| // Copyright 2015 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // This file implements multi-precision decimal numbers. |
| // The implementation is for float to decimal conversion only; |
| // not general purpose use. |
| // The only operations are precise conversion from binary to |
| // decimal and rounding. |
| // |
| // The key observation and some code (shr) is borrowed from |
| // strconv/decimal.go: conversion of binary fractional values can be done |
| // precisely in multi-precision decimal because 2 divides 10 (required for |
| // >> of mantissa); but conversion of decimal floating-point values cannot |
| // be done precisely in binary representation. |
| // |
| // In contrast to strconv/decimal.go, only right shift is implemented in |
| // decimal format - left shift can be done precisely in binary format. |
| |
| package big |
| |
| // A decimal represents an unsigned floating-point number in decimal representation. |
| // The value of a non-zero decimal d is d.mant * 10**d.exp with 0.5 <= d.mant < 1, |
| // with the most-significant mantissa digit at index 0. For the zero decimal, the |
| // mantissa length and exponent are 0. |
| // The zero value for decimal represents a ready-to-use 0.0. |
| type decimal struct { |
| mant []byte // mantissa ASCII digits, big-endian |
| exp int // exponent |
| } |
| |
| // at returns the i'th mantissa digit, starting with the most significant digit at 0. |
| func (d *decimal) at(i int) byte { |
| if 0 <= i && i < len(d.mant) { |
| return d.mant[i] |
| } |
| return '0' |
| } |
| |
| // Maximum shift amount that can be done in one pass without overflow. |
| // A Word has _W bits and (1<<maxShift - 1)*10 + 9 must fit into Word. |
| const maxShift = _W - 4 |
| |
| // TODO(gri) Since we know the desired decimal precision when converting |
| // a floating-point number, we may be able to limit the number of decimal |
| // digits that need to be computed by init by providing an additional |
| // precision argument and keeping track of when a number was truncated early |
| // (equivalent of "sticky bit" in binary rounding). |
| |
| // TODO(gri) Along the same lines, enforce some limit to shift magnitudes |
| // to avoid "infinitely" long running conversions (until we run out of space). |
| |
| // Init initializes x to the decimal representation of m << shift (for |
| // shift >= 0), or m >> -shift (for shift < 0). |
| func (x *decimal) init(m nat, shift int) { |
| // special case 0 |
| if len(m) == 0 { |
| x.mant = x.mant[:0] |
| x.exp = 0 |
| return |
| } |
| |
| // Optimization: If we need to shift right, first remove any trailing |
| // zero bits from m to reduce shift amount that needs to be done in |
| // decimal format (since that is likely slower). |
| if shift < 0 { |
| ntz := m.trailingZeroBits() |
| s := uint(-shift) |
| if s >= ntz { |
| s = ntz // shift at most ntz bits |
| } |
| m = nat(nil).shr(m, s) |
| shift += int(s) |
| } |
| |
| // Do any shift left in binary representation. |
| if shift > 0 { |
| m = nat(nil).shl(m, uint(shift)) |
| shift = 0 |
| } |
| |
| // Convert mantissa into decimal representation. |
| s := m.utoa(10) |
| n := len(s) |
| x.exp = n |
| // Trim trailing zeros; instead the exponent is tracking |
| // the decimal point independent of the number of digits. |
| for n > 0 && s[n-1] == '0' { |
| n-- |
| } |
| x.mant = append(x.mant[:0], s[:n]...) |
| |
| // Do any (remaining) shift right in decimal representation. |
| if shift < 0 { |
| for shift < -maxShift { |
| shr(x, maxShift) |
| shift += maxShift |
| } |
| shr(x, uint(-shift)) |
| } |
| } |
| |
| // shr implements x >> s, for s <= maxShift. |
| func shr(x *decimal, s uint) { |
