| // Copyright 2010 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Export guts for testing. |
| |
| package runtime |
| |
| import ( |
| "runtime/internal/atomic" |
| "runtime/internal/sys" |
| "unsafe" |
| ) |
| |
| //var Fadd64 = fadd64 |
| //var Fsub64 = fsub64 |
| //var Fmul64 = fmul64 |
| //var Fdiv64 = fdiv64 |
| //var F64to32 = f64to32 |
| //var F32to64 = f32to64 |
| //var Fcmp64 = fcmp64 |
| //var Fintto64 = fintto64 |
| //var F64toint = f64toint |
| |
| var Entersyscall = entersyscall |
| var Exitsyscall = exitsyscall |
| var LockedOSThread = lockedOSThread |
| var Xadduintptr = atomic.Xadduintptr |
| |
| var FuncPC = funcPC |
| |
| var Fastlog2 = fastlog2 |
| |
| var Atoi = atoi |
| var Atoi32 = atoi32 |
| |
| var Nanotime = nanotime |
| var NetpollBreak = netpollBreak |
| var Usleep = usleep |
| |
| var PhysPageSize = physPageSize |
| var PhysHugePageSize = physHugePageSize |
| |
| var NetpollGenericInit = netpollGenericInit |
| |
| var Memmove = memmove |
| var MemclrNoHeapPointers = memclrNoHeapPointers |
| |
| const PreemptMSupported = preemptMSupported |
| |
| type LFNode struct { |
| Next uint64 |
| Pushcnt uintptr |
| } |
| |
| func LFStackPush(head *uint64, node *LFNode) { |
| (*lfstack)(head).push((*lfnode)(unsafe.Pointer(node))) |
| } |
| |
| func LFStackPop(head *uint64) *LFNode { |
| return (*LFNode)(unsafe.Pointer((*lfstack)(head).pop())) |
| } |
| |
| func Netpoll(delta int64) { |
| systemstack(func() { |
| netpoll(delta) |
| }) |
| } |
| |
| func GCMask(x interface{}) (ret []byte) { |
| return nil |
| } |
| |
| func RunSchedLocalQueueTest() { |
| _p_ := new(p) |
| gs := make([]g, len(_p_.runq)) |
| for i := 0; i < len(_p_.runq); i++ { |
| if g, _ := runqget(_p_); g != nil { |
| throw("runq is not empty initially") |
| } |
| for j := 0; j < i; j++ { |
| runqput(_p_, &gs[i], false) |
| } |
| for j := 0; j < i; j++ { |
| if g, _ := runqget(_p_); g != &gs[i] { |
| print("bad element at iter ", i, "/", j, "\n") |
| throw("bad element") |
| } |
| } |
| if g, _ := runqget(_p_); g != nil { |
| throw("runq is not empty afterwards") |
| } |
| } |
| } |
| |
| func RunSchedLocalQueueStealTest() { |
| p1 := new(p) |
| p2 := new(p) |
| gs := make([]g, len(p1.runq)) |
| for i := 0; i < len(p1.runq); i++ { |
| for j := 0; j < i; j++ { |
| gs[j].sig = 0 |
| runqput(p1, &gs[j], false) |
| } |
| gp := runqsteal(p2, p1, true) |
| s := 0 |
| if gp != nil { |
| s++ |
| gp.sig++ |
| } |
| for { |
| gp, _ = runqget(p2) |
| if gp == nil { |
| break |
| } |
| s++ |
| gp.sig++ |
| } |
| for { |
| gp, _ = runqget(p1) |
| if gp == nil { |
| break |
| } |
| gp.sig++ |
| } |
| for j := 0; j < i; j++ { |
| if gs[j].sig != 1 { |
| print("bad element ", j, "(", gs[j].sig, ") at iter ", i, "\n") |
| throw("bad element") |
| } |
| } |
| if s != i/2 && s != i/2+1 { |
| print("bad steal ", s, ", want ", i/2, " or ", i/2+1, ", iter ", i, "\n") |
| throw("bad steal") |
| } |
| } |
| } |
| |
| func RunSchedLocalQueueEmptyTest(iters int) { |
| // Test that runq is not spuriously reported as empty. |
| // Runq emptiness affects scheduling decisions and spurious emptiness |
| // can lead to underutilization (both runnable Gs and idle Ps coexist |
| // for arbitrary long time). |
| done := make(chan bool, 1) |
| _p_ := new(p) |
| gs := make([]g, 2) |
| ready := new(uint32) |
| for i := 0; i < iters; i++ { |
| *ready = 0 |
| next0 := (i & 1) == 0 |
| next1 := (i & 2) == 0 |
| runqput(_p_, &gs[0], next0) |
| go func(done chan bool, p *p, ready *uint32, next0, next1 bool) { |
| for atomic.Xadd(ready, 1); atomic.Load(ready) != 2; { |
| } |
| if runqempty(p) { |
| println("next:", next0, next1) |
| throw("queue is empty") |
| } |
| done <- true |
| }(done, _p_, ready, next0, next1) |
| for atomic.Xadd(ready, 1); atomic.Load(ready) != 2; { |
| } |
| runqput(_p_, &gs[1], next1) |
| runqget(_p_) |
| <-done |
| runqget(_p_) |
| } |
| } |
| |
| var ( |
| StringHash = stringHash |
| BytesHash = bytesHash |
| Int32Hash = int32Hash |
| Int64Hash = int64Hash |
| MemHash = memhash |
| MemHash32 = memhash32 |
| MemHash64 = memhash64 |
| EfaceHash = efaceHash |
| IfaceHash = ifaceHash |
| ) |
| |
| var UseAeshash = &useAeshash |
