|  | // Copyright 2011 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package math | 
|  |  | 
|  | /* | 
|  | Floating-point tangent. | 
|  | */ | 
|  |  | 
|  | // The original C code, the long comment, and the constants | 
|  | // below were from http://netlib.sandia.gov/cephes/cmath/sin.c, | 
|  | // available from http://www.netlib.org/cephes/cmath.tgz. | 
|  | // The go code is a simplified version of the original C. | 
|  | // | 
|  | //      tan.c | 
|  | // | 
|  | //      Circular tangent | 
|  | // | 
|  | // SYNOPSIS: | 
|  | // | 
|  | // double x, y, tan(); | 
|  | // y = tan( x ); | 
|  | // | 
|  | // DESCRIPTION: | 
|  | // | 
|  | // Returns the circular tangent of the radian argument x. | 
|  | // | 
|  | // Range reduction is modulo pi/4.  A rational function | 
|  | //       x + x**3 P(x**2)/Q(x**2) | 
|  | // is employed in the basic interval [0, pi/4]. | 
|  | // | 
|  | // ACCURACY: | 
|  | //                      Relative error: | 
|  | // arithmetic   domain     # trials      peak         rms | 
|  | //    DEC      +-1.07e9      44000      4.1e-17     1.0e-17 | 
|  | //    IEEE     +-1.07e9      30000      2.9e-16     8.1e-17 | 
|  | // | 
|  | // Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9.  The loss | 
|  | // is not gradual, but jumps suddenly to about 1 part in 10e7.  Results may | 
|  | // be meaningless for x > 2**49 = 5.6e14. | 
|  | // [Accuracy loss statement from sin.go comments.] | 
|  | // | 
|  | // Cephes Math Library Release 2.8:  June, 2000 | 
|  | // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier | 
|  | // | 
|  | // The readme file at http://netlib.sandia.gov/cephes/ says: | 
|  | //    Some software in this archive may be from the book _Methods and | 
|  | // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster | 
|  | // International, 1989) or from the Cephes Mathematical Library, a | 
|  | // commercial product. In either event, it is copyrighted by the author. | 
|  | // What you see here may be used freely but it comes with no support or | 
|  | // guarantee. | 
|  | // | 
|  | //   The two known misprints in the book are repaired here in the | 
|  | // source listings for the gamma function and the incomplete beta | 
|  | // integral. | 
|  | // | 
|  | //   Stephen L. Moshier | 
|  | //   moshier@na-net.ornl.gov | 
|  |  | 
|  | // tan coefficients | 
|  | var _tanP = [...]float64{ | 
|  | -1.30936939181383777646E4, // 0xc0c992d8d24f3f38 | 
|  | 1.15351664838587416140E6,  // 0x413199eca5fc9ddd | 
|  | -1.79565251976484877988E7, // 0xc1711fead3299176 | 
|  | } | 
|  | var _tanQ = [...]float64{ | 
|  | 1.00000000000000000000E0, | 
|  | 1.36812963470692954678E4,  //0x40cab8a5eeb36572 | 
|  | -1.32089234440210967447E6, //0xc13427bc582abc96 | 
|  | 2.50083801823357915839E7,  //0x4177d98fc2ead8ef | 
|  | -5.38695755929454629881E7, //0xc189afe03cbe5a31 | 
|  | } | 
|  |  | 
|  | // Tan returns the tangent of the radian argument x. | 
|  | // | 
|  | // Special cases are: | 
|  | //	Tan(±0) = ±0 | 
|  | //	Tan(±Inf) = NaN | 
|  | //	Tan(NaN) = NaN | 
|  |  | 
|  | //extern tan | 
|  | func libc_tan(float64) float64 | 
|  |  | 
|  | func Tan(x float64) float64 { | 
|  | return libc_tan(x) | 
|  | } | 
|  |  | 
|  | func tan(x float64) float64 { | 
|  | const ( | 
|  | PI4A = 7.85398125648498535156E-1                             // 0x3fe921fb40000000, Pi/4 split into three parts | 
|  | PI4B = 3.77489470793079817668E-8                             // 0x3e64442d00000000, | 
|  | PI4C = 2.69515142907905952645E-15                            // 0x3ce8469898cc5170, | 
|  | M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi | 
|  | ) | 
|  | // special cases | 
|  | switch { | 
|  | case x == 0 || IsNaN(x): | 
|  | return x // return ±0 || NaN() | 
|  | case IsInf(x, 0): | 
|  | return NaN() | 
|  | } | 
|  |  | 
|  | // make argument positive but save the sign | 
|  | sign := false | 
|  | if x < 0 { | 
|  | x = -x | 
|  | sign = true | 
|  | } | 
|  |  | 
|  | j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle | 
|  | y := float64(j)      // integer part of x/(Pi/4), as float | 
|  |  | 
|  | /* map zeros and singularities to origin */ | 
|  | if j&1 == 1 { | 
|  | j++ | 
|  | y++ | 
|  | } | 
|  |  | 
|  | z := ((x - y*PI4A) - y*PI4B) - y*PI4C | 
|  | zz := z * z | 
|  |  | 
|  | if zz > 1e-14 { | 
|  | y = z + z*(zz*(((_tanP[0]*zz)+_tanP[1])*zz+_tanP[2])/((((zz+_tanQ[1])*zz+_tanQ[2])*zz+_tanQ[3])*zz+_tanQ[4])) | 
|  | } else { | 
|  | y = z | 
|  | } | 
|  | if j&2 == 2 { | 
|  | y = -1 / y | 
|  | } | 
|  | if sign { | 
|  | y = -y | 
|  | } | 
|  | return y | 
|  | } |