| // Copyright 2012 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | // +build aix darwin dragonfly freebsd linux netbsd openbsd solaris | 
 |  | 
 | package runtime | 
 |  | 
 | import ( | 
 | 	"runtime/internal/sys" | 
 | 	"unsafe" | 
 | ) | 
 |  | 
 | // For gccgo's C code to call: | 
 | //go:linkname initsig runtime.initsig | 
 | //go:linkname crash runtime.crash | 
 | //go:linkname resetcpuprofiler runtime.resetcpuprofiler | 
 | //go:linkname sigtrampgo runtime.sigtrampgo | 
 |  | 
 | //go:linkname os_sigpipe os.sigpipe | 
 | func os_sigpipe() { | 
 | 	systemstack(sigpipe) | 
 | } | 
 |  | 
 | func signame(sig uint32) string { | 
 | 	if sig >= uint32(len(sigtable)) { | 
 | 		return "" | 
 | 	} | 
 | 	return sigtable[sig].name | 
 | } | 
 |  | 
 | const ( | 
 | 	_SIG_DFL uintptr = 0 | 
 | 	_SIG_IGN uintptr = 1 | 
 | ) | 
 |  | 
 | // Stores the signal handlers registered before Go installed its own. | 
 | // These signal handlers will be invoked in cases where Go doesn't want to | 
 | // handle a particular signal (e.g., signal occurred on a non-Go thread). | 
 | // See sigfwdgo() for more information on when the signals are forwarded. | 
 | // | 
 | // Signal forwarding is currently available only on Darwin and Linux. | 
 | var fwdSig [_NSIG]uintptr | 
 |  | 
 | // channels for synchronizing signal mask updates with the signal mask | 
 | // thread | 
 | var ( | 
 | 	disableSigChan  chan uint32 | 
 | 	enableSigChan   chan uint32 | 
 | 	maskUpdatedChan chan struct{} | 
 | ) | 
 |  | 
 | func init() { | 
 | 	// _NSIG is the number of signals on this operating system. | 
 | 	// sigtable should describe what to do for all the possible signals. | 
 | 	if len(sigtable) != _NSIG { | 
 | 		print("runtime: len(sigtable)=", len(sigtable), " _NSIG=", _NSIG, "\n") | 
 | 		throw("bad sigtable len") | 
 | 	} | 
 | } | 
 |  | 
 | var signalsOK bool | 
 |  | 
 | // Initialize signals. | 
 | // Called by libpreinit so runtime may not be initialized. | 
 | //go:nosplit | 
 | //go:nowritebarrierrec | 
 | func initsig(preinit bool) { | 
 | 	if preinit { | 
 | 		// preinit is only passed as true if isarchive should be true. | 
 | 		isarchive = true | 
 | 	} | 
 |  | 
 | 	if !preinit { | 
 | 		// It's now OK for signal handlers to run. | 
 | 		signalsOK = true | 
 | 	} | 
 |  | 
 | 	// For c-archive/c-shared this is called by libpreinit with | 
 | 	// preinit == true. | 
 | 	if (isarchive || islibrary) && !preinit { | 
 | 		return | 
 | 	} | 
 |  | 
 | 	for i := uint32(0); i < _NSIG; i++ { | 
 | 		t := &sigtable[i] | 
 | 		if t.flags == 0 || t.flags&_SigDefault != 0 { | 
 | 			continue | 
 | 		} | 
 | 		fwdSig[i] = getsig(i) | 
 |  | 
 | 		if !sigInstallGoHandler(i) { | 
 | 			// Even if we are not installing a signal handler, | 
 | 			// set SA_ONSTACK if necessary. | 
 | 			if fwdSig[i] != _SIG_DFL && fwdSig[i] != _SIG_IGN { | 
 | 				setsigstack(i) | 
 | 			} | 
 | 			continue | 
 | 		} | 
 |  | 
 | 		t.flags |= _SigHandling | 
 | 		setsig(i, getSigtramp()) | 
 | 	} | 
 | } | 
 |  | 
 | //go:nosplit | 
 | //go:nowritebarrierrec | 
 | func sigInstallGoHandler(sig uint32) bool { | 
 | 	// For some signals, we respect an inherited SIG_IGN handler | 
 | 	// rather than insist on installing our own default handler. | 
 | 	// Even these signals can be fetched using the os/signal package. | 
 | 	switch sig { | 
 | 	case _SIGHUP, _SIGINT: | 
 | 		if fwdSig[sig] == _SIG_IGN { | 
