| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package runtime |
| |
| // This file contains the implementation of Go select statements. |
| |
| import ( |
| "runtime/internal/sys" |
| "unsafe" |
| ) |
| |
| // For gccgo, use go:linkname to rename compiler-called functions to |
| // themselves, so that the compiler will export them. |
| // |
| //go:linkname newselect runtime.newselect |
| //go:linkname selectdefault runtime.selectdefault |
| //go:linkname selectsend runtime.selectsend |
| //go:linkname selectrecv runtime.selectrecv |
| //go:linkname selectrecv2 runtime.selectrecv2 |
| //go:linkname selectgo runtime.selectgo |
| |
| const ( |
| debugSelect = false |
| |
| // scase.kind |
| caseRecv = iota |
| caseSend |
| caseDefault |
| ) |
| |
| // Select statement header. |
| // Known to compiler. |
| // Changes here must also be made in src/cmd/internal/gc/select.go's selecttype. |
| type hselect struct { |
| tcase uint16 // total count of scase[] |
| ncase uint16 // currently filled scase[] |
| pollorder *uint16 // case poll order |
| lockorder *uint16 // channel lock order |
| scase [1]scase // one per case (in order of appearance) |
| } |
| |
| // Select case descriptor. |
| // Known to compiler. |
| // Changes here must also be made in src/cmd/internal/gc/select.go's selecttype. |
| type scase struct { |
| elem unsafe.Pointer // data element |
| c *hchan // chan |
| pc uintptr // return pc |
| kind uint16 |
| index uint16 // case index |
| receivedp *bool // pointer to received bool (recv2) |
| releasetime int64 |
| } |
| |
| var ( |
| chansendpc = funcPC(chansend) |
| chanrecvpc = funcPC(chanrecv) |
| ) |
| |
| func selectsize(size uintptr) uintptr { |
| selsize := unsafe.Sizeof(hselect{}) + |
| (size-1)*unsafe.Sizeof(hselect{}.scase[0]) + |
| size*unsafe.Sizeof(*hselect{}.lockorder) + |
| size*unsafe.Sizeof(*hselect{}.pollorder) |
| return round(selsize, sys.Int64Align) |
| } |
| |
| func newselect(sel *hselect, selsize int64, size int32) { |
| if selsize != int64(selectsize(uintptr(size))) { |
| print("runtime: bad select size ", selsize, ", want ", selectsize(uintptr(size)), "\n") |
| throw("bad select size") |
| } |
| if size != int32(uint16(size)) { |
| throw("select size too large") |
| } |
| sel.tcase = uint16(size) |
| sel.ncase = 0 |
| sel.lockorder = (*uint16)(add(unsafe.Pointer(&sel.scase), uintptr(size)*unsafe.Sizeof(hselect{}.scase[0]))) |
| sel.pollorder = (*uint16)(add(unsafe.Pointer(sel.lockorder), uintptr(size)*unsafe.Sizeof(*hselect{}.lockorder))) |
| |
| // For gccgo the temporary variable will not have been zeroed. |
| memclrNoHeapPointers(unsafe.Pointer(&sel.scase), uintptr(size)*unsafe.Sizeof(hselect{}.scase[0])+uintptr(size)*unsafe.Sizeof(*hselect{}.lockorder)+uintptr(size)*unsafe.Sizeof(*hselect{}.pollorder)) |
| |
| if debugSelect { |
| print("newselect s=", sel, " size=", size, "\n") |
| } |
| } |
| |
| func selectsend(sel *hselect, c *hchan, elem unsafe.Pointer, index int32) { |
| // nil cases do not compete |
| if c != nil { |
| selectsendImpl(sel, c, getcallerpc(unsafe.Pointer(&sel)), elem, index) |
| } |
| return |
| } |
| |
| // cut in half to give stack a chance to split |
| func selectsendImpl(sel *hselect, c *hchan, pc uintptr, elem unsafe.Pointer, index int32) { |
| i := sel.ncase |
| if i >= sel.tcase { |
| throw("selectsend: too many cases") |
| } |
| sel.ncase = i + 1 |
| cas := (*scase)(add(unsafe.Pointer(&sel.scase), uintptr(i)*unsafe.Sizeof(sel.scase[0]))) |
| |
| cas.pc = pc |
| cas.c = c |
| cas.index = uint16(index) |
| cas.kind = caseSend |
| cas.elem = elem |
| |
| if debugSelect { |
| print("selectsend s=", sel, " pc=", hex(cas.pc), " chan=", cas.c, " index=", cas.index, "\n") |
