible that the |
| // pointed-to type has methods. |
| bool dereferenced = false; |
| if (nt == NULL |
| && st == NULL |
| && it == NULL |
| && type->points_to() != NULL |
| && type->points_to()->points_to() != NULL) |
| { |
| expr = Expression::make_dereference(expr, Expression::NIL_CHECK_DEFAULT, |
| location); |
| type = type->points_to(); |
| if (type->deref()->is_error_type()) |
| return Expression::make_error(location); |
| nt = type->points_to()->named_type(); |
| st = type->points_to()->struct_type(); |
| dereferenced = true; |
| } |
| |
| bool receiver_can_be_pointer = (expr->type()->points_to() != NULL |
| || expr->is_addressable()); |
| std::vector<const Named_type*> seen; |
| bool is_method = false; |
| bool found_pointer_method = false; |
| std::string ambig1; |
| std::string ambig2; |
| if (Type::find_field_or_method(type, name, receiver_can_be_pointer, |
| &seen, NULL, &is_method, |
| &found_pointer_method, &ambig1, &ambig2)) |
| { |
| Expression* ret; |
| if (!is_method) |
| { |
| go_assert(st != NULL); |
| if (type->struct_type() == NULL) |
| { |
| if (dereferenced) |
| { |
| go_error_at(location, "pointer type has no field %qs", |
| Gogo::message_name(name).c_str()); |
| return Expression::make_error(location); |
| } |
| go_assert(type->points_to() != NULL); |
| expr = Expression::make_dereference(expr, |
| Expression::NIL_CHECK_DEFAULT, |
| location); |
| go_assert(expr->type()->struct_type() == st); |
| } |
| ret = st->field_reference(expr, name, location); |
| if (ret == NULL) |
| { |
| go_error_at(location, "type has no field %qs", |
| Gogo::message_name(name).c_str()); |
| return Expression::make_error(location); |
| } |
| } |
| else if (it != NULL && it->find_method(name) != NULL) |
| ret = Expression::make_interface_field_reference(expr, name, |
| location); |
| else |
| { |
| Method* m; |
| if (nt != NULL) |
| m = nt->method_function(name, NULL); |
| else if (st != NULL) |
| m = st->method_function(name, NULL); |
| else |
| go_unreachable(); |
| go_assert(m != NULL); |
| if (dereferenced) |
| { |
| go_error_at(location, |
| "calling method %qs requires explicit dereference", |
| Gogo::message_name(name).c_str()); |
| return Expression::make_error(location); |
| } |
| if (!m->is_value_method() && expr->type()->points_to() == NULL) |
| expr = Expression::make_unary(OPERATOR_AND, expr, location); |
| ret = m->bind_method(expr, location); |
| } |
| go_assert(ret != NULL); |
| return ret; |
| } |
| else |
| { |
| if (Gogo::is_erroneous_name(name)) |
| { |
| // An error was already reported. |
| } |
| else if (!ambig1.empty()) |
| go_error_at(location, "%qs is ambiguous via %qs and %qs", |
| Gogo::message_name(name).c_str(), ambig1.c_str(), |
| ambig2.c_str()); |
| else if (found_pointer_method) |
| go_error_at(location, "method requires a pointer receiver"); |
| else if (nt == NULL && st == NULL && it == NULL) |
| go_error_at(location, |
| ("reference to field %qs in object which " |
| "has no fields or methods"), |
| Gogo::message_name(name).c_str()); |
| else |
| { |
| bool is_unexported; |
| // The test for 'a' and 'z' is to handle builtin names, |
| // which are not hidden. |
| if (!Gogo::is_hidden_name(name) && (name[0] < 'a' || name[0] > 'z')) |
| is_unexported = false; |
| else |
| { |
| std::string unpacked = Gogo::unpack_hidden_name(name); |
| seen.clear(); |
| is_unexported = Type::is_unexported_field_or_method(gogo, type, |
| unpacked, |
| &seen); |
| } |
| if (is_unexported) |
| go_error_at(location, "reference to unexported field or method %qs", |
| Gogo::message_name(name).c_str()); |
| else |
| go_error_at(location, "reference to undefined field or method %qs", |
| Gogo::message_name(name).c_str()); |
| } |
| return Expression::make_error(location); |
| } |
| } |
| |
| // Look in TYPE for a field or method named NAME, return true if one |
| // is found. This looks through embedded anonymous fields and handles |
| // ambiguity. If a method is found, sets *IS_METHOD to true; |
