|  | // Copyright 2009 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package math | 
|  |  | 
|  | /* | 
|  | Floating-point logarithm. | 
|  | */ | 
|  |  | 
|  | // The original C code, the long comment, and the constants | 
|  | // below are from FreeBSD's /usr/src/lib/msun/src/e_log.c | 
|  | // and came with this notice. The go code is a simpler | 
|  | // version of the original C. | 
|  | // | 
|  | // ==================================================== | 
|  | // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|  | // | 
|  | // Developed at SunPro, a Sun Microsystems, Inc. business. | 
|  | // Permission to use, copy, modify, and distribute this | 
|  | // software is freely granted, provided that this notice | 
|  | // is preserved. | 
|  | // ==================================================== | 
|  | // | 
|  | // __ieee754_log(x) | 
|  | // Return the logarithm of x | 
|  | // | 
|  | // Method : | 
|  | //   1. Argument Reduction: find k and f such that | 
|  | //			x = 2**k * (1+f), | 
|  | //	   where  sqrt(2)/2 < 1+f < sqrt(2) . | 
|  | // | 
|  | //   2. Approximation of log(1+f). | 
|  | //	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) | 
|  | //		 = 2s + 2/3 s**3 + 2/5 s**5 + ....., | 
|  | //	     	 = 2s + s*R | 
|  | //      We use a special Reme algorithm on [0,0.1716] to generate | 
|  | //	a polynomial of degree 14 to approximate R.  The maximum error | 
|  | //	of this polynomial approximation is bounded by 2**-58.45. In | 
|  | //	other words, | 
|  | //		        2      4      6      8      10      12      14 | 
|  | //	    R(z) ~ L1*s +L2*s +L3*s +L4*s +L5*s  +L6*s  +L7*s | 
|  | //	(the values of L1 to L7 are listed in the program) and | 
|  | //	    |      2          14          |     -58.45 | 
|  | //	    | L1*s +...+L7*s    -  R(z) | <= 2 | 
|  | //	    |                             | | 
|  | //	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. | 
|  | //	In order to guarantee error in log below 1ulp, we compute log by | 
|  | //		log(1+f) = f - s*(f - R)		(if f is not too large) | 
|  | //		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy) | 
|  | // | 
|  | //	3. Finally,  log(x) = k*Ln2 + log(1+f). | 
|  | //			    = k*Ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*Ln2_lo))) | 
|  | //	   Here Ln2 is split into two floating point number: | 
|  | //			Ln2_hi + Ln2_lo, | 
|  | //	   where n*Ln2_hi is always exact for |n| < 2000. | 
|  | // | 
|  | // Special cases: | 
|  | //	log(x) is NaN with signal if x < 0 (including -INF) ; | 
|  | //	log(+INF) is +INF; log(0) is -INF with signal; | 
|  | //	log(NaN) is that NaN with no signal. | 
|  | // | 
|  | // Accuracy: | 
|  | //	according to an error analysis, the error is always less than | 
|  | //	1 ulp (unit in the last place). | 
|  | // | 
|  | // Constants: | 
|  | // The hexadecimal values are the intended ones for the following | 
|  | // constants. The decimal values may be used, provided that the | 
|  | // compiler will convert from decimal to binary accurately enough | 
|  | // to produce the hexadecimal values shown. | 
|  |  | 
|  | // Log returns the natural logarithm of x. | 
|  | // | 
|  | // Special cases are: | 
|  | //	Log(+Inf) = +Inf | 
|  | //	Log(0) = -Inf | 
|  | //	Log(x < 0) = NaN | 
|  | //	Log(NaN) = NaN | 
|  | func Log(x float64) float64 { | 
|  | return libc_log(x) | 
|  | } | 
|  |  | 
|  | //extern log | 
|  | func libc_log(float64) float64 | 
|  |  | 
|  | func log(x float64) float64 { | 
|  | const ( | 
|  | Ln2Hi = 6.93147180369123816490e-01 /* 3fe62e42 fee00000 */ | 
|  | Ln2Lo = 1.90821492927058770002e-10 /* 3dea39ef 35793c76 */ | 
|  | L1    = 6.666666666666735130e-01   /* 3FE55555 55555593 */ | 
|  | L2    = 3.999999999940941908e-01   /* 3FD99999 9997FA04 */ | 
|  | L3    = 2.857142874366239149e-01   /* 3FD24924 94229359 */ | 
|  | L4    = 2.222219843214978396e-01   /* 3FCC71C5 1D8E78AF */ | 
|  | L5    = 1.818357216161805012e-01   /* 3FC74664 96CB03DE */ | 
|  | L6    = 1.531383769920937332e-01   /* 3FC39A09 D078C69F */ | 
|  | L7    = 1.479819860511658591e-01   /* 3FC2F112 DF3E5244 */ | 
|  | ) | 
|  |  | 
|  | // special cases | 
|  | switch { | 
|  | case IsNaN(x) || IsInf(x, 1): | 
|  | return x | 
|  | case x < 0: | 
|  | return NaN() | 
|  | case x == 0: | 
|  | return Inf(-1) | 
|  | } | 
|  |  | 
|  | // reduce | 
|  | f1, ki := Frexp(x) | 
|  | if f1 < Sqrt2/2 { | 
|  | f1 *= 2 | 
|  | ki-- | 
|  | } | 
|  | f := f1 - 1 | 
|  | k := float64(ki) | 
|  |  | 
|  | // compute | 
|  | s := f / (2 + f) | 
|  | s2 := s * s | 
|  | s4 := s2 * s2 | 
|  | t1 := s2 * (L1 + s4*(L3+s4*(L5+s4*L7))) | 
|  | t2 := s4 * (L2 + s4*(L4+s4*L6)) | 
|  | R := t1 + t2 | 
|  | hfsq := 0.5 * f * f | 
|  | return k*Ln2Hi - ((hfsq - (s*(hfsq+R) + k*Ln2Lo)) - f) | 
|  | } |