| } |
| } |
| |
| func selectrecv(sel *hselect, c *hchan, elem unsafe.Pointer, index int32) { |
| // nil cases do not compete |
| if c != nil { |
| selectrecvImpl(sel, c, getcallerpc(unsafe.Pointer(&sel)), elem, nil, index) |
| } |
| return |
| } |
| |
| func selectrecv2(sel *hselect, c *hchan, elem unsafe.Pointer, received *bool, index int32) { |
| // nil cases do not compete |
| if c != nil { |
| selectrecvImpl(sel, c, getcallerpc(unsafe.Pointer(&sel)), elem, received, index) |
| } |
| return |
| } |
| |
| func selectrecvImpl(sel *hselect, c *hchan, pc uintptr, elem unsafe.Pointer, received *bool, index int32) { |
| i := sel.ncase |
| if i >= sel.tcase { |
| throw("selectrecv: too many cases") |
| } |
| sel.ncase = i + 1 |
| cas := (*scase)(add(unsafe.Pointer(&sel.scase), uintptr(i)*unsafe.Sizeof(sel.scase[0]))) |
| cas.pc = pc |
| cas.c = c |
| cas.index = uint16(index) |
| cas.kind = caseRecv |
| cas.elem = elem |
| cas.receivedp = received |
| |
| if debugSelect { |
| print("selectrecv s=", sel, " pc=", hex(cas.pc), " chan=", cas.c, " index=", cas.index, "\n") |
| } |
| } |
| |
| func selectdefault(sel *hselect, index int32) { |
| selectdefaultImpl(sel, getcallerpc(unsafe.Pointer(&sel)), index) |
| return |
| } |
| |
| func selectdefaultImpl(sel *hselect, callerpc uintptr, index int32) { |
| i := sel.ncase |
| if i >= sel.tcase { |
| throw("selectdefault: too many cases") |
| } |
| sel.ncase = i + 1 |
| cas := (*scase)(add(unsafe.Pointer(&sel.scase), uintptr(i)*unsafe.Sizeof(sel.scase[0]))) |
| cas.pc = callerpc |
| cas.c = nil |
| cas.index = uint16(index) |
| cas.kind = caseDefault |
| |
| if debugSelect { |
| print("selectdefault s=", sel, " pc=", hex(cas.pc), " index=", cas.index, "\n") |
| } |
| } |
| |
| func sellock(scases []scase, lockorder []uint16) { |
| var c *hchan |
| for _, o := range lockorder { |
| c0 := scases[o].c |
| if c0 != nil && c0 != c { |
| c = c0 |
| lock(&c.lock) |
| } |
| } |
| } |
| |
| func selunlock(scases []scase, lockorder []uint16) { |
| // We must be very careful here to not touch sel after we have unlocked |
| // the last lock, because sel can be freed right after the last unlock. |
| // Consider the following situation. |
| // First M calls runtime·park() in runtime·selectgo() passing the sel. |
| // Once runtime·park() has unlocked the last lock, another M makes |
| // the G that calls select runnable again and schedules it for execution. |
| // When the G runs on another M, it locks all the locks and frees sel. |
| // Now if the first M touches sel, it will access freed memory. |
| n := len(scases) |
| r := 0 |
| // skip the default case |
| if n > 0 && scases[lockorder[0]].c == nil { |
| r = 1 |
| } |
| for i := n - 1; i >= r; i-- { |
| c := scases[lockorder[i]].c |
| if i > 0 && c == scases[lockorder[i-1]].c { |
| continue // will unlock it on the next iteration |
| } |
| unlock(&c.lock) |
| } |
| } |
| |
| func selparkcommit(gp *g, _ unsafe.Pointer) bool { |
| // This must not access gp's stack (see gopark). In |
| // particular, it must not access the *hselect. That's okay, |
| // because by the time this is called, gp.waiting has all |
| // channels in lock order. |
| var lastc *hchan |
| for sg := gp.waiting; sg != nil; sg = sg.waitlink { |
| if sg.c != lastc && lastc != nil { |
| // As soon as we unlock the channel, fields in |
| // any sudog with that channel may change, |
| // including c and waitlink. Since multiple |
| // sudogs may have the same channel, we unlock |
| // only after we've passed the last instance |
| // of a channel. |
| unlock(&lastc.lock) |
| } |
| lastc = sg.c |
| } |
| if lastc != nil { |
| unlock(&lastc.lock) |
| } |
| return true |