| // otherwise, if a field is found, set it to false. If |
| // RECEIVER_CAN_BE_POINTER is false, then the receiver is a value |
| // whose address can not be taken. SEEN is used to avoid infinite |
| // recursion on invalid types. |
| |
| // When returning false, this sets *FOUND_POINTER_METHOD if we found a |
| // method we couldn't use because it requires a pointer. LEVEL is |
| // used for recursive calls, and can be NULL for a non-recursive call. |
| // When this function returns false because it finds that the name is |
| // ambiguous, it will store a path to the ambiguous names in *AMBIG1 |
| // and *AMBIG2. If the name is not found at all, *AMBIG1 and *AMBIG2 |
| // will be unchanged. |
| |
| // This function just returns whether or not there is a field or |
| // method, and whether it is a field or method. It doesn't build an |
| // expression to refer to it. If it is a method, we then look in the |
| // list of all methods for the type. If it is a field, the search has |
| // to be done again, looking only for fields, and building up the |
| // expression as we go. |
| |
| bool |
| Type::find_field_or_method(const Type* type, |
| const std::string& name, |
| bool receiver_can_be_pointer, |
| std::vector<const Named_type*>* seen, |
| int* level, |
| bool* is_method, |
| bool* found_pointer_method, |
| std::string* ambig1, |
| std::string* ambig2) |
| { |
| // Named types can have locally defined methods. |
| const Named_type* nt = type->unalias()->named_type(); |
| if (nt == NULL && type->points_to() != NULL) |
| nt = type->points_to()->unalias()->named_type(); |
| if (nt != NULL) |
| { |
| Named_object* no = nt->find_local_method(name); |
| if (no != NULL) |
| { |
| if (receiver_can_be_pointer || !Type::method_expects_pointer(no)) |
| { |
| *is_method = true; |
| return true; |
| } |
| |
| // Record that we have found a pointer method in order to |
| // give a better error message if we don't find anything |
| // else. |
| *found_pointer_method = true; |
| } |
| |
| for (std::vector<const Named_type*>::const_iterator p = seen->begin(); |
| p != seen->end(); |
| ++p) |
| { |
| if (*p == nt) |
| { |
| // We've already seen this type when searching for methods. |
| return false; |
| } |
| } |
| } |
| |
| // Interface types can have methods. |
| const Interface_type* it = type->interface_type(); |
| if (it != NULL && it->find_method(name) != NULL) |
| { |
| *is_method = true; |
| return true; |
| } |
| |
| // Struct types can have fields. They can also inherit fields and |
| // methods from anonymous fields. |
| const Struct_type* st = type->deref()->struct_type(); |
| if (st == NULL) |
| return false; |
| const Struct_field_list* fields = st->fields(); |
| if (fields == NULL) |
| return false; |
| |
| if (nt != NULL) |
| seen->push_back(nt); |
| |
| int found_level = 0; |
| bool found_is_method = false; |
| std::string found_ambig1; |
| std::string found_ambig2; |
| const Struct_field* found_parent = NULL; |
| for (Struct_field_list::const_iterator pf = fields->begin(); |
| pf != fields->end(); |
| ++pf) |
| { |
| if (pf->is_field_name(name)) |
| { |
| *is_method = false; |
| if (nt != NULL) |
| seen->pop_back(); |
| return true; |
| } |
| |
| if (!pf->is_anonymous()) |
| continue; |
| |
| if (pf->type()->deref()->is_error_type() |
| || pf->type()->deref()->is_undefined()) |
| continue; |
| |
| Named_type* fnt = pf->type()->named_type(); |
| if (fnt == NULL) |
| fnt = pf->type()->deref()->named_type(); |
| go_assert(fnt != NULL); |
| |
| // Methods with pointer receivers on embedded field are |
| // inherited by the pointer to struct, and also by the struct |
| // type if the field itself is a pointer. |
| bool can_be_pointer = (receiver_can_be_pointer |
| || pf->type()->points_to() != NULL); |
| int sublevel = level == NULL ? 1 : *level + 1; |
| bool sub_is_method; |
| std::string subambig1; |
| std::string subambig2; |
| bool subfound = Type::find_field_or_method(fnt, |
| name, |
| can_be_pointer, |
| seen, |
