| // Copyright 2017 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // +build ignore |
| |
| // Generate the constant table associated with the poly used by the |
| // vpmsumd crc32 algorithm. |
| // |
| // go run gen_const_ppc64le.go |
| // |
| // generates crc32_table_ppc64le.s |
| |
| // The following is derived from code written by Anton Blanchard |
| // <anton@au.ibm.com> found at https://github.com/antonblanchard/crc32-vpmsum. |
| // The original is dual licensed under GPL and Apache 2. As the copyright holder |
| // for the work, IBM has contributed this new work under the golang license. |
| |
| // This code was written in Go based on the original C implementation. |
| |
| // This is a tool needed to generate the appropriate constants needed for |
| // the vpmsum algorithm. It is included to generate new constant tables if |
| // new polynomial values are included in the future. |
| |
| package main |
| |
| import ( |
| "bytes" |
| "fmt" |
| "os" |
| ) |
| |
| var blocking = 32 * 1024 |
| |
| func reflect_bits(b uint64, nr uint) uint64 { |
| var ref uint64 |
| |
| for bit := uint64(0); bit < uint64(nr); bit++ { |
| if (b & uint64(1)) == 1 { |
| ref |= (1 << (uint64(nr-1) - bit)) |
| } |
| b = (b >> 1) |
| } |
| return ref |
| } |
| |
| func get_remainder(poly uint64, deg uint, n uint) uint64 { |
| |
| rem, _ := xnmodp(n, poly, deg) |
| return rem |
| } |
| |
| func get_quotient(poly uint64, bits, n uint) uint64 { |
| |
| _, div := xnmodp(n, poly, bits) |
| return div |
| } |
| |
| // xnmodp returns two values, p and div: |
| // p is the representation of the binary polynomial x**n mod (x ** deg + "poly") |
| // That is p is the binary representation of the modulus polynomial except for its highest-order term. |
| // div is the binary representation of the polynomial x**n / (x ** deg + "poly") |
| func xnmodp(n uint, poly uint64, deg uint) (uint64, uint64) { |
| |
| var mod, mask, high, div uint64 |
| |
| if n < deg { |
| div = 0 |
| return poly, div |
| } |
| mask = 1<<deg - 1 |
| poly &= mask |
| mod = poly |
| div = 1 |
| deg-- |
| n-- |
| for n > deg { |
| high = (mod >> deg) & 1 |
| div = (div << 1) | high |
| mod <<= 1 |
| if high != 0 { |
| mod ^= poly |
| } |
| n-- |
| } |
| return mod & mask, div |
| } |
| |
| func main() { |
| w := new(bytes.Buffer) |
| |
| fmt.Fprintf(w, "// autogenerated: do not edit!\n") |
| fmt.Fprintf(w, "// generated from crc32/gen_const_ppc64le.go\n") |
| fmt.Fprintln(w) |
| fmt.Fprintf(w, "#include \"textflag.h\"\n") |
| |
| // These are the polynomials supported in vector now. |
| // If adding others, include the polynomial and a name |
| // to identify it. |
| |
| genCrc32ConstTable(w, 0xedb88320, "IEEE") |
| genCrc32ConstTable(w, 0x82f63b78, "Cast") |
| genCrc32ConstTable(w, 0xeb31d82e, "Koop") |
| b := w.Bytes() |
| |
| err := os.WriteFile("crc32_table_ppc64le.s", b, 0666) |
| if err != nil { |
| fmt.Printf("can't write output: %s\n", err) |
| } |
| } |
| |
| func genCrc32ConstTable(w *bytes.Buffer, poly uint32, polyid string) { |
| |
| ref_poly := reflect_bits(uint64(poly), 32) |
| fmt.Fprintf(w, "\n\t/* Reduce %d kbits to 1024 bits */\n", blocking*8) |
| j := 0 |
| for i := (blocking * 8) - 1024; i > 0; i -= 1024 { |
| a := reflect_bits(get_remainder(ref_poly, 32, uint(i)), 32) << 1 |
| b := reflect_bits(get_remainder(ref_poly, 32, uint(i+64)), 32) << 1 |
| |
| fmt.Fprintf(w, "\t/* x^%d mod p(x)%s, x^%d mod p(x)%s */\n", uint(i+64), "", uint(i), "") |
| fmt.Fprintf(w, "DATA ·%sConst+%d(SB)/8,$0x%016x\n", polyid, j*8, b) |
| fmt.Fprintf(w, "DATA ·%sConst+%d(SB)/8,$0x%016x\n", polyid, (j+1)*8, a) |
| |
| j += 2 |
| fmt.Fprintf(w, "\n") |
| } |
| |
| for i := (1024 * 2) - 128; i >= 0; i -= 128 { |
| a := reflect_bits(get_remainder(ref_poly, 32, uint(i+32)), 32) |
| b := reflect_bits(get_remainder(ref_poly, 32, uint(i+64)), 32) |
| c := reflect_bits(get_remainder(ref_poly, 32, uint(i+96)), 32) |
| d := reflect_bits(get_remainder(ref_poly, 32, uint(i+128)), 32) |
| |
| fmt.Fprintf(w, "\t/* x^%d mod p(x)%s, x^%d mod p(x)%s, x^%d mod p(x)%s, x^%d mod p(x)%s */\n", i+128, "", i+96, "", i+64, "", i+32, "") |
| fmt.Fprintf(w, "DATA ·%sConst+%d(SB)/8,$0x%08x%08x\n", polyid, j*8, c, d) |
| fmt.Fprintf(w, "DATA ·%sConst+%d(SB)/8,$0x%08x%08x\n", polyid, (j+1)*8, a, b) |
| |
| j += 2 |
| fmt.Fprintf(w, "\n") |
| } |
| |
| fmt.Fprintf(w, "GLOBL ·%sConst(SB),RODATA,$4336\n", polyid) |
| fmt.Fprintf(w, "\n /* Barrett constant m - (4^32)/n */\n") |
| fmt.Fprintf(w, "DATA ·%sBarConst(SB)/8,$0x%016x\n", polyid, reflect_bits(get_quotient(ref_poly, 32, 64), 33)) |
| fmt.Fprintf(w, "DATA ·%sBarConst+8(SB)/8,$0x0000000000000000\n", polyid) |
| fmt.Fprintf(w, "DATA ·%sBarConst+16(SB)/8,$0x%016x\n", polyid, reflect_bits((uint64(1)<<32)|ref_poly, 33)) // reflected? |
| fmt.Fprintf(w, "DATA ·%sBarConst+24(SB)/8,$0x0000000000000000\n", polyid) |
| fmt.Fprintf(w, "GLOBL ·%sBarConst(SB),RODATA,$32\n", polyid) |
| } |