| } |
| |
| func block() { |
| gopark(nil, nil, "select (no cases)", traceEvGoStop, 1) // forever |
| } |
| |
| // selectgo implements the select statement. |
| // |
| // *sel is on the current goroutine's stack (regardless of any |
| // escaping in selectgo). |
| // |
| // selectgo does not return. Instead, it overwrites its return PC and |
| // returns directly to the triggered select case. Because of this, it |
| // cannot appear at the top of a split stack. |
| func selectgo(sel *hselect) int32 { |
| _, index := selectgoImpl(sel) |
| return int32(index) |
| } |
| |
| // selectgoImpl returns scase.pc and scase.so for the select |
| // case which fired. |
| func selectgoImpl(sel *hselect) (uintptr, uint16) { |
| if debugSelect { |
| print("select: sel=", sel, "\n") |
| } |
| |
| scaseslice := slice{unsafe.Pointer(&sel.scase), int(sel.ncase), int(sel.ncase)} |
| scases := *(*[]scase)(unsafe.Pointer(&scaseslice)) |
| |
| var t0 int64 |
| if blockprofilerate > 0 { |
| t0 = cputicks() |
| for i := 0; i < int(sel.ncase); i++ { |
| scases[i].releasetime = -1 |
| } |
| } |
| |
| // The compiler rewrites selects that statically have |
| // only 0 or 1 cases plus default into simpler constructs. |
| // The only way we can end up with such small sel.ncase |
| // values here is for a larger select in which most channels |
| // have been nilled out. The general code handles those |
| // cases correctly, and they are rare enough not to bother |
| // optimizing (and needing to test). |
| |
| // generate permuted order |
| pollslice := slice{unsafe.Pointer(sel.pollorder), int(sel.ncase), int(sel.ncase)} |
| pollorder := *(*[]uint16)(unsafe.Pointer(&pollslice)) |
| for i := 1; i < int(sel.ncase); i++ { |
| j := int(fastrand()) % (i + 1) |
| pollorder[i] = pollorder[j] |
| pollorder[j] = uint16(i) |
| } |
| |
| // sort the cases by Hchan address to get the locking order. |
| // simple heap sort, to guarantee n log n time and constant stack footprint. |
| lockslice := slice{unsafe.Pointer(sel.lockorder), int(sel.ncase), int(sel.ncase)} |
| lockorder := *(*[]uint16)(unsafe.Pointer(&lockslice)) |
| for i := 0; i < int(sel.ncase); i++ { |
| j := i |
| // Start with the pollorder to permute cases on the same channel. |
| c := scases[pollorder[i]].c |
| for j > 0 && scases[lockorder[(j-1)/2]].c.sortkey() < c.sortkey() { |
| k := (j - 1) / 2 |
| lockorder[j] = lockorder[k] |
| j = k |
| } |
| lockorder[j] = pollorder[i] |
| } |
| for i := int(sel.ncase) - 1; i >= 0; i-- { |
| o := lockorder[i] |
| c := scases[o].c |
| lockorder[i] = lockorder[0] |
| j := 0 |
| for { |
| k := j*2 + 1 |
| if k >= i { |
| break |
| } |
| if k+1 < i && scases[lockorder[k]].c.sortkey() < scases[lockorder[k+1]].c.sortkey() { |
| k++ |
| } |
| if c.sortkey() < scases[lockorder[k]].c.sortkey() { |
| lockorder[j] = lockorder[k] |
| j = k |
| continue |
| } |
| break |
| } |
| lockorder[j] = o |
| } |
| /* |
| for i := 0; i+1 < int(sel.ncase); i++ { |
| if scases[lockorder[i]].c.sortkey() > scases[lockorder[i+1]].c.sortkey() { |
| print("i=", i, " x=", lockorder[i], " y=", lockorder[i+1], "\n") |
| throw("select: broken sort") |
| } |
| } |
| */ |
| |
| // lock all the channels involved in the select |
| sellock(scases, lockorder) |
| |
| var ( |
| gp *g |
| done uint32 |
| sg *sudog |
| c *hchan |
| k *scase |
| sglist *sudog |
| sgnext *sudog |
| qp unsafe.Pointer |
| nextp **sudog |
| ) |
| |
| loop: |
| // pass 1 - look for something already waiting |
| var dfl *scase |
| var cas *scase |
| for i := 0; i < int(sel.ncase); i++ { |
| cas = &scases[pollorder[i]] |
| c = cas.c |
| |
| switch cas.kind { |
| case caseRecv: |
| sg = c.sendq.dequeue() |
| if sg != nil { |