| &sublevel, |
| &sub_is_method, |
| found_pointer_method, |
| &subambig1, |
| &subambig2); |
| if (!subfound) |
| { |
| if (!subambig1.empty()) |
| { |
| // The name was found via this field, but is ambiguous. |
| // if the ambiguity is lower or at the same level as |
| // anything else we have already found, then we want to |
| // pass the ambiguity back to the caller. |
| if (found_level == 0 || sublevel <= found_level) |
| { |
| found_ambig1 = (Gogo::message_name(pf->field_name()) |
| + '.' + subambig1); |
| found_ambig2 = (Gogo::message_name(pf->field_name()) |
| + '.' + subambig2); |
| found_level = sublevel; |
| } |
| } |
| } |
| else |
| { |
| // The name was found via this field. Use the level to see |
| // if we want to use this one, or whether it introduces an |
| // ambiguity. |
| if (found_level == 0 || sublevel < found_level) |
| { |
| found_level = sublevel; |
| found_is_method = sub_is_method; |
| found_ambig1.clear(); |
| found_ambig2.clear(); |
| found_parent = &*pf; |
| } |
| else if (sublevel > found_level) |
| ; |
| else if (found_ambig1.empty()) |
| { |
| // We found an ambiguity. |
| go_assert(found_parent != NULL); |
| found_ambig1 = Gogo::message_name(found_parent->field_name()); |
| found_ambig2 = Gogo::message_name(pf->field_name()); |
| } |
| else |
| { |
| // We found an ambiguity, but we already know of one. |
| // Just report the earlier one. |
| } |
| } |
| } |
| |
| // Here if we didn't find anything FOUND_LEVEL is 0. If we found |
| // something ambiguous, FOUND_LEVEL is not 0 and FOUND_AMBIG1 and |
| // FOUND_AMBIG2 are not empty. If we found the field, FOUND_LEVEL |
| // is not 0 and FOUND_AMBIG1 and FOUND_AMBIG2 are empty. |
| |
| if (nt != NULL) |
| seen->pop_back(); |
| |
| if (found_level == 0) |
| return false; |
| else if (found_is_method |
| && type->named_type() != NULL |
| && type->points_to() != NULL) |
| { |
| // If this is a method inherited from a struct field in a named pointer |
| // type, it is invalid to automatically dereference the pointer to the |
| // struct to find this method. |
| if (level != NULL) |
| *level = found_level; |
| *is_method = true; |
| return false; |
| } |
| else if (!found_ambig1.empty()) |
| { |
| go_assert(!found_ambig1.empty()); |
| ambig1->assign(found_ambig1); |
| ambig2->assign(found_ambig2); |
| if (level != NULL) |
| *level = found_level; |
| return false; |
| } |
| else |
| { |
| if (level != NULL) |
| *level = found_level; |
| *is_method = found_is_method; |
| return true; |
| } |
| } |
| |
| // Return whether NAME is an unexported field or method for TYPE. |
| |
| bool |
| Type::is_unexported_field_or_method(Gogo* gogo, const Type* type, |
| const std::string& name, |
| std::vector<const Named_type*>* seen) |
| { |
| const Named_type* nt = type->named_type(); |
| if (nt == NULL) |
| nt = type->deref()->named_type(); |
| if (nt != NULL) |
| { |
| if (nt->is_unexported_local_method(gogo, name)) |
| return true; |
| |
| for (std::vector<const Named_type*>::const_iterator p = seen->begin(); |
| p != seen->end(); |
| ++p) |
| { |
| if (*p == nt) |
| { |
| // We've already seen this type. |
| return false; |
| } |
| } |
| } |
| |
| const Interface_type* it = type->interface_type(); |
| if (it != NULL && it->is_unexported_method(gogo, name)) |
| return true; |
| |
| type = type->deref(); |
| |
| const Struct_type* st = type->struct_type(); |
| if (st != NULL && st->is_unexported_local_field(gogo, name)) |
| return true; |
| |
| if (st == NULL) |
| return false; |
| |
| const Struct_field_list* fields = st->fields(); |
| if (fields == NULL) |
| return false; |
| |
| if (nt != NULL) |
| seen->push_back(nt); |
| |
| for (Struct_field_list::const_iterator pf = fields->begin(); |
| pf != fields->end(); |
| ++pf) |
| { |
| if (pf->is_anonymous() |
| && !pf->type()->deref()->is_error_type() |
| && !pf->type()->deref()->is_undefined()) |
| { |
| Named_type* subtype = pf->type()->named_type(); |
| if (subtype == NULL) |