 | 			return false | 
 | 		} | 
 | 	} | 
 |  | 
 | 	t := &sigtable[sig] | 
 | 	if t.flags&_SigSetStack != 0 { | 
 | 		return false | 
 | 	} | 
 |  | 
 | 	// When built using c-archive or c-shared, only install signal | 
 | 	// handlers for synchronous signals. | 
 | 	if (isarchive || islibrary) && t.flags&_SigPanic == 0 { | 
 | 		return false | 
 | 	} | 
 |  | 
 | 	return true | 
 | } | 
 |  | 
 | func sigenable(sig uint32) { | 
 | 	if sig >= uint32(len(sigtable)) { | 
 | 		return | 
 | 	} | 
 |  | 
 | 	t := &sigtable[sig] | 
 | 	if t.flags&_SigNotify != 0 { | 
 | 		ensureSigM() | 
 | 		enableSigChan <- sig | 
 | 		<-maskUpdatedChan | 
 | 		if t.flags&_SigHandling == 0 { | 
 | 			t.flags |= _SigHandling | 
 | 			fwdSig[sig] = getsig(sig) | 
 | 			setsig(sig, getSigtramp()) | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | func sigdisable(sig uint32) { | 
 | 	if sig >= uint32(len(sigtable)) { | 
 | 		return | 
 | 	} | 
 |  | 
 | 	t := &sigtable[sig] | 
 | 	if t.flags&_SigNotify != 0 { | 
 | 		ensureSigM() | 
 | 		disableSigChan <- sig | 
 | 		<-maskUpdatedChan | 
 |  | 
 | 		// If initsig does not install a signal handler for a | 
 | 		// signal, then to go back to the state before Notify | 
 | 		// we should remove the one we installed. | 
 | 		if !sigInstallGoHandler(sig) { | 
 | 			t.flags &^= _SigHandling | 
 | 			setsig(sig, fwdSig[sig]) | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | func sigignore(sig uint32) { | 
 | 	if sig >= uint32(len(sigtable)) { | 
 | 		return | 
 | 	} | 
 |  | 
 | 	t := &sigtable[sig] | 
 | 	if t.flags&_SigNotify != 0 { | 
 | 		t.flags &^= _SigHandling | 
 | 		setsig(sig, _SIG_IGN) | 
 | 	} | 
 | } | 
 |  | 
 | func resetcpuprofiler(hz int32) { | 
 | 	var it _itimerval | 
 | 	if hz == 0 { | 
 | 		setitimer(_ITIMER_PROF, &it, nil) | 
 | 	} else { | 
 | 		it.it_interval.tv_sec = 0 | 
 | 		it.it_interval.set_usec(1000000 / hz) | 
 | 		it.it_value = it.it_interval | 
 | 		setitimer(_ITIMER_PROF, &it, nil) | 
 | 	} | 
 | 	_g_ := getg() | 
 | 	_g_.m.profilehz = hz | 
 | } | 
 |  | 
 | func sigpipe() { | 
 | 	if sigsend(_SIGPIPE) { | 
 | 		return | 
 | 	} | 
 | 	dieFromSignal(_SIGPIPE) | 
 | } | 
 |  | 
 | // sigtrampgo is called from the signal handler function, sigtramp, | 
 | // written in assembly code. | 
 | // This is called by the signal handler, and the world may be stopped. | 
 | //go:nosplit | 
 | //go:nowritebarrierrec | 
 | func sigtrampgo(sig uint32, info *_siginfo_t, ctx unsafe.Pointer) { | 
 | 	if sigfwdgo(sig, info, ctx) { | 
 | 		return | 
 | 	} | 
 | 	g := getg() | 
 | 	if g == nil { | 
 | 		c := sigctxt{info, ctx} | 
 | 		if sig == _SIGPROF { | 
 | 			_, pc := getSiginfo(info, ctx) | 
 | 			sigprofNonGo(pc) | 
 | 			return | 
 | 		} | 
 | 		badsignal(uintptr(sig), &c) | 
 | 		return | 
 | 	} | 
 |  | 
 | 	setg(g.m.gsignal) | 
 | 	sighandler(sig, info, ctx, g) | 
 | 	setg(g) | 
 | } | 
 |  | 
 | // sigpanic turns a synchronous signal into a run-time panic. | 
 | // If the signal handler sees a synchronous panic, it arranges the | 
 | // stack to look like the function where the signal occurred called | 
 | // sigpanic, sets the signal's PC value to sigpanic, and returns from | 
 | // the signal handler. The effect is that the program will act as | 
 | // though the function that got the signal simply called sigpanic | 
 | // instead. | 
 | func sigpanic() { | 
 | 	g := getg() | 
 | 	if !canpanic(g) { | 
