| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package ycbcr provides images from the Y'CbCr color model. |
| // |
| // JPEG, VP8, the MPEG family and other codecs use this color model. Such |
| // codecs often use the terms YUV and Y'CbCr interchangeably, but strictly |
| // speaking, the term YUV applies only to analog video signals. |
| // |
| // Conversion between RGB and Y'CbCr is lossy and there are multiple, slightly |
| // different formulae for converting between the two. This package follows |
| // the JFIF specification at http://www.w3.org/Graphics/JPEG/jfif3.pdf. |
| package ycbcr |
| |
| import ( |
| "image" |
| ) |
| |
| // RGBToYCbCr converts an RGB triple to a YCbCr triple. All components lie |
| // within the range [0, 255]. |
| func RGBToYCbCr(r, g, b uint8) (uint8, uint8, uint8) { |
| // The JFIF specification says: |
| // Y' = 0.2990*R + 0.5870*G + 0.1140*B |
| // Cb = -0.1687*R - 0.3313*G + 0.5000*B + 128 |
| // Cr = 0.5000*R - 0.4187*G - 0.0813*B + 128 |
| // http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'. |
| r1 := int(r) |
| g1 := int(g) |
| b1 := int(b) |
| yy := (19595*r1 + 38470*g1 + 7471*b1 + 1<<15) >> 16 |
| cb := (-11056*r1 - 21712*g1 + 32768*b1 + 257<<15) >> 16 |
| cr := (32768*r1 - 27440*g1 - 5328*b1 + 257<<15) >> 16 |
| if yy < 0 { |
| yy = 0 |
| } else if yy > 255 { |
| yy = 255 |
| } |
| if cb < 0 { |
| cb = 0 |
| } else if cb > 255 { |
| cb = 255 |
| } |
| if cr < 0 { |
| cr = 0 |
| } else if cr > 255 { |
| cr = 255 |
| } |
| return uint8(yy), uint8(cb), uint8(cr) |
| } |
| |
| // YCbCrToRGB converts a YCbCr triple to an RGB triple. All components lie |
| // within the range [0, 255]. |
| func YCbCrToRGB(y, cb, cr uint8) (uint8, uint8, uint8) { |
| // The JFIF specification says: |
| // R = Y' + 1.40200*(Cr-128) |
| // G = Y' - 0.34414*(Cb-128) - 0.71414*(Cr-128) |
| // B = Y' + 1.77200*(Cb-128) |
| // http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'. |
| yy1 := int(y)<<16 + 1<<15 |
| cb1 := int(cb) - 128 |
| cr1 := int(cr) - 128 |
| r := (yy1 + 91881*cr1) >> 16 |
| g := (yy1 - 22554*cb1 - 46802*cr1) >> 16 |
| b := (yy1 + 116130*cb1) >> 16 |
| if r < 0 { |
| r = 0 |
| } else if r > 255 { |
| r = 255 |
| } |
| if g < 0 { |
| g = 0 |
| } else if g > 255 { |
| g = 255 |
| } |
| if b < 0 { |
| b = 0 |
| } else if b > 255 { |
| b = 255 |
| } |
| return uint8(r), uint8(g), uint8(b) |
| } |
| |
| // YCbCrColor represents a fully opaque 24-bit Y'CbCr color, having 8 bits for |
| // each of one luma and two chroma components. |
| type YCbCrColor struct { |
| Y, Cb, Cr uint8 |
| } |
| |
| func (c YCbCrColor) RGBA() (uint32, uint32, uint32, uint32) { |
| r, g, b := YCbCrToRGB(c.Y, c.Cb, c.Cr) |
| return uint32(r) * 0x101, uint32(g) * 0x101, uint32(b) * 0x101, 0xffff |
| } |
| |
| func toYCbCrColor(c image.Color) image.Color { |
| if _, ok := c.(YCbCrColor); ok { |
| return c |
| } |
| r, g, b, _ := c.RGBA() |
| y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8)) |
| return YCbCrColor{y, u, v} |
| } |
| |
| // YCbCrColorModel is the color model for YCbCrColor. |
| var YCbCrColorModel image.ColorModel = image.ColorModelFunc(toYCbCrColor) |
| |
| // SubsampleRatio is the chroma subsample ratio used in a YCbCr image. |
| type SubsampleRatio int |
| |
| const ( |
| SubsampleRatio444 SubsampleRatio = iota |
| SubsampleRatio422 |
| SubsampleRatio420 |
| ) |
| |
| // YCbCr is an in-memory image of YCbCr colors. There is one Y sample per pixel, |
| // but each Cb and Cr sample can span one or more pixels. |
| // YStride is the Y slice index delta between vertically adjacent pixels. |
| // CStride is the Cb and Cr slice index delta between vertically adjacent pixels |
| // that map to separate chroma samples. |
| // It is not an absolute requirement, but YStride and len(Y) are typically |
| // multiples of 8, and: |
| // For 4:4:4, CStride == YStride/1 && len(Cb) == len(Cr) == len(Y)/1. |
| // For 4:2:2, CStride == YStride/2 && len(Cb) == len(Cr) == len(Y)/2. |
| // For 4:2:0, CStride == YStride/2 && len(Cb) == len(Cr) == len(Y)/4. |
| type YCbCr struct { |
| Y []uint8 |
| Cb []uint8 |
| Cr []uint8 |
| YStride int |
| CStride int |
| SubsampleRatio SubsampleRatio |
| Rect image.Rectangle |
| } |
| |
| func (p *YCbCr) ColorModel() image.ColorModel { |
| return YCbCrColorModel |
| } |
| |
| func (p *YCbCr) Bounds() image.Rectangle { |
| return p.Rect |
| } |
| |
| func (p *YCbCr) At(x, y int) image.Color { |
| if !(image.Point{x, y}.In(p.Rect)) { |
| return YCbCrColor{} |
| } |
| switch p.SubsampleRatio { |
| case SubsampleRatio422: |
| i := x / 2 |
| return YCbCrColor{ |
| p.Y[y*p.YStride+x], |
| p.Cb[y*p.CStride+i], |
| p.Cr[y*p.CStride+i], |
| } |
| case SubsampleRatio420: |
| i, j := x/2, y/2 |
| return YCbCrColor{ |
| p.Y[y*p.YStride+x], |
| p.Cb[j*p.CStride+i], |
| p.Cr[j*p.CStride+i], |
| } |
| } |
| // Default to 4:4:4 subsampling. |
| return YCbCrColor{ |
| p.Y[y*p.YStride+x], |
| p.Cb[y*p.CStride+x], |
| p.Cr[y*p.CStride+x], |
| } |
| } |
| |
| // SubImage returns an image representing the portion of the image p visible |
| // through r. The returned value shares pixels with the original image. |
| func (p *YCbCr) SubImage(r image.Rectangle) image.Image { |
| q := new(YCbCr) |
| *q = *p |
| q.Rect = q.Rect.Intersect(r) |
| return q |
| } |
| |
| func (p *YCbCr) Opaque() bool { |
| return true |
| } |