| |
| func MemclrBytes(b []byte) { |
| s := (*slice)(unsafe.Pointer(&b)) |
| memclrNoHeapPointers(s.array, uintptr(s.len)) |
| } |
| |
| var HashLoad = &hashLoad |
| |
| // entry point for testing |
| //func GostringW(w []uint16) (s string) { |
| // s = gostringw(&w[0]) |
| // return |
| //} |
| |
| type Uintreg sys.Uintreg |
| |
| var Open = open |
| var Close = closefd |
| var Read = read |
| var Write = write |
| |
| func Envs() []string { return envs } |
| func SetEnvs(e []string) { envs = e } |
| |
| //var BigEndian = sys.BigEndian |
| |
| // For benchmarking. |
| |
| func BenchSetType(n int, x interface{}) { |
| e := *efaceOf(&x) |
| t := e._type |
| var size uintptr |
| var p unsafe.Pointer |
| switch t.kind & kindMask { |
| case kindPtr: |
| t = (*ptrtype)(unsafe.Pointer(t)).elem |
| size = t.size |
| p = e.data |
| case kindSlice: |
| slice := *(*struct { |
| ptr unsafe.Pointer |
| len, cap uintptr |
| })(e.data) |
| t = (*slicetype)(unsafe.Pointer(t)).elem |
| size = t.size * slice.len |
| p = slice.ptr |
| } |
| allocSize := roundupsize(size) |
| systemstack(func() { |
| for i := 0; i < n; i++ { |
| heapBitsSetType(uintptr(p), allocSize, size, t) |
| } |
| }) |
| } |
| |
| const PtrSize = sys.PtrSize |
| |
| var ForceGCPeriod = &forcegcperiod |
| |
| // SetTracebackEnv is like runtime/debug.SetTraceback, but it raises |
| // the "environment" traceback level, so later calls to |
| // debug.SetTraceback (e.g., from testing timeouts) can't lower it. |
| func SetTracebackEnv(level string) { |
| setTraceback(level) |
| traceback_env = traceback_cache |
| } |
| |
| var ReadUnaligned32 = readUnaligned32 |
| var ReadUnaligned64 = readUnaligned64 |
| |
| func CountPagesInUse() (pagesInUse, counted uintptr) { |
| stopTheWorld("CountPagesInUse") |
| |
| pagesInUse = uintptr(mheap_.pagesInUse) |
| |
| for _, s := range mheap_.allspans { |
| if s.state.get() == mSpanInUse { |
| counted += s.npages |
| } |
| } |
| |
| startTheWorld() |
| |
| return |
| } |
| |
| func Fastrand() uint32 { return fastrand() } |
| func Fastrandn(n uint32) uint32 { return fastrandn(n) } |
| |
| type ProfBuf profBuf |
| |
| func NewProfBuf(hdrsize, bufwords, tags int) *ProfBuf { |
| return (*ProfBuf)(newProfBuf(hdrsize, bufwords, tags)) |
| } |
| |
| func (p *ProfBuf) Write(tag *unsafe.Pointer, now int64, hdr []uint64, stk []uintptr) { |
| (*profBuf)(p).write(tag, now, hdr, stk) |
| } |
| |
| const ( |
| ProfBufBlocking = profBufBlocking |
| ProfBufNonBlocking = profBufNonBlocking |
| ) |
| |
| func (p *ProfBuf) Read(mode profBufReadMode) ([]uint64, []unsafe.Pointer, bool) { |
| return (*profBuf)(p).read(profBufReadMode(mode)) |
| } |
| |
| func (p *ProfBuf) Close() { |
| (*profBuf)(p).close() |
| } |
| |
| func ReadMetricsSlow(memStats *MemStats, samplesp unsafe.Pointer, len, cap int) { |
| stopTheWorld("ReadMetricsSlow") |
| |
| // Initialize the metrics beforehand because this could |
| // allocate and skew the stats. |
| semacquire(&metricsSema) |
| initMetrics() |
| semrelease(&metricsSema) |
| |
| systemstack(func() { |
| // Read memstats first. It's going to flush |
| // the mcaches which readMetrics does not do, so |
| // going the other way around may result in |
| // inconsistent statistics. |
| readmemstats_m(memStats) |
| }) |
| |
| // Read metrics off the system stack. |
| // |
| // The only part of readMetrics that could allocate |
| // and skew the stats is initMetrics. |
| readMetrics(samplesp, len, cap) |
| |
| startTheWorld() |
| } |
| |
| // ReadMemStatsSlow returns both the runtime-computed MemStats and |
| // MemStats accumulated by scanning the heap. |
| func ReadMemStatsSlow() (base, slow MemStats) { |
| stopTheWorld("ReadMemStatsSlow") |
| |
| // Run on the system stack to avoid stack growth allocation. |
| systemstack(func() { |
| // Make sure stats don't change. |
| getg().m.mallocing++ |
| |
| readmemstats_m(&base) |
| |
| // Initialize slow from base and zero the fields we're |
| // recomputing. |
| slow = base |
| slow.Alloc = 0 |
| slow.TotalAlloc = 0 |
| slow.Mallocs = 0 |
| slow.Frees = 0 |
| slow.HeapReleased = 0 |
| var bySize [_NumSizeClasses]struct { |