| subtype = pf->type()->deref()->named_type(); |
| if (subtype == NULL) |
| { |
| // This is an error, but it will be diagnosed elsewhere. |
| continue; |
| } |
| if (Type::is_unexported_field_or_method(gogo, subtype, name, seen)) |
| { |
| if (nt != NULL) |
| seen->pop_back(); |
| return true; |
| } |
| } |
| } |
| |
| if (nt != NULL) |
| seen->pop_back(); |
| |
| return false; |
| } |
| |
| // Class Forward_declaration. |
| |
| Forward_declaration_type::Forward_declaration_type(Named_object* named_object) |
| : Type(TYPE_FORWARD), |
| named_object_(named_object->resolve()), warned_(false) |
| { |
| go_assert(this->named_object_->is_unknown() |
| || this->named_object_->is_type_declaration()); |
| } |
| |
| // Return the named object. |
| |
| Named_object* |
| Forward_declaration_type::named_object() |
| { |
| return this->named_object_->resolve(); |
| } |
| |
| const Named_object* |
| Forward_declaration_type::named_object() const |
| { |
| return this->named_object_->resolve(); |
| } |
| |
| // Return the name of the forward declared type. |
| |
| const std::string& |
| Forward_declaration_type::name() const |
| { |
| return this->named_object()->name(); |
| } |
| |
| // Warn about a use of a type which has been declared but not defined. |
| |
| void |
| Forward_declaration_type::warn() const |
| { |
| Named_object* no = this->named_object_->resolve(); |
| if (no->is_unknown()) |
| { |
| // The name was not defined anywhere. |
| if (!this->warned_) |
| { |
| go_error_at(this->named_object_->location(), |
| "use of undefined type %qs", |
| no->message_name().c_str()); |
| this->warned_ = true; |
| } |
| } |
| else if (no->is_type_declaration()) |
| { |
| // The name was seen as a type, but the type was never defined. |
| if (no->type_declaration_value()->using_type()) |
| { |
| go_error_at(this->named_object_->location(), |
| "use of undefined type %qs", |
| no->message_name().c_str()); |
| this->warned_ = true; |
| } |
| } |
| else |
| { |
| // The name was defined, but not as a type. |
| if (!this->warned_) |
| { |
| go_error_at(this->named_object_->location(), "expected type"); |
| this->warned_ = true; |
| } |
| } |
| } |
| |
| // Get the base type of a declaration. This gives an error if the |
| // type has not yet been defined. |
| |
| Type* |
| Forward_declaration_type::real_type() |
| { |
| if (this->is_defined()) |
| { |
| Named_type* nt = this->named_object()->type_value(); |
| if (!nt->is_valid()) |
| return Type::make_error_type(); |
| return this->named_object()->type_value(); |
| } |
| else |
| { |
| this->warn(); |
| return Type::make_error_type(); |
| } |
| } |
| |
| const Type* |
| Forward_declaration_type::real_type() const |
| { |
| if (this->is_defined()) |
| { |
| const Named_type* nt = this->named_object()->type_value(); |
| if (!nt->is_valid()) |
| return Type::make_error_type(); |
| return this->named_object()->type_value(); |
| } |
| else |
| { |
| this->warn(); |
| return Type::make_error_type(); |
| } |
| } |
| |
| // Return whether the base type is defined. |
| |
| bool |
| Forward_declaration_type::is_defined() const |
| { |
| return this->named_object()->is_type(); |
| } |
| |
| // Add a method. This is used when methods are defined before the |
| // type. |
| |
| Named_object* |
| Forward_declaration_type::add_method(const std::string& name, |
| Function* function) |
| { |
| Named_object* no = this->named_object(); |
| if (no->is_unknown()) |
| no->declare_as_type(); |
| return no->type_declaration_value()->add_method(name, function); |
| } |
| |
| // Add a method declaration. This is used when methods are declared |
| // before the type. |
| |
| Named_object* |
| Forward_declaration_type::add_method_declaration(const std::string& name, |
| Package* package, |
| Function_type* type, |
| Location location) |
| { |
| Named_object* no = this->named_object(); |
| if (no->is_unknown()) |
| no->declare_as_type(); |
| Type_declaration* td = no->type_declaration_value(); |
| return td->add_method_declaration(name, package, type, location); |
