|  | // Copyright 2010 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package cmplx | 
|  |  | 
|  | import "math" | 
|  |  | 
|  | // The original C code, the long comment, and the constants | 
|  | // below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. | 
|  | // The go code is a simplified version of the original C. | 
|  | // | 
|  | // Cephes Math Library Release 2.8:  June, 2000 | 
|  | // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier | 
|  | // | 
|  | // The readme file at http://netlib.sandia.gov/cephes/ says: | 
|  | //    Some software in this archive may be from the book _Methods and | 
|  | // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster | 
|  | // International, 1989) or from the Cephes Mathematical Library, a | 
|  | // commercial product. In either event, it is copyrighted by the author. | 
|  | // What you see here may be used freely but it comes with no support or | 
|  | // guarantee. | 
|  | // | 
|  | //   The two known misprints in the book are repaired here in the | 
|  | // source listings for the gamma function and the incomplete beta | 
|  | // integral. | 
|  | // | 
|  | //   Stephen L. Moshier | 
|  | //   moshier@na-net.ornl.gov | 
|  |  | 
|  | // Complex circular tangent | 
|  | // | 
|  | // DESCRIPTION: | 
|  | // | 
|  | // If | 
|  | //     z = x + iy, | 
|  | // | 
|  | // then | 
|  | // | 
|  | //           sin 2x  +  i sinh 2y | 
|  | //     w  =  --------------------. | 
|  | //            cos 2x  +  cosh 2y | 
|  | // | 
|  | // On the real axis the denominator is zero at odd multiples | 
|  | // of PI/2.  The denominator is evaluated by its Taylor | 
|  | // series near these points. | 
|  | // | 
|  | // ctan(z) = -i ctanh(iz). | 
|  | // | 
|  | // ACCURACY: | 
|  | // | 
|  | //                      Relative error: | 
|  | // arithmetic   domain     # trials      peak         rms | 
|  | //    DEC       -10,+10      5200       7.1e-17     1.6e-17 | 
|  | //    IEEE      -10,+10     30000       7.2e-16     1.2e-16 | 
|  | // Also tested by ctan * ccot = 1 and catan(ctan(z))  =  z. | 
|  |  | 
|  | // Tan returns the tangent of x. | 
|  | func Tan(x complex128) complex128 { | 
|  | d := math.Cos(2*real(x)) + math.Cosh(2*imag(x)) | 
|  | if math.Abs(d) < 0.25 { | 
|  | d = tanSeries(x) | 
|  | } | 
|  | if d == 0 { | 
|  | return Inf() | 
|  | } | 
|  | return complex(math.Sin(2*real(x))/d, math.Sinh(2*imag(x))/d) | 
|  | } | 
|  |  | 
|  | // Complex hyperbolic tangent | 
|  | // | 
|  | // DESCRIPTION: | 
|  | // | 
|  | // tanh z = (sinh 2x  +  i sin 2y) / (cosh 2x + cos 2y) . | 
|  | // | 
|  | // ACCURACY: | 
|  | // | 
|  | //                      Relative error: | 
|  | // arithmetic   domain     # trials      peak         rms | 
|  | //    IEEE      -10,+10     30000       1.7e-14     2.4e-16 | 
|  |  | 
|  | // Tanh returns the hyperbolic tangent of x. | 
|  | func Tanh(x complex128) complex128 { | 
|  | d := math.Cosh(2*real(x)) + math.Cos(2*imag(x)) | 
|  | if d == 0 { | 
|  | return Inf() | 
|  | } | 
|  | return complex(math.Sinh(2*real(x))/d, math.Sin(2*imag(x))/d) | 
|  | } | 
|  |  | 
|  | // Program to subtract nearest integer multiple of PI | 
|  | func reducePi(x float64) float64 { | 
|  | const ( | 
|  | // extended precision value of PI: | 
|  | DP1 = 3.14159265160560607910E0   // ?? 0x400921fb54000000 | 
|  | DP2 = 1.98418714791870343106E-9  // ?? 0x3e210b4610000000 | 
|  | DP3 = 1.14423774522196636802E-17 // ?? 0x3c6a62633145c06e | 
|  | ) | 
|  | t := x / math.Pi | 
|  | if t >= 0 { | 
|  | t += 0.5 | 
|  | } else { | 
|  | t -= 0.5 | 
|  | } | 
|  | t = float64(int64(t)) // int64(t) = the multiple | 
|  | return ((x - t*DP1) - t*DP2) - t*DP3 | 
|  | } | 
|  |  | 
|  | // Taylor series expansion for cosh(2y) - cos(2x) | 
|  | func tanSeries(z complex128) float64 { | 
|  | const MACHEP = 1.0 / (1 << 53) | 
|  | x := math.Abs(2 * real(z)) | 
|  | y := math.Abs(2 * imag(z)) | 
|  | x = reducePi(x) | 
|  | x = x * x | 
|  | y = y * y | 
|  | x2 := 1.0 | 
|  | y2 := 1.0 | 
|  | f := 1.0 | 
|  | rn := 0.0 | 
|  | d := 0.0 | 
|  | for { | 
|  | rn++ | 
|  | f *= rn | 
|  | rn++ | 
|  | f *= rn | 
|  | x2 *= x | 
|  | y2 *= y | 
|  | t := y2 + x2 | 
|  | t /= f | 
|  | d += t | 
|  |  | 
|  | rn++ | 
|  | f *= rn | 
|  | rn++ | 
|  | f *= rn | 
|  | x2 *= x | 
|  | y2 *= y | 
|  | t = y2 - x2 | 
|  | t /= f | 
|  | d += t | 
|  | if !(math.Abs(t/d) > MACHEP) { | 
|  | // Caution: Use ! and > instead of <= for correct behavior if t/d is NaN. | 
|  | // See issue 17577. | 
|  | break | 
|  | } | 
|  | } | 
|  | return d | 
|  | } | 
|  |  | 
|  | // Complex circular cotangent | 
|  | // | 
|  | // DESCRIPTION: | 
|  | // | 
|  | // If | 
|  | //     z = x + iy, | 
|  | // | 
|  | // then | 
|  | // | 
|  | //           sin 2x  -  i sinh 2y | 
|  | //     w  =  --------------------. | 
|  | //            cosh 2y  -  cos 2x | 
|  | // | 
|  | // On the real axis, the denominator has zeros at even | 
|  | // multiples of PI/2.  Near these points it is evaluated | 
|  | // by a Taylor series. | 
|  | // | 
|  | // ACCURACY: | 
|  | // | 
|  | //                      Relative error: | 
|  | // arithmetic   domain     # trials      peak         rms | 
|  | //    DEC       -10,+10      3000       6.5e-17     1.6e-17 | 
|  | //    IEEE      -10,+10     30000       9.2e-16     1.2e-16 | 
|  | // Also tested by ctan * ccot = 1 + i0. | 
|  |  | 
|  | // Cot returns the cotangent of x. | 
|  | func Cot(x complex128) complex128 { | 
|  | d := math.Cosh(2*imag(x)) - math.Cos(2*real(x)) | 
|  | if math.Abs(d) < 0.25 { | 
|  | d = tanSeries(x) | 
|  | } | 
|  | if d == 0 { | 
|  | return Inf() | 
|  | } | 
|  | return complex(math.Sin(2*real(x))/d, -math.Sinh(2*imag(x))/d) | 
|  | } |