| Mallocs, Frees uint64 |
| } |
| |
| // Add up current allocations in spans. |
| for _, s := range mheap_.allspans { |
| if s.state.get() != mSpanInUse { |
| continue |
| } |
| if sizeclass := s.spanclass.sizeclass(); sizeclass == 0 { |
| slow.Mallocs++ |
| slow.Alloc += uint64(s.elemsize) |
| } else { |
| slow.Mallocs += uint64(s.allocCount) |
| slow.Alloc += uint64(s.allocCount) * uint64(s.elemsize) |
| bySize[sizeclass].Mallocs += uint64(s.allocCount) |
| } |
| } |
| |
| // Add in frees by just reading the stats for those directly. |
| var m heapStatsDelta |
| memstats.heapStats.unsafeRead(&m) |
| |
| // Collect per-sizeclass free stats. |
| var smallFree uint64 |
| for i := 0; i < _NumSizeClasses; i++ { |
| slow.Frees += uint64(m.smallFreeCount[i]) |
| bySize[i].Frees += uint64(m.smallFreeCount[i]) |
| bySize[i].Mallocs += uint64(m.smallFreeCount[i]) |
| smallFree += uint64(m.smallFreeCount[i]) * uint64(class_to_size[i]) |
| } |
| slow.Frees += memstats.tinyallocs + uint64(m.largeFreeCount) |
| slow.Mallocs += slow.Frees |
| |
| slow.TotalAlloc = slow.Alloc + uint64(m.largeFree) + smallFree |
| |
| for i := range slow.BySize { |
| slow.BySize[i].Mallocs = bySize[i].Mallocs |
| slow.BySize[i].Frees = bySize[i].Frees |
| } |
| |
| for i := mheap_.pages.start; i < mheap_.pages.end; i++ { |
| chunk := mheap_.pages.tryChunkOf(i) |
| if chunk == nil { |
| continue |
| } |
| pg := chunk.scavenged.popcntRange(0, pallocChunkPages) |
| slow.HeapReleased += uint64(pg) * pageSize |
| } |
| for _, p := range allp { |
| pg := sys.OnesCount64(p.pcache.scav) |
| slow.HeapReleased += uint64(pg) * pageSize |
| } |
| |
| // Unused space in the current arena also counts as released space. |
| slow.HeapReleased += uint64(mheap_.curArena.end - mheap_.curArena.base) |
| |
| getg().m.mallocing-- |
| }) |
| |
| startTheWorld() |
| return |
| } |
| |
| // BlockOnSystemStack switches to the system stack, prints "x\n" to |
| // stderr, and blocks in a stack containing |
| // "runtime.blockOnSystemStackInternal". |
| func BlockOnSystemStack() { |
| systemstack(blockOnSystemStackInternal) |
| } |
| |
| func blockOnSystemStackInternal() { |
| print("x\n") |
| lock(&deadlock) |
| lock(&deadlock) |
| } |
| |
| type RWMutex struct { |
| rw rwmutex |
| } |
| |
| func (rw *RWMutex) RLock() { |
| rw.rw.rlock() |
| } |
| |
| func (rw *RWMutex) RUnlock() { |
| rw.rw.runlock() |
| } |
| |
| func (rw *RWMutex) Lock() { |
| rw.rw.lock() |
| } |
| |
| func (rw *RWMutex) Unlock() { |
| rw.rw.unlock() |
| } |
| |
| const RuntimeHmapSize = unsafe.Sizeof(hmap{}) |
| |
| func MapBucketsCount(m map[int]int) int { |
| h := *(**hmap)(unsafe.Pointer(&m)) |
| return 1 << h.B |
| } |
| |
| func MapBucketsPointerIsNil(m map[int]int) bool { |
| h := *(**hmap)(unsafe.Pointer(&m)) |
| return h.buckets == nil |
| } |
| |
| func LockOSCounts() (external, internal uint32) { |
| g := getg() |
| if g.m.lockedExt+g.m.lockedInt == 0 { |
| if g.lockedm != 0 { |
| panic("lockedm on non-locked goroutine") |
| } |
| } else { |
| if g.lockedm == 0 { |
| panic("nil lockedm on locked goroutine") |
| } |
| } |
| return g.m.lockedExt, g.m.lockedInt |
| } |
| |
| //go:noinline |
| func TracebackSystemstack(stk []uintptr, i int) int { |
| if i == 0 { |
| return callersRaw(stk) |
| } |
| n := 0 |
| systemstack(func() { |
| n = TracebackSystemstack(stk, i-1) |
| }) |
| return n |
| } |
| |
| func KeepNArenaHints(n int) { |
| hint := mheap_.arenaHints |
| for i := 1; i < n; i++ { |
| hint = hint.next |
| if hint == nil { |
| return |
| } |
| } |
| hint.next = nil |
| } |
| |
| // MapNextArenaHint reserves a page at the next arena growth hint, |
| // preventing the arena from growing there, and returns the range of |
| // addresses that are no longer viable. |
| func MapNextArenaHint() (start, end uintptr) { |
| hint := mheap_.arenaHints |
| addr := hint.addr |
| if hint.down { |
| start, end = addr-heapArenaBytes, addr |
| addr -= physPageSize |
| } else { |
| start, end = addr, addr+heapArenaBytes |
| } |
| sysReserve(unsafe.Pointer(addr), physPageSize) |
| return |
| } |
| |
| func GetNextArenaHint() uintptr { |
| return mheap_.arenaHints.addr |
| } |
| |
| type G = g |