 | 		throw("unexpected signal during runtime execution") | 
 | 	} | 
 |  | 
 | 	switch g.sig { | 
 | 	case _SIGBUS: | 
 | 		if g.sigcode0 == _BUS_ADRERR && g.sigcode1 < 0x1000 { | 
 | 			panicmem() | 
 | 		} | 
 | 		// Support runtime/debug.SetPanicOnFault. | 
 | 		if g.paniconfault { | 
 | 			panicmem() | 
 | 		} | 
 | 		print("unexpected fault address ", hex(g.sigcode1), "\n") | 
 | 		throw("fault") | 
 | 	case _SIGSEGV: | 
 | 		if (g.sigcode0 == 0 || g.sigcode0 == _SEGV_MAPERR || g.sigcode0 == _SEGV_ACCERR) && g.sigcode1 < 0x1000 { | 
 | 			panicmem() | 
 | 		} | 
 | 		// Support runtime/debug.SetPanicOnFault. | 
 | 		if g.paniconfault { | 
 | 			panicmem() | 
 | 		} | 
 | 		print("unexpected fault address ", hex(g.sigcode1), "\n") | 
 | 		throw("fault") | 
 | 	case _SIGFPE: | 
 | 		switch g.sigcode0 { | 
 | 		case _FPE_INTDIV: | 
 | 			panicdivide() | 
 | 		case _FPE_INTOVF: | 
 | 			panicoverflow() | 
 | 		} | 
 | 		panicfloat() | 
 | 	} | 
 |  | 
 | 	if g.sig >= uint32(len(sigtable)) { | 
 | 		// can't happen: we looked up g.sig in sigtable to decide to call sigpanic | 
 | 		throw("unexpected signal value") | 
 | 	} | 
 | 	panic(errorString(sigtable[g.sig].name)) | 
 | } | 
 |  | 
 | // dieFromSignal kills the program with a signal. | 
 | // This provides the expected exit status for the shell. | 
 | // This is only called with fatal signals expected to kill the process. | 
 | //go:nosplit | 
 | //go:nowritebarrierrec | 
 | func dieFromSignal(sig uint32) { | 
 | 	setsig(sig, _SIG_DFL) | 
 | 	unblocksig(sig) | 
 | 	raise(sig) | 
 |  | 
 | 	// That should have killed us. On some systems, though, raise | 
 | 	// sends the signal to the whole process rather than to just | 
 | 	// the current thread, which means that the signal may not yet | 
 | 	// have been delivered. Give other threads a chance to run and | 
 | 	// pick up the signal. | 
 | 	osyield() | 
 | 	osyield() | 
 | 	osyield() | 
 |  | 
 | 	// If we are still somehow running, just exit with the wrong status. | 
 | 	exit(2) | 
 | } | 
 |  | 
 | // raisebadsignal is called when a signal is received on a non-Go | 
 | // thread, and the Go program does not want to handle it (that is, the | 
 | // program has not called os/signal.Notify for the signal). | 
 | func raisebadsignal(sig uint32, c *sigctxt) { | 
 | 	if sig == _SIGPROF { | 
 | 		// Ignore profiling signals that arrive on non-Go threads. | 
 | 		return | 
 | 	} | 
 |  | 
 | 	var handler uintptr | 
 | 	if sig >= _NSIG { | 
 | 		handler = _SIG_DFL | 
 | 	} else { | 
 | 		handler = fwdSig[sig] | 
 | 	} | 
 |  | 
 | 	// Reset the signal handler and raise the signal. | 
 | 	// We are currently running inside a signal handler, so the | 
 | 	// signal is blocked. We need to unblock it before raising the | 
 | 	// signal, or the signal we raise will be ignored until we return | 
 | 	// from the signal handler. We know that the signal was unblocked | 
 | 	// before entering the handler, or else we would not have received | 
 | 	// it. That means that we don't have to worry about blocking it | 
 | 	// again. | 
 | 	unblocksig(sig) | 
 | 	setsig(sig, handler) | 
 |  | 
 | 	// If we're linked into a non-Go program we want to try to | 
 | 	// avoid modifying the original context in which the signal | 
 | 	// was raised. If the handler is the default, we know it | 
 | 	// is non-recoverable, so we don't have to worry about | 
