blob: 48089ff75c7f091c954fc4541488cb4131f30c4a [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package png
import (
"bufio"
"compress/zlib"
"hash/crc32"
"image"
"image/color"
"io"
"strconv"
)
type encoder struct {
w io.Writer
m image.Image
cb int
err error
header [8]byte
footer [4]byte
tmp [3 * 256]byte
}
// Big-endian.
func writeUint32(b []uint8, u uint32) {
b[0] = uint8(u >> 24)
b[1] = uint8(u >> 16)
b[2] = uint8(u >> 8)
b[3] = uint8(u >> 0)
}
type opaquer interface {
Opaque() bool
}
// Returns whether or not the image is fully opaque.
func opaque(m image.Image) bool {
if o, ok := m.(opaquer); ok {
return o.Opaque()
}
b := m.Bounds()
for y := b.Min.Y; y < b.Max.Y; y++ {
for x := b.Min.X; x < b.Max.X; x++ {
_, _, _, a := m.At(x, y).RGBA()
if a != 0xffff {
return false
}
}
}
return true
}
// The absolute value of a byte interpreted as a signed int8.
func abs8(d uint8) int {
if d < 128 {
return int(d)
}
return 256 - int(d)
}
func (e *encoder) writeChunk(b []byte, name string) {
if e.err != nil {
return
}
n := uint32(len(b))
if int(n) != len(b) {
e.err = UnsupportedError(name + " chunk is too large: " + strconv.Itoa(len(b)))
return
}
writeUint32(e.header[0:4], n)
e.header[4] = name[0]
e.header[5] = name[1]
e.header[6] = name[2]
e.header[7] = name[3]
crc := crc32.NewIEEE()
crc.Write(e.header[4:8])
crc.Write(b)
writeUint32(e.footer[0:4], crc.Sum32())
_, e.err = e.w.Write(e.header[0:8])
if e.err != nil {
return
}
_, e.err = e.w.Write(b)
if e.err != nil {
return
}
_, e.err = e.w.Write(e.footer[0:4])
}
func (e *encoder) writeIHDR() {
b := e.m.Bounds()
writeUint32(e.tmp[0:4], uint32(b.Dx()))
writeUint32(e.tmp[4:8], uint32(b.Dy()))
// Set bit depth and color type.
switch e.cb {
case cbG8:
e.tmp[8] = 8
e.tmp[9] = ctGrayscale
case cbTC8:
e.tmp[8] = 8
e.tmp[9] = ctTrueColor
case cbP8:
e.tmp[8] = 8
e.tmp[9] = ctPaletted
case cbTCA8:
e.tmp[8] = 8
e.tmp[9] = ctTrueColorAlpha
case cbG16:
e.tmp[8] = 16
e.tmp[9] = ctGrayscale
case cbTC16:
e.tmp[8] = 16
e.tmp[9] = ctTrueColor
case cbTCA16:
e.tmp[8] = 16
e.tmp[9] = ctTrueColorAlpha
}
e.tmp[10] = 0 // default compression method
e.tmp[11] = 0 // default filter method
e.tmp[12] = 0 // non-interlaced
e.writeChunk(e.tmp[0:13], "IHDR")
}
func (e *encoder) writePLTE(p color.Palette) {
if len(p) < 1 || len(p) > 256 {
e.err = FormatError("bad palette length: " + strconv.Itoa(len(p)))
return
}
for i, c := range p {
r, g, b, _ := c.RGBA()
e.tmp[3*i+0] = uint8(r >> 8)
e.tmp[3*i+1] = uint8(g >> 8)
e.tmp[3*i+2] = uint8(b >> 8)
}
e.writeChunk(e.tmp[0:3*len(p)], "PLTE")
}
func (e *encoder) maybeWritetRNS(p color.Palette) {
last := -1
for i, c := range p {
_, _, _, a := c.RGBA()
if a != 0xffff {
last = i
}
e.tmp[i] = uint8(a >> 8)
}
if last == -1 {
return
}
e.writeChunk(e.tmp[:last+1], "tRNS")
}
// An encoder is an io.Writer that satisfies writes by writing PNG IDAT chunks,
// including an 8-byte header and 4-byte CRC checksum per Write call. Such calls
// should be relatively infrequent, since writeIDATs uses a bufio.Writer.
//
// This method should only be called from writeIDATs (via writeImage).
// No other code should treat an encoder as an io.Writer.
func (e *encoder) Write(b []byte) (int, error) {
e.writeChunk(b, "IDAT")
if e.err != nil {
return 0, e.err
}
return len(b), nil
}
// Chooses the filter to use for encoding the current row, and applies it.