| |
| type Sudog = sudog |
| |
| func Getg() *G { |
| return getg() |
| } |
| |
| //go:noinline |
| func PanicForTesting(b []byte, i int) byte { |
| return unexportedPanicForTesting(b, i) |
| } |
| |
| //go:noinline |
| func unexportedPanicForTesting(b []byte, i int) byte { |
| return b[i] |
| } |
| |
| func G0StackOverflow() { |
| systemstack(func() { |
| stackOverflow(nil) |
| }) |
| } |
| |
| func stackOverflow(x *byte) { |
| var buf [256]byte |
| stackOverflow(&buf[0]) |
| } |
| |
| func MapTombstoneCheck(m map[int]int) { |
| // Make sure emptyOne and emptyRest are distributed correctly. |
| // We should have a series of filled and emptyOne cells, followed by |
| // a series of emptyRest cells. |
| h := *(**hmap)(unsafe.Pointer(&m)) |
| i := interface{}(m) |
| t := *(**maptype)(unsafe.Pointer(&i)) |
| |
| for x := 0; x < 1<<h.B; x++ { |
| b0 := (*bmap)(add(h.buckets, uintptr(x)*uintptr(t.bucketsize))) |
| n := 0 |
| for b := b0; b != nil; b = b.overflow(t) { |
| for i := 0; i < bucketCnt; i++ { |
| if b.tophash[i] != emptyRest { |
| n++ |
| } |
| } |
| } |
| k := 0 |
| for b := b0; b != nil; b = b.overflow(t) { |
| for i := 0; i < bucketCnt; i++ { |
| if k < n && b.tophash[i] == emptyRest { |
| panic("early emptyRest") |
| } |
| if k >= n && b.tophash[i] != emptyRest { |
| panic("late non-emptyRest") |
| } |
| if k == n-1 && b.tophash[i] == emptyOne { |
| panic("last non-emptyRest entry is emptyOne") |
| } |
| k++ |
| } |
| } |
| } |
| } |
| |
| func RunGetgThreadSwitchTest() { |
| // Test that getg works correctly with thread switch. |
| // With gccgo, if we generate getg inlined, the backend |
| // may cache the address of the TLS variable, which |
| // will become invalid after a thread switch. This test |
| // checks that the bad caching doesn't happen. |
| |
| ch := make(chan int) |
| go func(ch chan int) { |
| ch <- 5 |
| LockOSThread() |
| }(ch) |
| |
| g1 := getg() |
| |
| // Block on a receive. This is likely to get us a thread |
| // switch. If we yield to the sender goroutine, it will |
| // lock the thread, forcing us to resume on a different |
| // thread. |
| <-ch |
| |
| g2 := getg() |
| if g1 != g2 { |
| panic("g1 != g2") |
| } |
| |
| // Also test getg after some control flow, as the |
| // backend is sensitive to control flow. |
| g3 := getg() |
| if g1 != g3 { |
| panic("g1 != g3") |
| } |
| } |
| |
| const ( |
| PageSize = pageSize |
| PallocChunkPages = pallocChunkPages |
| PageAlloc64Bit = pageAlloc64Bit |
| PallocSumBytes = pallocSumBytes |
| ) |
| |
| // Expose pallocSum for testing. |
| type PallocSum pallocSum |
| |
| func PackPallocSum(start, max, end uint) PallocSum { return PallocSum(packPallocSum(start, max, end)) } |
| func (m PallocSum) Start() uint { return pallocSum(m).start() } |
| func (m PallocSum) Max() uint { return pallocSum(m).max() } |
| func (m PallocSum) End() uint { return pallocSum(m).end() } |
| |
| // Expose pallocBits for testing. |
| type PallocBits pallocBits |
| |
| func (b *PallocBits) Find(npages uintptr, searchIdx uint) (uint, uint) { |
| return (*pallocBits)(b).find(npages, searchIdx) |
| } |
| func (b *PallocBits) AllocRange(i, n uint) { (*pallocBits)(b).allocRange(i, n) } |
| func (b *PallocBits) Free(i, n uint) { (*pallocBits)(b).free(i, n) } |
| func (b *PallocBits) Summarize() PallocSum { return PallocSum((*pallocBits)(b).summarize()) } |
| func (b *PallocBits) PopcntRange(i, n uint) uint { return (*pageBits)(b).popcntRange(i, n) } |
| |
| // SummarizeSlow is a slow but more obviously correct implementation |
| // of (*pallocBits).summarize. Used for testing. |
| func SummarizeSlow(b *PallocBits) PallocSum { |
| var start, max, end uint |
| |
| const N = uint(len(b)) * 64 |
| for start < N && (*pageBits)(b).get(start) == 0 { |
| start++ |
| } |
| for end < N && (*pageBits)(b).get(N-end-1) == 0 { |
| end++ |
| } |
| run := uint(0) |
| for i := uint(0); i < N; i++ { |
| if (*pageBits)(b).get(i) == 0 { |
| run++ |
| } else { |
| run = 0 |
| } |
| if run > max { |
| max = run |
| } |
| } |
| return PackPallocSum(start, max, end) |
| } |
| |
| // Expose non-trivial helpers for testing. |