 | 	// re-installing sighandler. At this point we can just | 
 | 	// return and the signal will be re-raised and caught by | 
 | 	// the default handler with the correct context. | 
 | 	if (isarchive || islibrary) && handler == _SIG_DFL && c.sigcode() != _SI_USER { | 
 | 		return | 
 | 	} | 
 |  | 
 | 	raise(sig) | 
 |  | 
 | 	// Give the signal a chance to be delivered. | 
 | 	// In almost all real cases the program is about to crash, | 
 | 	// so sleeping here is not a waste of time. | 
 | 	usleep(1000) | 
 |  | 
 | 	// If the signal didn't cause the program to exit, restore the | 
 | 	// Go signal handler and carry on. | 
 | 	// | 
 | 	// We may receive another instance of the signal before we | 
 | 	// restore the Go handler, but that is not so bad: we know | 
 | 	// that the Go program has been ignoring the signal. | 
 | 	setsig(sig, getSigtramp()) | 
 | } | 
 |  | 
 | func crash() { | 
 | 	if GOOS == "darwin" { | 
 | 		// OS X core dumps are linear dumps of the mapped memory, | 
 | 		// from the first virtual byte to the last, with zeros in the gaps. | 
 | 		// Because of the way we arrange the address space on 64-bit systems, | 
 | 		// this means the OS X core file will be >128 GB and even on a zippy | 
 | 		// workstation can take OS X well over an hour to write (uninterruptible). | 
 | 		// Save users from making that mistake. | 
 | 		if sys.PtrSize == 8 { | 
 | 			return | 
 | 		} | 
 | 	} | 
 |  | 
 | 	dieFromSignal(_SIGABRT) | 
 | } | 
 |  | 
 | // ensureSigM starts one global, sleeping thread to make sure at least one thread | 
 | // is available to catch signals enabled for os/signal. | 
 | func ensureSigM() { | 
 | 	if maskUpdatedChan != nil { | 
 | 		return | 
 | 	} | 
 | 	maskUpdatedChan = make(chan struct{}) | 
 | 	disableSigChan = make(chan uint32) | 
 | 	enableSigChan = make(chan uint32) | 
 | 	go func() { | 
 | 		// Signal masks are per-thread, so make sure this goroutine stays on one | 
 | 		// thread. | 
 | 		LockOSThread() | 
 | 		defer UnlockOSThread() | 
 | 		// The sigBlocked mask contains the signals not active for os/signal, | 
 | 		// initially all signals except the essential. When signal.Notify()/Stop is called, | 
 | 		// sigenable/sigdisable in turn notify this thread to update its signal | 
 | 		// mask accordingly. | 
 | 		var sigBlocked sigset | 
 | 		sigfillset(&sigBlocked) | 
 | 		for i := range sigtable { | 
 | 			if sigtable[i].flags&_SigUnblock != 0 { | 
 | 				sigdelset(&sigBlocked, i) | 
 | 			} | 
 | 		} | 
 | 		sigprocmask(_SIG_SETMASK, &sigBlocked, nil) | 
 | 		for { | 
 | 			select { | 
 | 			case sig := <-enableSigChan: | 
 | 				if sig > 0 { | 
 | 					sigdelset(&sigBlocked, int(sig)) | 
 | 				} | 
 | 			case sig := <-disableSigChan: | 
 | 				if sig > 0 { | 
 | 					sigaddset(&sigBlocked, int(sig)) | 
 | 				} | 
 | 			} | 
 | 			sigprocmask(_SIG_SETMASK, &sigBlocked, nil) | 
 | 			maskUpdatedChan <- struct{}{} | 
 | 		} | 
 | 	}() | 
 | } | 
 |  | 
 | // This is called when we receive a signal when there is no signal stack. | 
 | // This can only happen if non-Go code calls sigaltstack to disable the | 
 | // signal stack. | 
 | func noSignalStack(sig uint32) { | 
 | 	println("signal", sig, "received on thread with no signal stack") | 
 | 	throw("non-Go code disabled sigaltstack") | 
 | } | 
 |  | 
 | // This is called if we receive a signal when there is a signal stack | 
 | // but we are not on it. This can only happen if non-Go code called | 