| // Division by 1<<s using shift-and-subtract algorithm. |
| |
| // pick up enough leading digits to cover first shift |
| r := 0 // read index |
| var n Word |
| for n>>s == 0 && r < len(x.mant) { |
| ch := Word(x.mant[r]) |
| r++ |
| n = n*10 + ch - '0' |
| } |
| if n == 0 { |
| // x == 0; shouldn't get here, but handle anyway |
| x.mant = x.mant[:0] |
| return |
| } |
| for n>>s == 0 { |
| r++ |
| n *= 10 |
| } |
| x.exp += 1 - r |
| |
| // read a digit, write a digit |
| w := 0 // write index |
| mask := Word(1)<<s - 1 |
| for r < len(x.mant) { |
| ch := Word(x.mant[r]) |
| r++ |
| d := n >> s |
| n &= mask // n -= d << s |
| x.mant[w] = byte(d + '0') |
| w++ |
| n = n*10 + ch - '0' |
| } |
| |
| // write extra digits that still fit |
| for n > 0 && w < len(x.mant) { |
| d := n >> s |
| n &= mask |
| x.mant[w] = byte(d + '0') |
| w++ |
| n = n * 10 |
| } |
| x.mant = x.mant[:w] // the number may be shorter (e.g. 1024 >> 10) |
| |
| // append additional digits that didn't fit |
| for n > 0 { |
| d := n >> s |
| n &= mask |
| x.mant = append(x.mant, byte(d+'0')) |
| n = n * 10 |
| } |
| |
| trim(x) |
| } |
| |
| func (x *decimal) String() string { |
| if len(x.mant) == 0 { |
| return "0" |
| } |
| |
| var buf []byte |
| switch { |
| case x.exp <= 0: |
| // 0.00ddd |
| buf = append(buf, "0."...) |
| buf = appendZeros(buf, -x.exp) |
| buf = append(buf, x.mant...) |
| |
| case /* 0 < */ x.exp < len(x.mant): |
| // dd.ddd |
| buf = append(buf, x.mant[:x.exp]...) |
| buf = append(buf, '.') |
| buf = append(buf, x.mant[x.exp:]...) |
| |
| default: // len(x.mant) <= x.exp |
| // ddd00 |
| buf = append(buf, x.mant...) |
| buf = appendZeros(buf, x.exp-len(x.mant)) |
| } |
| |
| return string(buf) |
| } |
| |
| // appendZeros appends n 0 digits to buf and returns buf. |
| func appendZeros(buf []byte, n int) []byte { |
| for ; n > 0; n-- { |
| buf = append(buf, '0') |
| } |
| return buf |
| } |
| |
| // shouldRoundUp reports if x should be rounded up |
| // if shortened to n digits. n must be a valid index |
| // for x.mant. |
| func shouldRoundUp(x *decimal, n int) bool { |
| if x.mant[n] == '5' && n+1 == len(x.mant) { |
| // exactly halfway - round to even |
| return n > 0 && (x.mant[n-1]-'0')&1 != 0 |
| } |
| // not halfway - digit tells all (x.mant has no trailing zeros) |
| return x.mant[n] >= '5' |
| } |
| |
| // round sets x to (at most) n mantissa digits by rounding it |
| // to the nearest even value with n (or fever) mantissa digits. |
| // If n < 0, x remains unchanged. |
| func (x *decimal) round(n int) { |
| if n < 0 || n >= len(x.mant) { |
| return // nothing to do |
| } |
| |
| if shouldRoundUp(x, n) { |
| x.roundUp(n) |
| } else { |
| x.roundDown(n) |
| } |
| } |
| |
| func (x *decimal) roundUp(n int) { |
| if n < 0 || n >= len(x.mant) { |
| return // nothing to do |
| } |
| // 0 <= n < len(x.mant) |
| |
| // find first digit < '9' |
| for n > 0 && x.mant[n-1] >= '9' { |
| n-- |
| } |
| |
| if n == 0 { |
| // all digits are '9's => round up to '1' and update exponent |
| x.mant[0] = '1' // ok since len(x.mant) > n |
| x.mant = x.mant[:1] |
| x.exp++ |
| return |
| } |
| |
| // n > 0 && x.mant[n-1] < '9' |
| x.mant[n-1]++ |
| x.mant = x.mant[:n] |
| // x already trimmed |
| } |
| |
| func (x *decimal) roundDown(n int) { |
| if n < 0 || n >= len(x.mant) { |
| return // nothing to do |
| } |
| x.mant = x.mant[:n] |
| trim(x) |
| } |
| |
| // trim cuts off any trailing zeros from x's mantissa; |
| // they are meaningless for the value of x. |
| func trim(x *decimal) { |
| i := len(x.mant) |
| for i > 0 && x.mant[i-1] == '0' { |
| i-- |
| } |
| x.mant = x.mant[:i] |
| if i == 0 { |
| x.exp = 0 |
| } |
| } |