| func FindBitRange64(c uint64, n uint) uint { return findBitRange64(c, n) } |
| |
| // Given two PallocBits, returns a set of bit ranges where |
| // they differ. |
| func DiffPallocBits(a, b *PallocBits) []BitRange { |
| ba := (*pageBits)(a) |
| bb := (*pageBits)(b) |
| |
| var d []BitRange |
| base, size := uint(0), uint(0) |
| for i := uint(0); i < uint(len(ba))*64; i++ { |
| if ba.get(i) != bb.get(i) { |
| if size == 0 { |
| base = i |
| } |
| size++ |
| } else { |
| if size != 0 { |
| d = append(d, BitRange{base, size}) |
| } |
| size = 0 |
| } |
| } |
| if size != 0 { |
| d = append(d, BitRange{base, size}) |
| } |
| return d |
| } |
| |
| // StringifyPallocBits gets the bits in the bit range r from b, |
| // and returns a string containing the bits as ASCII 0 and 1 |
| // characters. |
| func StringifyPallocBits(b *PallocBits, r BitRange) string { |
| str := "" |
| for j := r.I; j < r.I+r.N; j++ { |
| if (*pageBits)(b).get(j) != 0 { |
| str += "1" |
| } else { |
| str += "0" |
| } |
| } |
| return str |
| } |
| |
| // Expose pallocData for testing. |
| type PallocData pallocData |
| |
| func (d *PallocData) FindScavengeCandidate(searchIdx uint, min, max uintptr) (uint, uint) { |
| return (*pallocData)(d).findScavengeCandidate(searchIdx, min, max) |
| } |
| func (d *PallocData) AllocRange(i, n uint) { (*pallocData)(d).allocRange(i, n) } |
| func (d *PallocData) ScavengedSetRange(i, n uint) { |
| (*pallocData)(d).scavenged.setRange(i, n) |
| } |
| func (d *PallocData) PallocBits() *PallocBits { |
| return (*PallocBits)(&(*pallocData)(d).pallocBits) |
| } |
| func (d *PallocData) Scavenged() *PallocBits { |
| return (*PallocBits)(&(*pallocData)(d).scavenged) |
| } |
| |
| // Expose fillAligned for testing. |
| func FillAligned(x uint64, m uint) uint64 { return fillAligned(x, m) } |
| |
| // Expose pageCache for testing. |
| type PageCache pageCache |
| |
| const PageCachePages = pageCachePages |
| |
| func NewPageCache(base uintptr, cache, scav uint64) PageCache { |
| return PageCache(pageCache{base: base, cache: cache, scav: scav}) |
| } |
| func (c *PageCache) Empty() bool { return (*pageCache)(c).empty() } |
| func (c *PageCache) Base() uintptr { return (*pageCache)(c).base } |
| func (c *PageCache) Cache() uint64 { return (*pageCache)(c).cache } |
| func (c *PageCache) Scav() uint64 { return (*pageCache)(c).scav } |
| func (c *PageCache) Alloc(npages uintptr) (uintptr, uintptr) { |
| return (*pageCache)(c).alloc(npages) |
| } |
| func (c *PageCache) Flush(s *PageAlloc) { |
| cp := (*pageCache)(c) |
| sp := (*pageAlloc)(s) |
| |
| systemstack(func() { |
| // None of the tests need any higher-level locking, so we just |
| // take the lock internally. |
| lock(sp.mheapLock) |
| cp.flush(sp) |
| unlock(sp.mheapLock) |
| }) |
| } |
| |
| // Expose chunk index type. |
| type ChunkIdx chunkIdx |
| |
| // Expose pageAlloc for testing. Note that because pageAlloc is |
| // not in the heap, so is PageAlloc. |
| type PageAlloc pageAlloc |
| |
| func (p *PageAlloc) Alloc(npages uintptr) (uintptr, uintptr) { |
| pp := (*pageAlloc)(p) |
| |
| var addr, scav uintptr |
| systemstack(func() { |
| // None of the tests need any higher-level locking, so we just |
| // take the lock internally. |
| lock(pp.mheapLock) |
| addr, scav = pp.alloc(npages) |
| unlock(pp.mheapLock) |
| }) |
| return addr, scav |
| } |
| func (p *PageAlloc) AllocToCache() PageCache { |
| pp := (*pageAlloc)(p) |
| |
| var c PageCache |
| systemstack(func() { |
| // None of the tests need any higher-level locking, so we just |
| // take the lock internally. |
| lock(pp.mheapLock) |
| c = PageCache(pp.allocToCache()) |
| unlock(pp.mheapLock) |
| }) |
| return c |
| } |
| func (p *PageAlloc) Free(base, npages uintptr) { |
| pp := (*pageAlloc)(p) |
| |
| systemstack(func() { |
| // None of the tests need any higher-level locking, so we just |
| // take the lock internally. |
| lock(pp.mheapLock) |
| pp.free(base, npages) |
| unlock(pp.mheapLock) |
| }) |
| } |
| func (p *PageAlloc) Bounds() (ChunkIdx, ChunkIdx) { |
| return ChunkIdx((*pageAlloc)(p).start), ChunkIdx((*pageAlloc)(p).end) |
| } |
| func (p *PageAlloc) Scavenge(nbytes uintptr, mayUnlock bool) (r uintptr) { |