// The return value is the index of the filter and also of the row in cr that has had it applied.
func filter(cr *[nFilter][]byte, pr []byte, bpp int) int {
// We try all five filter types, and pick the one that minimizes the sum of absolute differences.
// This is the same heuristic that libpng uses, although the filters are attempted in order of
// estimated most likely to be minimal (ftUp, ftPaeth, ftNone, ftSub, ftAverage), rather than
// in their enumeration order (ftNone, ftSub, ftUp, ftAverage, ftPaeth).
cdat0 := cr[0][1:]
cdat1 := cr[1][1:]
cdat2 := cr[2][1:]
cdat3 := cr[3][1:]
cdat4 := cr[4][1:]
pdat := pr[1:]
n := len(cdat0)
// The up filter.
sum := 0
for i := 0; i < n; i++ {
cdat2[i] = cdat0[i] - pdat[i]
sum += abs8(cdat2[i])
}
best := sum
filter := ftUp
// The Paeth filter.
sum = 0
for i := 0; i < bpp; i++ {
cdat4[i] = cdat0[i] - paeth(0, pdat[i], 0)
sum += abs8(cdat4[i])
}
for i := bpp; i < n; i++ {
cdat4[i] = cdat0[i] - paeth(cdat0[i-bpp], pdat[i], pdat[i-bpp])
sum += abs8(cdat4[i])
if sum >= best {
break
}
}
if sum < best {
best = sum
filter = ftPaeth
}
// The none filter.
sum = 0
for i := 0; i < n; i++ {
sum += abs8(cdat0[i])
if sum >= best {
break
}
}
if sum < best {
best = sum
filter = ftNone
}
// The sub filter.
sum = 0
for i := 0; i < bpp; i++ {
cdat1[i] = cdat0[i]
sum += abs8(cdat1[i])
}
for i := bpp; i < n; i++ {
cdat1[i] = cdat0[i] - cdat0[i-bpp]
sum += abs8(cdat1[i])
if sum >= best {
break
}
}
if sum < best {
best = sum
filter = ftSub
}
// The average filter.
sum = 0
for i := 0; i < bpp; i++ {
cdat3[i] = cdat0[i] - pdat[i]/2
sum += abs8(cdat3[i])
}
for i := bpp; i < n; i++ {
cdat3[i] = cdat0[i] - uint8((int(cdat0[i-bpp])+int(pdat[i]))/2)
sum += abs8(cdat3[i])
if sum >= best {
break
}
}
if sum < best {
best = sum
filter = ftAverage
}
return filter
}
func writeImage(w io.Writer, m image.Image, cb int) error {
zw, err := zlib.NewWriter(w)
if err != nil {
return err
}
defer zw.Close()
bpp := 0 // Bytes per pixel.
switch cb {
case cbG8:
bpp = 1
case cbTC8:
bpp = 3
case cbP8:
bpp = 1
case cbTCA8:
bpp = 4
case cbTC16:
bpp = 6
case cbTCA16:
bpp = 8
case cbG16:
bpp = 2
}
// cr[*] and pr are the bytes for the current and previous row.
// cr[0] is unfiltered (or equivalently, filtered with the ftNone filter).
// cr[ft], for non-zero filter types ft, are buffers for transforming cr[0] under the
// other PNG filter types. These buffers are allocated once and re-used for each row.
// The +1 is for the per-row filter type, which is at cr[*][0].
b := m.Bounds()
var cr [nFilter][]uint8
for i := range cr {
cr[i] = make([]uint8, 1+bpp*b.Dx())
cr[i][0] = uint8(i)
}
pr := make([]uint8, 1+bpp*b.Dx())
for y := b.Min.Y; y < b.Max.Y; y++ {
// Convert from colors to bytes.
i := 1
switch cb {
case cbG8:
for x := b.Min.X; x < b.Max.X; x++ {
c := color.GrayModel.Convert(m.At(x, y)).(color.Gray)
cr[0][i] = c.Y
i++
}
case cbTC8:
// We have previously verified that the alpha value is fully opaque.
cr0 := cr[0]
if rgba, _ := m.(*image.RGBA); rgba != nil {
j0 := (y - b.Min.Y) * rgba.Stride
j1 := j0 + b.Dx()*4
for j := j0; j < j1; j += 4 {
cr0[i+0] = rgba.Pix[j+0]
cr0[i+1] = rgba.Pix[j+1]
cr0[i+2] = rgba.Pix[j+2]
i += 3
}
} else {
for x := b.Min.X; x < b.Max.X; x++ {
r, g, b, _ := m.At(x, y).RGBA()
cr0[i+0] = uint8(r >> 8)
cr0[i+1] = uint8(g >> 8)
cr0[i+2] = uint8(b >> 8)
i += 3
}
}
case cbP8:
if p, _ := m.(*image.Paletted); p != nil {
offset := (y - b.Min.Y) * p.Stride
copy(cr[0][1:], p.Pix[offset:offset+b.Dx()])
} else {
pi := m.(image.PalettedImage)
for x := b.Min.X; x < b.Max.X; x++ {
cr[0][i] = pi.ColorIndexAt(x, y)
i += 1
}
}
case cbTCA8:
// Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied.