| goto recv |
| } |
| if c.qcount > 0 { |
| goto bufrecv |
| } |
| if c.closed != 0 { |
| goto rclose |
| } |
| |
| case caseSend: |
| if raceenabled { |
| racereadpc(unsafe.Pointer(c), cas.pc, chansendpc) |
| } |
| if c.closed != 0 { |
| goto sclose |
| } |
| sg = c.recvq.dequeue() |
| if sg != nil { |
| goto send |
| } |
| if c.qcount < c.dataqsiz { |
| goto bufsend |
| } |
| |
| case caseDefault: |
| dfl = cas |
| } |
| } |
| |
| if dfl != nil { |
| selunlock(scases, lockorder) |
| cas = dfl |
| goto retc |
| } |
| |
| // pass 2 - enqueue on all chans |
| gp = getg() |
| done = 0 |
| if gp.waiting != nil { |
| throw("gp.waiting != nil") |
| } |
| nextp = &gp.waiting |
| for _, casei := range lockorder { |
| cas = &scases[casei] |
| c = cas.c |
| sg := acquireSudog() |
| sg.g = gp |
| // Note: selectdone is adjusted for stack copies in stack1.go:adjustsudogs |
| sg.selectdone = (*uint32)(noescape(unsafe.Pointer(&done))) |
| // No stack splits between assigning elem and enqueuing |
| // sg on gp.waiting where copystack can find it. |
| sg.elem = cas.elem |
| sg.releasetime = 0 |
| if t0 != 0 { |
| sg.releasetime = -1 |
| } |
| sg.c = c |
| // Construct waiting list in lock order. |
| *nextp = sg |
| nextp = &sg.waitlink |
| |
| switch cas.kind { |
| case caseRecv: |
| c.recvq.enqueue(sg) |
| |
| case caseSend: |
| c.sendq.enqueue(sg) |
| } |
| } |
| |
| // wait for someone to wake us up |
| gp.param = nil |
| gopark(selparkcommit, nil, "select", traceEvGoBlockSelect, 2) |
| |
| // While we were asleep, some goroutine came along and completed |
| // one of the cases in the select and woke us up (called ready). |
| // As part of that process, the goroutine did a cas on done above |
| // (aka *sg.selectdone for all queued sg) to win the right to |
| // complete the select. Now done = 1. |
| // |
| // If we copy (grow) our own stack, we will update the |
| // selectdone pointers inside the gp.waiting sudog list to point |
| // at the new stack. Another goroutine attempting to |
| // complete one of our (still linked in) select cases might |
| // see the new selectdone pointer (pointing at the new stack) |
| // before the new stack has real data; if the new stack has done = 0 |
| // (before the old values are copied over), the goroutine might |
| // do a cas via sg.selectdone and incorrectly believe that it has |
| // won the right to complete the select, executing a second |
| // communication and attempting to wake us (call ready) again. |
| // |
| // Then things break. |
| // |
| // The best break is that the goroutine doing ready sees the |
| // _Gcopystack status and throws, as in #17007. |
| // A worse break would be for us to continue on, start running real code, |
| // block in a semaphore acquisition (sema.go), and have the other |
| // goroutine wake us up without having really acquired the semaphore. |
| // That would result in the goroutine spuriously running and then |
| // queue up another spurious wakeup when the semaphore really is ready. |
| // In general the situation can cascade until something notices the |
| // problem and causes a crash. |
| // |
| // A stack shrink does not have this problem, because it locks |
| // all the channels that are involved first, blocking out the |
| // possibility of a cas on selectdone. |
| // |
| // A stack growth before gopark above does not have this |
| // problem, because we hold those channel locks (released by |
| // selparkcommit). |
| // |
| // A stack growth after sellock below does not have this |
| // problem, because again we hold those channel locks. |
| // |
| // The only problem is a stack growth during sellock. |
| // To keep that from happening, run sellock on the system stack. |