| pp := (*pageAlloc)(p) |
| systemstack(func() { |
| // None of the tests need any higher-level locking, so we just |
| // take the lock internally. |
| lock(pp.mheapLock) |
| r = pp.scavenge(nbytes, mayUnlock) |
| unlock(pp.mheapLock) |
| }) |
| return |
| } |
| func (p *PageAlloc) InUse() []AddrRange { |
| ranges := make([]AddrRange, 0, len(p.inUse.ranges)) |
| for _, r := range p.inUse.ranges { |
| ranges = append(ranges, AddrRange{r}) |
| } |
| return ranges |
| } |
| |
| // Returns nil if the PallocData's L2 is missing. |
| func (p *PageAlloc) PallocData(i ChunkIdx) *PallocData { |
| ci := chunkIdx(i) |
| return (*PallocData)((*pageAlloc)(p).tryChunkOf(ci)) |
| } |
| |
| // AddrRange is a wrapper around addrRange for testing. |
| type AddrRange struct { |
| addrRange |
| } |
| |
| // MakeAddrRange creates a new address range. |
| func MakeAddrRange(base, limit uintptr) AddrRange { |
| return AddrRange{makeAddrRange(base, limit)} |
| } |
| |
| // Base returns the virtual base address of the address range. |
| func (a AddrRange) Base() uintptr { |
| return a.addrRange.base.addr() |
| } |
| |
| // Base returns the virtual address of the limit of the address range. |
| func (a AddrRange) Limit() uintptr { |
| return a.addrRange.limit.addr() |
| } |
| |
| // Equals returns true if the two address ranges are exactly equal. |
| func (a AddrRange) Equals(b AddrRange) bool { |
| return a == b |
| } |
| |
| // Size returns the size in bytes of the address range. |
| func (a AddrRange) Size() uintptr { |
| return a.addrRange.size() |
| } |
| |
| // AddrRanges is a wrapper around addrRanges for testing. |
| type AddrRanges struct { |
| addrRanges |
| mutable bool |
| } |
| |
| // NewAddrRanges creates a new empty addrRanges. |
| // |
| // Note that this initializes addrRanges just like in the |
| // runtime, so its memory is persistentalloc'd. Call this |
| // function sparingly since the memory it allocates is |
| // leaked. |
| // |
| // This AddrRanges is mutable, so we can test methods like |
| // Add. |
| func NewAddrRanges() AddrRanges { |
| r := addrRanges{} |
| r.init(new(sysMemStat)) |
| return AddrRanges{r, true} |
| } |
| |
| // MakeAddrRanges creates a new addrRanges populated with |
| // the ranges in a. |
| // |
| // The returned AddrRanges is immutable, so methods like |
| // Add will fail. |
| func MakeAddrRanges(a ...AddrRange) AddrRanges { |
| // Methods that manipulate the backing store of addrRanges.ranges should |
| // not be used on the result from this function (e.g. add) since they may |
| // trigger reallocation. That would normally be fine, except the new |
| // backing store won't come from the heap, but from persistentalloc, so |
| // we'll leak some memory implicitly. |
| ranges := make([]addrRange, 0, len(a)) |
| total := uintptr(0) |
| for _, r := range a { |
| ranges = append(ranges, r.addrRange) |
| total += r.Size() |
| } |
| return AddrRanges{addrRanges{ |
| ranges: ranges, |
| totalBytes: total, |
| sysStat: new(sysMemStat), |
| }, false} |
| } |
| |
| // Ranges returns a copy of the ranges described by the |
| // addrRanges. |
| func (a *AddrRanges) Ranges() []AddrRange { |
| result := make([]AddrRange, 0, len(a.addrRanges.ranges)) |
| for _, r := range a.addrRanges.ranges { |
| result = append(result, AddrRange{r}) |
| } |
| return result |
| } |
| |
| // FindSucc returns the successor to base. See addrRanges.findSucc |
| // for more details. |
| func (a *AddrRanges) FindSucc(base uintptr) int { |
| return a.findSucc(base) |
| } |
| |
| // Add adds a new AddrRange to the AddrRanges. |
| // |
| // The AddrRange must be mutable (i.e. created by NewAddrRanges), |
| // otherwise this method will throw. |
| func (a *AddrRanges) Add(r AddrRange) { |
| if !a.mutable { |
| throw("attempt to mutate immutable AddrRanges") |
| } |
| a.add(r.addrRange) |
| } |
| |
| // TotalBytes returns the totalBytes field of the addrRanges. |
| func (a *AddrRanges) TotalBytes() uintptr { |
| return a.addrRanges.totalBytes |
| } |
| |
| // BitRange represents a range over a bitmap. |
| type BitRange struct { |
| I, N uint // bit index and length in bits |
| } |
| |
