| // Copyright 2011 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | package rand | 
 |  | 
 | import ( | 
 | 	"errors" | 
 | 	"io" | 
 | 	"math/big" | 
 | ) | 
 |  | 
 | // smallPrimes is a list of small, prime numbers that allows us to rapidly | 
 | // exclude some fraction of composite candidates when searching for a random | 
 | // prime. This list is truncated at the point where smallPrimesProduct exceeds | 
 | // a uint64. It does not include two because we ensure that the candidates are | 
 | // odd by construction. | 
 | var smallPrimes = []uint8{ | 
 | 	3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, | 
 | } | 
 |  | 
 | // smallPrimesProduct is the product of the values in smallPrimes and allows us | 
 | // to reduce a candidate prime by this number and then determine whether it's | 
 | // coprime to all the elements of smallPrimes without further big.Int | 
 | // operations. | 
 | var smallPrimesProduct = new(big.Int).SetUint64(16294579238595022365) | 
 |  | 
 | // Prime returns a number, p, of the given size, such that p is prime | 
 | // with high probability. | 
 | // Prime will return error for any error returned by rand.Read or if bits < 2. | 
 | func Prime(rand io.Reader, bits int) (p *big.Int, err error) { | 
 | 	if bits < 2 { | 
 | 		err = errors.New("crypto/rand: prime size must be at least 2-bit") | 
 | 		return | 
 | 	} | 
 |  | 
 | 	b := uint(bits % 8) | 
 | 	if b == 0 { | 
 | 		b = 8 | 
 | 	} | 
 |  | 
 | 	bytes := make([]byte, (bits+7)/8) | 
 | 	p = new(big.Int) | 
 |  | 
 | 	bigMod := new(big.Int) | 
 |  | 
 | 	for { | 
 | 		_, err = io.ReadFull(rand, bytes) | 
 | 		if err != nil { | 
 | 			return nil, err | 
 | 		} | 
 |  | 
 | 		// Clear bits in the first byte to make sure the candidate has a size <= bits. | 
 | 		bytes[0] &= uint8(int(1<<b) - 1) | 
 | 		// Don't let the value be too small, i.e, set the most significant two bits. | 
 | 		// Setting the top two bits, rather than just the top bit, | 
 | 		// means that when two of these values are multiplied together, | 
 | 		// the result isn't ever one bit short. | 
 | 		if b >= 2 { | 
 | 			bytes[0] |= 3 << (b - 2) | 
 | 		} else { | 
 | 			// Here b==1, because b cannot be zero. | 
 | 			bytes[0] |= 1 | 
 | 			if len(bytes) > 1 { | 
 | 				bytes[1] |= 0x80 | 
 | 			} | 
 | 		} | 
 | 		// Make the value odd since an even number this large certainly isn't prime. | 
 | 		bytes[len(bytes)-1] |= 1 | 
 |  | 
 | 		p.SetBytes(bytes) | 
 |  | 
 | 		// Calculate the value mod the product of smallPrimes. If it's | 
 | 		// a multiple of any of these primes we add two until it isn't. | 
 | 		// The probability of overflowing is minimal and can be ignored | 
 | 		// because we still perform Miller-Rabin tests on the result. | 
 | 		bigMod.Mod(p, smallPrimesProduct) | 
 | 		mod := bigMod.Uint64() | 
 |  | 
 | 	NextDelta: | 
 | 		for delta := uint64(0); delta < 1<<20; delta += 2 { | 
 | 			m := mod + delta | 
 | 			for _, prime := range smallPrimes { | 
 | 				if m%uint64(prime) == 0 && (bits > 6 || m != uint64(prime)) { | 
 | 					continue NextDelta | 
 | 				} | 
 | 			} | 
 |  | 
 | 			if delta > 0 { | 
 | 				bigMod.SetUint64(delta) | 
 | 				p.Add(p, bigMod) | 
 | 			} | 
 | 			break | 
 | 		} | 
 |  | 
 | 		// There is a tiny possibility that, by adding delta, we caused | 
 | 		// the number to be one bit too long. Thus we check BitLen | 
 | 		// here. | 
 | 		if p.ProbablyPrime(20) && p.BitLen() == bits { | 
 | 			return | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | // Int returns a uniform random value in [0, max). It panics if max <= 0. | 
 | func Int(rand io.Reader, max *big.Int) (n *big.Int, err error) { | 
 | 	if max.Sign() <= 0 { | 
 | 		panic("crypto/rand: argument to Int is <= 0") | 
 | 	} | 
 | 	n = new(big.Int) | 
 | 	n.Sub(max, n.SetUint64(1)) | 
 | 	// bitLen is the maximum bit length needed to encode a value < max. | 
 | 	bitLen := n.BitLen() | 
 | 	if bitLen == 0 { | 
 | 		// the only valid result is 0 | 
 | 		return | 
 | 	} | 
 | 	// k is the maximum byte length needed to encode a value < max. | 
 | 	k := (bitLen + 7) / 8 | 
 | 	// b is the number of bits in the most significant byte of max-1. | 
 | 	b := uint(bitLen % 8) | 
 | 	if b == 0 { | 
 | 		b = 8 | 
 | 	} | 
 |  | 
 | 	bytes := make([]byte, k) | 
 |  | 
 | 	for { | 
 | 		_, err = io.ReadFull(rand, bytes) | 
 | 		if err != nil { | 
 | 			return nil, err | 
 | 		} | 
 |  | 
 | 		// Clear bits in the first byte to increase the probability | 
 | 		// that the candidate is < max. | 
 | 		bytes[0] &= uint8(int(1<<b) - 1) | 
 |  | 
 | 		n.SetBytes(bytes) | 
 | 		if n.Cmp(max) < 0 { | 
 | 			return | 
 | 		} | 
 | 	} | 
 | } |