 | // sigaction without setting the SS_ONSTACK flag. | 
 | func sigNotOnStack(sig uint32) { | 
 | 	println("signal", sig, "received but handler not on signal stack") | 
 | 	throw("non-Go code set up signal handler without SA_ONSTACK flag") | 
 | } | 
 |  | 
 | // This runs on a foreign stack, without an m or a g. No stack split. | 
 | //go:nosplit | 
 | //go:norace | 
 | //go:nowritebarrierrec | 
 | func badsignal(sig uintptr, c *sigctxt) { | 
 | 	needm(0) | 
 | 	if !sigsend(uint32(sig)) { | 
 | 		// A foreign thread received the signal sig, and the | 
 | 		// Go code does not want to handle it. | 
 | 		raisebadsignal(uint32(sig), c) | 
 | 	} | 
 | 	dropm() | 
 | } | 
 |  | 
 | // Determines if the signal should be handled by Go and if not, forwards the | 
 | // signal to the handler that was installed before Go's. Returns whether the | 
 | // signal was forwarded. | 
 | // This is called by the signal handler, and the world may be stopped. | 
 | //go:nosplit | 
 | //go:nowritebarrierrec | 
 | func sigfwdgo(sig uint32, info *_siginfo_t, ctx unsafe.Pointer) bool { | 
 | 	if sig >= uint32(len(sigtable)) { | 
 | 		return false | 
 | 	} | 
 | 	fwdFn := fwdSig[sig] | 
 |  | 
 | 	if !signalsOK { | 
 | 		// The only way we can get here is if we are in a | 
 | 		// library or archive, we installed a signal handler | 
 | 		// at program startup, but the Go runtime has not yet | 
 | 		// been initialized. | 
 | 		if fwdFn == _SIG_DFL { | 
 | 			dieFromSignal(sig) | 
 | 		} else { | 
 | 			sigfwd(fwdFn, sig, info, ctx) | 
 | 		} | 
 | 		return true | 
 | 	} | 
 |  | 
 | 	flags := sigtable[sig].flags | 
 |  | 
 | 	// If there is no handler to forward to, no need to forward. | 
 | 	if fwdFn == _SIG_DFL { | 
 | 		return false | 
 | 	} | 
 |  | 
 | 	// If we aren't handling the signal, forward it. | 
 | 	if flags&_SigHandling == 0 { | 
 | 		sigfwd(fwdFn, sig, info, ctx) | 
 | 		return true | 
 | 	} | 
 |  | 
 | 	// Only forward synchronous signals. | 
 | 	c := sigctxt{info, ctx} | 
 | 	if c.sigcode() == _SI_USER || flags&_SigPanic == 0 { | 
 | 		return false | 
 | 	} | 
 | 	// Determine if the signal occurred inside Go code. We test that: | 
 | 	//   (1) we were in a goroutine (i.e., m.curg != nil), and | 
 | 	//   (2) we weren't in CGO (i.e., m.curg.syscallsp == 0). | 
 | 	g := getg() | 
 | 	if g != nil && g.m != nil && g.m.curg != nil && g.m.curg.syscallsp == 0 { | 
 | 		return false | 
 | 	} | 
 | 	// Signal not handled by Go, forward it. | 
 | 	if fwdFn != _SIG_IGN { | 
 | 		sigfwd(fwdFn, sig, info, ctx) | 
 | 	} | 
 | 	return true | 
 | } | 
 |  | 
 | // msigsave saves the current thread's signal mask into mp.sigmask. | 
 | // This is used to preserve the non-Go signal mask when a non-Go | 
 | // thread calls a Go function. | 
 | // This is nosplit and nowritebarrierrec because it is called by needm | 
 | // which may be called on a non-Go thread with no g available. | 
 | //go:nosplit | 
 | //go:nowritebarrierrec | 
 | func msigsave(mp *m) { | 
 | 	sigprocmask(_SIG_SETMASK, nil, &mp.sigmask) | 
 | } | 
 |  | 
 | // msigrestore sets the current thread's signal mask to sigmask. | 
 | // This is used to restore the non-Go signal mask when a non-Go thread | 
 | // calls a Go function. | 
 | // This is nosplit and nowritebarrierrec because it is called by dropm | 
 | // after g has been cleared. | 
 | //go:nosplit | 
 | //go:nowritebarrierrec | 