| // NewPageAlloc creates a new page allocator for testing and |
| // initializes it with the scav and chunks maps. Each key in these maps |
| // represents a chunk index and each value is a series of bit ranges to |
| // set within each bitmap's chunk. |
| // |
| // The initialization of the pageAlloc preserves the invariant that if a |
| // scavenged bit is set the alloc bit is necessarily unset, so some |
| // of the bits described by scav may be cleared in the final bitmap if |
| // ranges in chunks overlap with them. |
| // |
| // scav is optional, and if nil, the scavenged bitmap will be cleared |
| // (as opposed to all 1s, which it usually is). Furthermore, every |
| // chunk index in scav must appear in chunks; ones that do not are |
| // ignored. |
| func NewPageAlloc(chunks, scav map[ChunkIdx][]BitRange) *PageAlloc { |
| p := new(pageAlloc) |
| |
| // We've got an entry, so initialize the pageAlloc. |
| p.init(new(mutex), nil) |
| lockInit(p.mheapLock, lockRankMheap) |
| p.test = true |
| |
| for i, init := range chunks { |
| addr := chunkBase(chunkIdx(i)) |
| |
| // Mark the chunk's existence in the pageAlloc. |
| systemstack(func() { |
| lock(p.mheapLock) |
| p.grow(addr, pallocChunkBytes) |
| unlock(p.mheapLock) |
| }) |
| |
| // Initialize the bitmap and update pageAlloc metadata. |
| chunk := p.chunkOf(chunkIndex(addr)) |
| |
| // Clear all the scavenged bits which grow set. |
| chunk.scavenged.clearRange(0, pallocChunkPages) |
| |
| // Apply scavenge state if applicable. |
| if scav != nil { |
| if scvg, ok := scav[i]; ok { |
| for _, s := range scvg { |
| // Ignore the case of s.N == 0. setRange doesn't handle |
| // it and it's a no-op anyway. |
| if s.N != 0 { |
| chunk.scavenged.setRange(s.I, s.N) |
| } |
| } |
| } |
| } |
| |
| // Apply alloc state. |
| for _, s := range init { |
| // Ignore the case of s.N == 0. allocRange doesn't handle |
| // it and it's a no-op anyway. |
| if s.N != 0 { |
| chunk.allocRange(s.I, s.N) |
| } |
| } |
| |
| // Update heap metadata for the allocRange calls above. |
| systemstack(func() { |
| lock(p.mheapLock) |
| p.update(addr, pallocChunkPages, false, false) |
| unlock(p.mheapLock) |
| }) |
| } |
| |
| systemstack(func() { |
| lock(p.mheapLock) |
| p.scavengeStartGen() |
| unlock(p.mheapLock) |
| }) |
| |
| return (*PageAlloc)(p) |
| } |
| |
| // FreePageAlloc releases hard OS resources owned by the pageAlloc. Once this |
| // is called the pageAlloc may no longer be used. The object itself will be |
| // collected by the garbage collector once it is no longer live. |
| func FreePageAlloc(pp *PageAlloc) { |
| p := (*pageAlloc)(pp) |
| |
| // Free all the mapped space for the summary levels. |
| if pageAlloc64Bit != 0 { |
| for l := 0; l < summaryLevels; l++ { |
| sysFree(unsafe.Pointer(&p.summary[l][0]), uintptr(cap(p.summary[l]))*pallocSumBytes, nil) |
| } |
| } else { |
| resSize := uintptr(0) |
| for _, s := range p.summary { |
| resSize += uintptr(cap(s)) * pallocSumBytes |
| } |
| sysFree(unsafe.Pointer(&p.summary[0][0]), alignUp(resSize, physPageSize), nil) |
| } |
| |
| // Free the mapped space for chunks. |
| for i := range p.chunks { |
| if x := p.chunks[i]; x != nil { |
| p.chunks[i] = nil |
| // This memory comes from sysAlloc and will always be page-aligned. |
| sysFree(unsafe.Pointer(x), unsafe.Sizeof(*p.chunks[0]), nil) |
| } |
| } |
| } |
| |
| // BaseChunkIdx is a convenient chunkIdx value which works on both |
| // 64 bit and 32 bit platforms, allowing the tests to share code |
| // between the two. |
| // |
| // This should not be higher than 0x100*pallocChunkBytes to support |
| // mips and mipsle, which only have 31-bit address spaces. |
| var BaseChunkIdx = ChunkIdx(chunkIndex(((0xc000*pageAlloc64Bit + 0x100*pageAlloc32Bit) * pallocChunkBytes) + arenaBaseOffset*sys.GoosAix*sys.GoarchPpc64)) |
| |
| // PageBase returns an address given a chunk index and a page index |
| // relative to that chunk. |
| func PageBase(c ChunkIdx, pageIdx uint) uintptr { |
| return chunkBase(chunkIdx(c)) + uintptr(pageIdx)*pageSize |
| } |
| |
| type BitsMismatch struct { |
| Base uintptr |
| Got, Want uint64 |
| } |
| |