| // |
| // It might be that we could avoid this if copystack copied the |
| // stack before calling adjustsudogs. In that case, |
| // syncadjustsudogs would need to recopy the tiny part that |
| // it copies today, resulting in a little bit of extra copying. |
| // |
| // An even better fix, not for the week before a release candidate, |
| // would be to put space in every sudog and make selectdone |
| // point at (say) the space in the first sudog. |
| |
| systemstack(func() { |
| sellock(scases, lockorder) |
| }) |
| |
| sg = (*sudog)(gp.param) |
| gp.param = nil |
| |
| // pass 3 - dequeue from unsuccessful chans |
| // otherwise they stack up on quiet channels |
| // record the successful case, if any. |
| // We singly-linked up the SudoGs in lock order. |
| cas = nil |
| sglist = gp.waiting |
| // Clear all elem before unlinking from gp.waiting. |
| for sg1 := gp.waiting; sg1 != nil; sg1 = sg1.waitlink { |
| sg1.selectdone = nil |
| sg1.elem = nil |
| sg1.c = nil |
| } |
| gp.waiting = nil |
| |
| for _, casei := range lockorder { |
| k = &scases[casei] |
| if sglist.releasetime > 0 { |
| k.releasetime = sglist.releasetime |
| } |
| if sg == sglist { |
| // sg has already been dequeued by the G that woke us up. |
| cas = k |
| } else { |
| c = k.c |
| if k.kind == caseSend { |
| c.sendq.dequeueSudoG(sglist) |
| } else { |
| c.recvq.dequeueSudoG(sglist) |
| } |
| } |
| sgnext = sglist.waitlink |
| sglist.waitlink = nil |
| releaseSudog(sglist) |
| sglist = sgnext |
| } |
| |
| if cas == nil { |
| // We can wake up with gp.param == nil (so cas == nil) |
| // when a channel involved in the select has been closed. |
| // It is easiest to loop and re-run the operation; |
| // we'll see that it's now closed. |
| // Maybe some day we can signal the close explicitly, |
| // but we'd have to distinguish close-on-reader from close-on-writer. |
| // It's easiest not to duplicate the code and just recheck above. |
| // We know that something closed, and things never un-close, |
| // so we won't block again. |
| goto loop |
| } |
| |
| c = cas.c |
| |
| if debugSelect { |
| print("wait-return: sel=", sel, " c=", c, " cas=", cas, " kind=", cas.kind, "\n") |
| } |
| |
| if cas.kind == caseRecv { |
| if cas.receivedp != nil { |
| *cas.receivedp = true |
| } |
| } |
| |
| if raceenabled { |
| if cas.kind == caseRecv && cas.elem != nil { |
| raceWriteObjectPC(c.elemtype, cas.elem, cas.pc, chanrecvpc) |
| } else if cas.kind == caseSend { |
| raceReadObjectPC(c.elemtype, cas.elem, cas.pc, chansendpc) |
| } |
| } |
| if msanenabled { |
| if cas.kind == caseRecv && cas.elem != nil { |
| msanwrite(cas.elem, c.elemtype.size) |
| } else if cas.kind == caseSend { |
| msanread(cas.elem, c.elemtype.size) |
| } |
| } |
| |
| selunlock(scases, lockorder) |
| goto retc |
| |
| bufrecv: |
| // can receive from buffer |
| if raceenabled { |
| if cas.elem != nil { |
| raceWriteObjectPC(c.elemtype, cas.elem, cas.pc, chanrecvpc) |
| } |
| raceacquire(chanbuf(c, c.recvx)) |
| racerelease(chanbuf(c, c.recvx)) |
| } |
| if msanenabled && cas.elem != nil { |
| msanwrite(cas.elem, c.elemtype.size) |
| } |
| if cas.receivedp != nil { |
| *cas.receivedp = true |
| } |
| qp = chanbuf(c, c.recvx) |
| if cas.elem != nil { |
| typedmemmove(c.elemtype, cas.elem, qp) |
| } |
| typedmemclr(c.elemtype, qp) |
| c.recvx++ |
| if c.recvx == c.dataqsiz { |
| c.recvx = 0 |
| } |
| c.qcount-- |
| selunlock(scases, lockorder) |
| goto retc |
| |
| bufsend: |
| // can send to buffer |
| if raceenabled { |
| raceacquire(chanbuf(c, c.sendx)) |
| racerelease(chanbuf(c, c.sendx)) |
| raceReadObjectPC(c.elemtype, cas.elem, cas.pc, chansendpc) |