 | func msigrestore(sigmask sigset) { | 
 | 	sigprocmask(_SIG_SETMASK, &sigmask, nil) | 
 | } | 
 |  | 
 | // sigblock blocks all signals in the current thread's signal mask. | 
 | // This is used to block signals while setting up and tearing down g | 
 | // when a non-Go thread calls a Go function. | 
 | // The OS-specific code is expected to define sigset_all. | 
 | // This is nosplit and nowritebarrierrec because it is called by needm | 
 | // which may be called on a non-Go thread with no g available. | 
 | //go:nosplit | 
 | //go:nowritebarrierrec | 
 | func sigblock() { | 
 | 	var set sigset | 
 | 	sigfillset(&set) | 
 | 	sigprocmask(_SIG_SETMASK, &set, nil) | 
 | } | 
 |  | 
 | // unblocksig removes sig from the current thread's signal mask. | 
 | // This is nosplit and nowritebarrierrec because it is called from | 
 | // dieFromSignal, which can be called by sigfwdgo while running in the | 
 | // signal handler, on the signal stack, with no g available. | 
 | //go:nosplit | 
 | //go:nowritebarrierrec | 
 | func unblocksig(sig uint32) { | 
 | 	var set sigset | 
 | 	sigemptyset(&set) | 
 | 	sigaddset(&set, int(sig)) | 
 | 	sigprocmask(_SIG_UNBLOCK, &set, nil) | 
 | } | 
 |  | 
 | // minitSignals is called when initializing a new m to set the | 
 | // thread's alternate signal stack and signal mask. | 
 | func minitSignals() { | 
 | 	minitSignalStack() | 
 | 	minitSignalMask() | 
 | } | 
 |  | 
 | // minitSignalStack is called when initializing a new m to set the | 
 | // alternate signal stack. If the alternate signal stack is not set | 
 | // for the thread (the normal case) then set the alternate signal | 
 | // stack to the gsignal stack. If the alternate signal stack is set | 
 | // for the thread (the case when a non-Go thread sets the alternate | 
 | // signal stack and then calls a Go function) then set the gsignal | 
 | // stack to the alternate signal stack. Record which choice was made | 
 | // in newSigstack, so that it can be undone in unminit. | 
 | func minitSignalStack() { | 
 | 	_g_ := getg() | 
 | 	var st _stack_t | 
 | 	sigaltstack(nil, &st) | 
 | 	if st.ss_flags&_SS_DISABLE != 0 { | 
 | 		signalstack(_g_.m.gsignalstack, _g_.m.gsignalstacksize) | 
 | 		_g_.m.newSigstack = true | 
 | 	} else { | 
 | 		_g_.m.newSigstack = false | 
 | 	} | 
 | } | 
 |  | 
 | // minitSignalMask is called when initializing a new m to set the | 
 | // thread's signal mask. When this is called all signals have been | 
 | // blocked for the thread.  This starts with m.sigmask, which was set | 
 | // either from initSigmask for a newly created thread or by calling | 
 | // msigsave if this is a non-Go thread calling a Go function. It | 
 | // removes all essential signals from the mask, thus causing those | 
 | // signals to not be blocked. Then it sets the thread's signal mask. | 
 | // After this is called the thread can receive signals. | 
 | func minitSignalMask() { | 
 | 	nmask := getg().m.sigmask | 
 | 	for i := range sigtable { | 
 | 		if sigtable[i].flags&_SigUnblock != 0 { | 
 | 			sigdelset(&nmask, i) | 
 | 		} | 
 | 	} | 
 | 	sigprocmask(_SIG_SETMASK, &nmask, nil) | 
 | } | 
 |  | 
 | // unminitSignals is called from dropm, via unminit, to undo the | 
 | // effect of calling minit on a non-Go thread. | 
 | //go:nosplit | 
 | //go:nowritebarrierrec | 
 | func unminitSignals() { | 
 | 	if getg().m.newSigstack { | 
 | 		signalstack(nil, 0) | 
 | 	} | 
 | } |