for x := b.Min.X; x < b.Max.X; x++ {
c := color.NRGBAModel.Convert(m.At(x, y)).(color.NRGBA)
cr[0][i+0] = c.R
cr[0][i+1] = c.G
cr[0][i+2] = c.B
cr[0][i+3] = c.A
i += 4
}
case cbG16:
for x := b.Min.X; x < b.Max.X; x++ {
c := color.Gray16Model.Convert(m.At(x, y)).(color.Gray16)
cr[0][i+0] = uint8(c.Y >> 8)
cr[0][i+1] = uint8(c.Y)
i += 2
}
case cbTC16:
// We have previously verified that the alpha value is fully opaque.
for x := b.Min.X; x < b.Max.X; x++ {
r, g, b, _ := m.At(x, y).RGBA()
cr[0][i+0] = uint8(r >> 8)
cr[0][i+1] = uint8(r)
cr[0][i+2] = uint8(g >> 8)
cr[0][i+3] = uint8(g)
cr[0][i+4] = uint8(b >> 8)
cr[0][i+5] = uint8(b)
i += 6
}
case cbTCA16:
// Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied.
for x := b.Min.X; x < b.Max.X; x++ {
c := color.NRGBA64Model.Convert(m.At(x, y)).(color.NRGBA64)
cr[0][i+0] = uint8(c.R >> 8)
cr[0][i+1] = uint8(c.R)
cr[0][i+2] = uint8(c.G >> 8)
cr[0][i+3] = uint8(c.G)
cr[0][i+4] = uint8(c.B >> 8)
cr[0][i+5] = uint8(c.B)
cr[0][i+6] = uint8(c.A >> 8)
cr[0][i+7] = uint8(c.A)
i += 8
}
}
// Apply the filter.
f := filter(&cr, pr, bpp)
// Write the compressed bytes.
_, err = zw.Write(cr[f])
if err != nil {
return err
}
// The current row for y is the previous row for y+1.
pr, cr[0] = cr[0], pr
}
return nil
}
// Write the actual image data to one or more IDAT chunks.
func (e *encoder) writeIDATs() {
if e.err != nil {
return
}
var bw *bufio.Writer
bw, e.err = bufio.NewWriterSize(e, 1<<15)
if e.err != nil {
return
}
e.err = writeImage(bw, e.m, e.cb)
if e.err != nil {
return
}
e.err = bw.Flush()
}
func (e *encoder) writeIEND() { e.writeChunk(e.tmp[0:0], "IEND") }
// Encode writes the Image m to w in PNG format. Any Image may be encoded, but
// images that are not image.NRGBA might be encoded lossily.
func Encode(w io.Writer, m image.Image) error {
// Obviously, negative widths and heights are invalid. Furthermore, the PNG
// spec section 11.2.2 says that zero is invalid. Excessively large images are
// also rejected.
mw, mh := int64(m.Bounds().Dx()), int64(m.Bounds().Dy())
if mw <= 0 || mh <= 0 || mw >= 1<<32 || mh >= 1<<32 {
return FormatError("invalid image size: " + strconv.Itoa64(mw) + "x" + strconv.Itoa64(mw))
}
var e encoder
e.w = w
e.m = m
var pal color.Palette
// cbP8 encoding needs PalettedImage's ColorIndexAt method.
if _, ok := m.(image.PalettedImage); ok {
pal, _ = m.ColorModel().(color.Palette)
}
if pal != nil {
e.cb = cbP8
} else {
switch m.ColorModel() {
case color.GrayModel:
e.cb = cbG8
case color.Gray16Model:
e.cb = cbG16
case color.RGBAModel, color.NRGBAModel, color.AlphaModel:
if opaque(m) {
e.cb = cbTC8
} else {
e.cb = cbTCA8
}
default:
if opaque(m) {
e.cb = cbTC16
} else {
e.cb = cbTCA16
}
}
}
_, e.err = io.WriteString(w, pngHeader)
e.writeIHDR()
if pal != nil {
e.writePLTE(pal)
e.maybeWritetRNS(pal)
}
e.writeIDATs()
e.writeIEND()
return e.err
}