| } |
| if msanenabled { |
| msanread(cas.elem, c.elemtype.size) |
| } |
| typedmemmove(c.elemtype, chanbuf(c, c.sendx), cas.elem) |
| c.sendx++ |
| if c.sendx == c.dataqsiz { |
| c.sendx = 0 |
| } |
| c.qcount++ |
| selunlock(scases, lockorder) |
| goto retc |
| |
| recv: |
| // can receive from sleeping sender (sg) |
| recv(c, sg, cas.elem, func() { selunlock(scases, lockorder) }) |
| if debugSelect { |
| print("syncrecv: sel=", sel, " c=", c, "\n") |
| } |
| if cas.receivedp != nil { |
| *cas.receivedp = true |
| } |
| goto retc |
| |
| rclose: |
| // read at end of closed channel |
| selunlock(scases, lockorder) |
| if cas.receivedp != nil { |
| *cas.receivedp = false |
| } |
| if cas.elem != nil { |
| typedmemclr(c.elemtype, cas.elem) |
| } |
| if raceenabled { |
| raceacquire(unsafe.Pointer(c)) |
| } |
| goto retc |
| |
| send: |
| // can send to a sleeping receiver (sg) |
| if raceenabled { |
| raceReadObjectPC(c.elemtype, cas.elem, cas.pc, chansendpc) |
| } |
| if msanenabled { |
| msanread(cas.elem, c.elemtype.size) |
| } |
| send(c, sg, cas.elem, func() { selunlock(scases, lockorder) }) |
| if debugSelect { |
| print("syncsend: sel=", sel, " c=", c, "\n") |
| } |
| goto retc |
| |
| retc: |
| if cas.releasetime > 0 { |
| blockevent(cas.releasetime-t0, 2) |
| } |
| return cas.pc, cas.index |
| |
| sclose: |
| // send on closed channel |
| selunlock(scases, lockorder) |
| panic(plainError("send on closed channel")) |
| } |
| |
| func (c *hchan) sortkey() uintptr { |
| // TODO(khr): if we have a moving garbage collector, we'll need to |
| // change this function. |
| return uintptr(unsafe.Pointer(c)) |
| } |
| |
| // A runtimeSelect is a single case passed to rselect. |
| // This must match ../reflect/value.go:/runtimeSelect |
| type runtimeSelect struct { |
| dir selectDir |
| typ unsafe.Pointer // channel type (not used here) |
| ch *hchan // channel |
| val unsafe.Pointer // ptr to data (SendDir) or ptr to receive buffer (RecvDir) |
| } |
| |
| // These values must match ../reflect/value.go:/SelectDir. |
| type selectDir int |
| |
| const ( |
| _ selectDir = iota |
| selectSend // case Chan <- Send |
| selectRecv // case <-Chan: |
| selectDefault // default |
| ) |
| |
| //go:linkname reflect_rselect reflect.rselect |
| func reflect_rselect(cases []runtimeSelect) (chosen int, recvOK bool) { |
| // flagNoScan is safe here, because all objects are also referenced from cases. |
| size := selectsize(uintptr(len(cases))) |
| sel := (*hselect)(mallocgc(size, nil, true)) |
| newselect(sel, int64(size), int32(len(cases))) |
| r := new(bool) |
| for i := range cases { |
| rc := &cases[i] |
| switch rc.dir { |
| case selectDefault: |
| selectdefaultImpl(sel, uintptr(i), 0) |
| case selectSend: |
| if rc.ch == nil { |
| break |
| } |
| selectsendImpl(sel, rc.ch, uintptr(i), rc.val, 0) |
| case selectRecv: |
| if rc.ch == nil { |
| break |
| } |
| selectrecvImpl(sel, rc.ch, uintptr(i), rc.val, r, 0) |
| } |
| } |
| |
| pc, _ := selectgoImpl(sel) |
| chosen = int(pc) |
| recvOK = *r |
| return |
| } |
| |
| func (q *waitq) dequeueSudoG(sgp *sudog) { |
| x := sgp.prev |
| y := sgp.next |
| if x != nil { |
| if y != nil { |
| // middle of queue |
| x.next = y |
| y.prev = x |
| sgp.next = nil |
| sgp.prev = nil |
| return |
| } |
| // end of queue |
| x.next = nil |
| q.last = x |
| sgp.prev = nil |
| return |
| } |
| if y != nil { |
| // start of queue |
| y.prev = nil |
| q.first = y |
| sgp.next = nil |
| return |
| } |
| |
| // x==y==nil. Either sgp is the only element in the queue, |
| // or it has already been removed. Use q.first to disambiguate. |
| if q.first == sgp { |
| q.first = nil |
| q.last = nil |
| } |
| } |