| } |
| |
| // Add an already created object as a method. |
| |
| void |
| Forward_declaration_type::add_existing_method(Named_object* nom) |
| { |
| Named_object* no = this->named_object(); |
| if (no->is_unknown()) |
| no->declare_as_type(); |
| no->type_declaration_value()->add_existing_method(nom); |
| } |
| |
| // Traversal. |
| |
| int |
| Forward_declaration_type::do_traverse(Traverse* traverse) |
| { |
| if (this->is_defined() |
| && Type::traverse(this->real_type(), traverse) == TRAVERSE_EXIT) |
| return TRAVERSE_EXIT; |
| return TRAVERSE_CONTINUE; |
| } |
| |
| // Verify the type. |
| |
| bool |
| Forward_declaration_type::do_verify() |
| { |
| if (!this->is_defined() && !this->is_nil_constant_as_type()) |
| { |
| this->warn(); |
| return false; |
| } |
| return true; |
| } |
| |
| // Get the backend representation for the type. |
| |
| Btype* |
| Forward_declaration_type::do_get_backend(Gogo* gogo) |
| { |
| if (this->is_defined()) |
| return Type::get_named_base_btype(gogo, this->real_type()); |
| |
| if (this->warned_) |
| return gogo->backend()->error_type(); |
| |
| // We represent an undefined type as a struct with no fields. That |
| // should work fine for the backend, since the same case can arise |
| // in C. |
| std::vector<Backend::Btyped_identifier> fields; |
| Btype* bt = gogo->backend()->struct_type(fields); |
| return gogo->backend()->named_type(this->name(), bt, |
| this->named_object()->location()); |
| } |
| |
| // Build a type descriptor for a forwarded type. |
| |
| Expression* |
| Forward_declaration_type::do_type_descriptor(Gogo* gogo, Named_type* name) |
| { |
| Location ploc = Linemap::predeclared_location(); |
| if (!this->is_defined()) |
| return Expression::make_error(ploc); |
| else |
| { |
| Type* t = this->real_type(); |
| if (name != NULL) |
| return this->named_type_descriptor(gogo, t, name); |
| else |
| return Expression::make_error(this->named_object_->location()); |
| } |
| } |
| |
| // The reflection string. |
| |
| void |
| Forward_declaration_type::do_reflection(Gogo* gogo, std::string* ret) const |
| { |
| this->append_reflection(this->real_type(), gogo, ret); |
| } |
| |
| // Export a forward declaration. This can happen when a defined type |
| // refers to a type which is only declared (and is presumably defined |
| // in some other file in the same package). |
| |
| void |
| Forward_declaration_type::do_export(Export*) const |
| { |
| // If there is a base type, that should be exported instead of this. |
| go_assert(!this->is_defined()); |
| |
| // We don't output anything. |
| } |
| |
| // Make a forward declaration. |
| |
| Type* |
| Type::make_forward_declaration(Named_object* named_object) |
| { |
| return new Forward_declaration_type(named_object); |
| } |
| |
| // Class Typed_identifier_list. |
| |
| // Sort the entries by name. |
| |
| struct Typed_identifier_list_sort |
| { |
| public: |
| bool |
| operator()(const Typed_identifier& t1, const Typed_identifier& t2) const |
| { |
| return (Gogo::unpack_hidden_name(t1.name()) |
| < Gogo::unpack_hidden_name(t2.name())); |
| } |
| }; |
| |
| void |
| Typed_identifier_list::sort_by_name() |
| { |
| std::sort(this->entries_.begin(), this->entries_.end(), |
| Typed_identifier_list_sort()); |
| } |
| |
| // Traverse types. |
| |
| int |
| Typed_identifier_list::traverse(Traverse* traverse) |
| { |
| for (Typed_identifier_list::const_iterator p = this->begin(); |
| p != this->end(); |
| ++p) |
| { |
| if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT) |
| return TRAVERSE_EXIT; |
| } |
| return TRAVERSE_CONTINUE; |
| } |
| |
| // Copy the list. |
| |
| Typed_identifier_list* |
| Typed_identifier_list::copy() const |
| { |
| Typed_identifier_list* ret = new Typed_identifier_list(); |
| for (Typed_identifier_list::const_iterator p = this->begin(); |
| p != this->end(); |
| ++p) |
| ret->push_back(Typed_identifier(p->name(), p->type(), p->location())); |
| return ret; |
| } |