| func CheckScavengedBitsCleared(mismatches []BitsMismatch) (n int, ok bool) { |
| ok = true |
| |
| // Run on the system stack to avoid stack growth allocation. |
| systemstack(func() { |
| getg().m.mallocing++ |
| |
| // Lock so that we can safely access the bitmap. |
| lock(&mheap_.lock) |
| chunkLoop: |
| for i := mheap_.pages.start; i < mheap_.pages.end; i++ { |
| chunk := mheap_.pages.tryChunkOf(i) |
| if chunk == nil { |
| continue |
| } |
| for j := 0; j < pallocChunkPages/64; j++ { |
| // Run over each 64-bit bitmap section and ensure |
| // scavenged is being cleared properly on allocation. |
| // If a used bit and scavenged bit are both set, that's |
| // an error, and could indicate a larger problem, or |
| // an accounting problem. |
| want := chunk.scavenged[j] &^ chunk.pallocBits[j] |
| got := chunk.scavenged[j] |
| if want != got { |
| ok = false |
| if n >= len(mismatches) { |
| break chunkLoop |
| } |
| mismatches[n] = BitsMismatch{ |
| Base: chunkBase(i) + uintptr(j)*64*pageSize, |
| Got: got, |
| Want: want, |
| } |
| n++ |
| } |
| } |
| } |
| unlock(&mheap_.lock) |
| |
| getg().m.mallocing-- |
| }) |
| return |
| } |
| |
| func PageCachePagesLeaked() (leaked uintptr) { |
| stopTheWorld("PageCachePagesLeaked") |
| |
| // Walk over destroyed Ps and look for unflushed caches. |
| deadp := allp[len(allp):cap(allp)] |
| for _, p := range deadp { |
| // Since we're going past len(allp) we may see nil Ps. |
| // Just ignore them. |
| if p != nil { |
| leaked += uintptr(sys.OnesCount64(p.pcache.cache)) |
| } |
| } |
| |
| startTheWorld() |
| return |
| } |
| |
| var Semacquire = semacquire |
| var Semrelease1 = semrelease1 |
| |
| func SemNwait(addr *uint32) uint32 { |
| root := semroot(addr) |
| return atomic.Load(&root.nwait) |
| } |
| |
| // MapHashCheck computes the hash of the key k for the map m, twice. |
| // Method 1 uses the built-in hasher for the map. |
| // Method 2 uses the typehash function (the one used by reflect). |
| // Returns the two hash values, which should always be equal. |
| func MapHashCheck(m interface{}, k interface{}) (uintptr, uintptr) { |
| // Unpack m. |
| mt := (*maptype)(unsafe.Pointer(efaceOf(&m)._type)) |
| mh := (*hmap)(efaceOf(&m).data) |
| |
| // Unpack k. |
| kt := efaceOf(&k)._type |
| var p unsafe.Pointer |
| if isDirectIface(kt) { |
| q := efaceOf(&k).data |
| p = unsafe.Pointer(&q) |
| } else { |
| p = efaceOf(&k).data |
| } |
| |
| // Compute the hash functions. |
| x := mt.hasher(noescape(p), uintptr(mh.hash0)) |
| y := typehash(kt, noescape(p), uintptr(mh.hash0)) |
| return x, y |
| } |
| |
| // mspan wrapper for testing. |
| //go:notinheap |
| type MSpan mspan |
| |
| // Allocate an mspan for testing. |
| func AllocMSpan() *MSpan { |
| var s *mspan |
| systemstack(func() { |
| lock(&mheap_.lock) |
| s = (*mspan)(mheap_.spanalloc.alloc()) |
| unlock(&mheap_.lock) |
| }) |
| return (*MSpan)(s) |
| } |
| |
| // Free an allocated mspan. |
| func FreeMSpan(s *MSpan) { |
| systemstack(func() { |
| lock(&mheap_.lock) |
| mheap_.spanalloc.free(unsafe.Pointer(s)) |
| unlock(&mheap_.lock) |
| }) |
| } |
| |
| func MSpanCountAlloc(ms *MSpan, bits []byte) int { |
| s := (*mspan)(ms) |
| s.nelems = uintptr(len(bits) * 8) |
| s.gcmarkBits = (*gcBits)(unsafe.Pointer(&bits[0])) |
| result := s.countAlloc() |
| s.gcmarkBits = nil |
| return result |
| } |
| |
| const ( |
| TimeHistSubBucketBits = timeHistSubBucketBits |
| TimeHistNumSubBuckets = timeHistNumSubBuckets |
| TimeHistNumSuperBuckets = timeHistNumSuperBuckets |
| ) |
| |
| type TimeHistogram timeHistogram |
| |
| // Counts returns the counts for the given bucket, subBucket indices. |
| // Returns true if the bucket was valid, otherwise returns the counts |
| // for the underflow bucket and false. |
| func (th *TimeHistogram) Count(bucket, subBucket uint) (uint64, bool) { |
| t := (*timeHistogram)(th) |
| i := bucket*TimeHistNumSubBuckets + subBucket |
| if i >= uint(len(t.counts)) { |
| return t.underflow, false |
| } |
| return t.counts[i], true |
| } |
| |
| func (th *TimeHistogram) Record(duration int64) { |
| (*timeHistogram)(th).record(duration) |
| } |
| |
| var Pusestackmaps = &usestackmaps |